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ON THE HURWITZ PROBLEM OVER AN ARBITRARY FIELD II 

BY JOSE ADEM 

I. Introduction 

This paper contains generalizations of some results presented in part I. Here, 
for an arbitrary field F of characteristic not two, the non-existence of normed 
maps F 4h+i x F 3 - F4h+2 and F 4h+2 x F 3 - F 4h+3 is proved. This extends to 
any h the particular results given in [1] only for h = I. Observe that the similar 
generalization of (7.1) of [1] is not achieved and it is left as an open problem 
(see the remarks in the last section). 

As shown before, the existence of a normed map FP X Fq - Fn is equivalent 
to having a set of q rectangular matrices of order p X n fulfilling certain 
conditions. 

A first matrix of this set is characterized as the join of an identity matrix 
and a zero matrix. Then considering F C K, where K is an algebraically closed 
field, a second matrix is reduced to a special canonical form over K, for some 
values of (p, n). This is given in lemma (2.5) and the proof is a hard piece of 
work. It contains, however, significant simplifications regarding similar argu
ments already given in [1]. 

The proofs are completed in sections 3 and 4, where some very special 
arguments are used to establish the two above mentioned cases. In section 5 
these results are used to determine the minimal n needed for the existence of 
a normed map for 1 :S q :S 3 and any p. 

All references here are made to [1] and to simplify the writing, in order to 
indicate a reference we will only use a square bracket without the 1. For 
instance, we will write [ (6.1)] for [1; (6.1)]. 

2. Orthogonal equivalence of certain matrices 

Let M be a rectangular p X n matrix over a field F of characteristic different 
from two. Assume that 

(2.1) 

where Mt denotes the transpose of Mand IP is the identity matrix of order p. 
Also, assume that M decomposes into 

(2.2) M= [A, B], 

where At= -A, is an alternate matrix of order p, and Bis a rectangular p X 

(n - p) matrix. 
Let C be the alternate matrix of order two given by 

C = [ 0 l] -1 0 

29 
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and define the following square matrices 

(2.3) U= diag[C, • ··, C] and U1 = diag[O, U]. 
ktirnes 

Then, U and U1 are alternate matrices or order 2k and 2k + 1, respectively. 

Now, consider 

(2.4) 

where D is a 2k-column of zeros and D, D1 and D2 as shown are regarded, 
respectively, as 2k X 1, (2k + 1) X 1 and (2k + 1) X 2 matrices. 

Let K be a field containing the originally given field F, that is K :J F. Recall 
that a p X n matrix M over F is said to be orthogonally equivalent over K to 
a p X n matrix N if there exist P and Q, two orthogonal matrices, respectively, 
of orders p and n, such that PMQ = N, where P, Q and N are considered as 
matrices over K. If the fields K :J Fare clearly understood, then we will briefly 
write M ~ N to indicate that M over F is orthogonally equivalent to N over K. 

LEMMA (2.5). Let M = [A, B] be a p X n matrix over F fulfilling the 
conditions (2.1), (2.2), and suppose K :J F where K is an algebraically closed 
field. The following results hold: 

(2.6) 

(2.7) 

(2.8) 

if (p, n) = (2k, 2k + 1) then M ~ [U, D], 

if (p, n) = (2k + 1, 2k + 2) then M ~ [U1, D1], 

if (p, n) = (2k + 1, 2k + 3) then M ~ [U1, D2]. 

where U, U1 , D, D 1 and D2 are as in (2.3) and (2.4). Here the equivalence 
PMQ = N can be chosen so that P[Ip, O]Q = [Ip, O]. Hence, as in [(5.1)] it 
preserves the p X n matrix [ Ip, O]. 

Proof Clearly, M can be replaced by any matrix orthogonally equivalent 
(over K) to it. Since an equivalence of A can be extended to M [see (5.1)], it 
follows that A can be considered to have any of the possible canonical forms 
given in [(4.9)] for an alternate matrix. Hence, 

(2.9) A = diag[W(d,) '' • w<ds). Wa (qi,q,) • •' w a (q,.,q,.)] 
' ' ' 1 ' ' r 

where (;\ - a1)q 1, (;\ + a1 )% and ;\ d', with j = l, • • •, r; k = l, • • •, s and each dk 

an odd number, form a list of all the elementary divisors of A. 
Since A is an alternate matrix its rank must be even. Also, from [(3.9)] it 

follows that rank A ::::: 2p - n. Therefore, 

(2.10) rank A= 2k, 

if (p, n) is as in (2.6), (2.7) or (2.8). 
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In order to organize the proof the following auxiliary propositions will first 
be established. 

(2.11) If (p, n) is as in (2.6) then all the characteristic values of A are 
nonzero. Hence, A has no components of the form w<dJ and all the other 
components W a (q;,q) in (2.9) are with a1 =i6 0. 

J 

(2.12) If (p, n) is as in (2.7) or (2.8) then A has one and only one 
characteristic value equal to zero. Therefore, A has one and only one term 
w<1J = (OJ in that part of (2.9) where the components W(dJ appear and all the 
other components Wa <%,qJ! are with a1 =i6 0. 

The proof of (2.11) \s almost immediate. In fact, if (p, n) is as in (2.6) then 
(2.10) implies that det A =i6 0. Hence, zero is not a characteristic value of A. 
Therefore, A has in (2.9) neither w<aJ nor W o(q,qJ as a component. This proves 
(2.11). 

The proof of (2.12) is much more complex. First consider the case where (p, 
n) is as in (2.8). Since A is of odd order and each Wa(q,q) is of even order, it 
follows that A must contain at least one component W (d) of order d = 2e + 1. 

A permutation of the components of A is given by an orthogonal similarity 
and it induces an orthogonal equivalence on M = [A, BJ [see (section 5)J. 
Hence, we can suppose from the beginning that 

(2.13) A = diag[W<2•+ 1l, NJ, 

where N denotes a suitable matrix. 
Assume 2e + 1 > 1 and let 

W(2e+l)=r~' j, 
W2e+l 

where Wi E K 2•+ 1. 

From the explicit expression for w<2•+1J given in [(4.8)J, the following relations 
are easily verified 

(2.14) { 
W1W/ = W1W2e+/ = W2e+1W2e+/ = 0 if e > 1, 

W1W2t = W2W2e+/ = 0 for all e, 

W2W2t = 0 if e = 1. 

Under the map w; - (wi, 0, • • •, 0), the rows Wi of W (Ze+iJ can be regarded, 
using the same notation, as rows of A and the above relations continue to hold 
inA. 

Suppose (p, n) as in (2.8) and let 

(2.15) 
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where w; E KP and b;, c; EK. As in [(6.11)], the condition (2.1) becomes 

(2.16) 

where 8u is the Kronecker delta. 
There are three cases to be considered with regard to the component w<d) 

of A. They are, d > 3, d = 3 and d = I. 
Let d = 2e + 1 withe> I. Since w1w/ = 0, from [(7.4)] it follows that we can 

assume to have b1 = 1 and c1 = 0. Then substitution of these values in (2.16) 
gives 

w1w/ + b1 = 0 for j ¥, I. 

This equality and the relations w 1w 2t = w 1w 2e+/ = 0 of (2.14), imply that 

(2.17) 

Also, using the relations W2W2,+/ = W2e+1W2,+/ = 0 of (2.14) in (2.16), we get 

{ 
b2b2e+l + C2C2e+l = 0, 

b2e+? + C2e+? = l. 
(2.18) 

Now, a substitution of (2.17) in (2.18) gives C2C2e+1 = 0 and C2e+i2 = 1. Hence, c2 

= 0 and, since b2 = 0, again from (2.16) it follows that w2w 2t = I. But a direct 
computation in w<2•+1), using the expression [(4.8)], gives 

{
~ if e = 2, 

w2wl = 2 

0 if e>2 

and this is a contradiction. Therefore, the component w<a) cannot be in A for 
d>3. 

Let d = 3 and e = I. As shown in (2.14), in this case w2wi = 0. Then, from 
[(7.4)], as before it can be assumed that b2 = 1 and c2 = 0. 

With these values and the relations W1W2t = w2w 31 = 0 of (2.14) in (2.16), we 
obtain b1 = ba = 0. Therefore, from (2.16), we get 

(2.19) 

Using the explicit form of w< 3>, given in [(4.8)], and the known values of b; 
and c1, the matrix M becomes 

[ 
0 (l+i)/2 0 ][0 C1] 

(2.20) M = [W<3>, B] = -(1 + i)/2 0 (-1 + i)/2 1 0 
0 (1 - i)/2 0 0 ca 

The rows of M must satisfy the conditions (2.16). These conditions express 
that each row has norm 1 and that different rows are orthogonal. Applying 

. . 

them to the first and third rows, they give ci2 = 1 -i and cl = 1 + i . Then 

the product of c12 and cl, from these experessions becomes ci2ca2 = ¾-On the 
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other hand, the first and third rows being orthogonal, imply that c1ca = -½. 
Hence, ci2ca2 = ¼. This is a contradiction and it rules out the case d = 
3. Consequently, d = l and W(l) = [OJ is a component of A. Then, the 
expression (2.13) becomes 

A= diag[O, NJ, 

and since the order of N is 2k and rank A = 2k, it follows that N does not have 
zero as a characteristic value. This proves (2.12) for (p, n) as in (2.8). 

The proof of (2.12) for (p, n) as in (2. 7) is obtained as an especial case of the 
above proof, by taking out the elements c1, • • •, Cp. We will point out the main 
steps of the arguments. 

From the beginning all the steps hold up to the expressions (2.15) and (2.16) 
where the c/s need to be deleted. Then the proof continues until (2.18) where, 
after taking out Cze+1, it follows that b2e+12 = 1, in direct contradiction with 
(2.17) where it is stated that b2e+1 = 0. Therefore, w<2•+1l withe> l cannot be 
in (2.13). 

Now, let e = l, hence d = 3. Again all the steps of the above argument 
remain valid after removing the c/s. Then, from (2.19), it follows that w1w/ = 

1 and the first row of (2.20) gives w1w/ = ~ and this is a contradiction. Hence, 

the component w<3l cannot be in A. 
The rest of the argument goes as before and this ends the proof of (2.12) for 

(p, n) as in (2.7). Hence, (2.12) is established. 

Now we go back to the proof of lemma (2.5) and its three propositions (2.6), 
(2.7) and (2.8). First consider the case (2.8) and let A and B be as in (2.15). 
From (2.12) it follows that A can be arranged so that w1 = 0. The argument 
already used [see (7.4)] allows us to assume that b1 = 1 and c1 = 0 and from 
(2.16) it follows that b1b1 = b1 = 0, for j = 2, • • •, p. Let us reindex the rows of 
A and B, to have 

0 1 0 
W1 0 C1 

(2.21) A= and B= 

Wp-1 0 Cp-1 

To study the form of the components of A, suppose that (;\ - a)q, (;\ + a)q 
with a ¥- 0 and q 2: 1, are elementary divisors of A. Then the matrix Wa (q,q) of 
order 2q, constructed in [(4.7)J, is a component of A. Therefore, we can suppose 
that 

A = diag[O, Wa (q•q), SJ, 

where Sis a suitable matrix. Also, as before the rows w1, • • •, W2q of A can be 
identified with the corresponding rows of Wa (q,q), where 
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Using the expression [(4.7)] of Wa(q,q) it is easy to verify the following 
relations 

(2.22) 

w1w/ = -a 2, if j = l, • • •, 2q, 

W1W2t = -2a, if q > l, 

W1W2/ = 0. 

Clearly, the corresponding rows of A also fulfill the conditions (2.22). 
From (2.16) and (2.21) it follows that w1w/ + cl = l for j = l, • • •, p - l, and 

using (2.22), we get 

(2.23) c/ = 1 + a2 for j = l, • • •, 2q. 

Then, c12 = • .. = c2/. From (2.16) it follows that w1w2/ + C1C2q = 0, and 
from (2.22) we get that w1w2/ = 0. Hence, c1c2q = 0 and this together with c12 
= • • • = c2/ implies that c1 = • • • = C2q = 0. Therefore, a2 + 1 = 0 and ia = ± 
1. 

Now, if q > l, from (2.16) it follows that w1w21 = 0 and (2.22) gives W1W2t = 

-2a #- 0. This contradiction rules out the case q > l. 
Then, A has the component 

Wa (1,1) = [ ~ ia] 
-ia 0 

with ia = ± l, and the argument used in [(6.12)] shows that the sign can be 
chosen so that ia = l. Thus, Wa (l,l) = C, and by induction it follows that 

A = diag[0, C, • • ·, C]. 

Consequently, M ~ [U 1, D2], and this ends the proof of (2.8). 

To proceed with the proof of lemma (2.5) consider now the case (2.7). As in 
the proof of (2.12), here, the proof of (2.7) is also obtained from the proof of 
(2.8), by taking out the elements c1, • • •, Cp. As before, we will point out the 
main steps of the arguments. 

Set out with the expressions obtained from (2.15) and (2.16) when the c/s 
are deleted. That is 

(2.24) 

and 
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(2.25) 

Then, the arguments of the proof follow without any problem until (2.21), 
where A is as stated there, after changing the indices of its rows, and B = D1 • 

The proof continues until (2.23) where this equality becomes O = 1 + a 2• From 
there, following the last two paragraphs of the proof of (2.8), in a straightfor
ward form, the proof of (2.7) is completed. 

Finally, let us consider the case (2.6) of lemma (2.5). Let M = [A, B] where 
A is an alternate matrix of order p = 2k and B is a rectangular 2k X 1 matrix. 
Using the notation (2.24), it follows that the rows of A and the elements of B 
satisfy the relations (2.25). 

From (2.11), we can assume that 

A= diag[Wa(q,q>, NJ, 

where a# 0, and, as before, identifying the rows of Wa(q,q) with the correspond
ing rows of A, it follows that the first 2q rows of A fulfill the conditions (2.22). 
Then, from w1w/ + b/ = 1 and w1w/ = a2, we get that bf= 1 + a 2. Hence, b/ 
= • • • = b2/. On the other hand, w1w2/ = 0 implies that b1b2q = 0. Therefore, 
b1 = • • • = bzq = 0, w1w/ = -a 2 = 1 for j = 1, • • •, 2q and ia = ± I. 

Now, if q > 1, then, from (2.22), w1wi = -2a # 0 and, from (2.25), w1w21 = 
0. Thus, q = I. 

As before, the sign can be chosen so that ia = 1, and by induction it follows 
that A = U and B = D. This ends the proof of lemma (2.5) 

Remark. The proposition (2.8) will not be used here since it is related to the 
case mentioned in the introduction to be left unsettled. 

3. Nonexistence of normed maps for p = 4h + 1, q = 3 and n = 4h + 2 

The following generalization of [(6.1)] will be established. 

THEOREM (3.1). For any field F of characteristic different from two, no 
normed map F 4 h+I X F 3 - F 4 h+z can exist. 

Proof Suppose that such map exists over some field F C K, where K is an 
algebraically closed field. Let M1, M2 and M3 be the (4h + 1) x (4h + 2) 
matrices of [(2.5)] associated with the map. Then, from [(5.1)] and (2.7), it 
follows thatM1 = [I4h+1, D],M2 = [ U1, D1] and Ma= [A3, B3], can be considered 
as matrices over K, where U1, D and D1 are as in (2.3) and (2.4), with k = 2h 
and p = 4h + I. With the usual notation, set 

where Wi E KP, b1 EK and 1 ::s i,j :Sp. Recall that the matrices A 3 and U1 are 
alternate of order p. Easily, it follows from (2.3) that the elements biJ of U1 are 
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given by 

(3.2) 
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{ 

b2i, 2i+l = - b2;+1, 2i = 1 if 

bi,r = 0 otherwise. 

ls is 2h, 

The matrix Ms must satisfy the condition 

and this is equivalent with [ see (3.8)] 

A3 U1 + U1Aa = BaD/ + D1B{ 

Now, a direct computation gives 

(3.3) 

bp O 0 

On the other hand, if C = ( C;j) = Aa U1 + U1Aa, then C is a symmetric matrix 
and each 

Then, replacing the values of (3.2) in these expressions for Cij, many terms 
become zero and it follows that 

(3.4) {
C1,1 = 0, C1,2j = -a1,2j+l, C1,2j+l = a1,2j, 

C2i,2j = C2i+l,2j+l = a2i+l,2j - a2i,2j+l, 

C2i,2j+l = C2j+l,2i = a2i+l,2j+l + au,21, 

where only 1 s j is significant. 

Now, from the equality of the matrix C with the explicit expression given by 
(3.3), it follows that 

(3.5) 

Also we get that 

(3.6) C;J = 0 for i > l and j > l. 

Thus, (3.5) implies that 

0 

(3.7) Ba= 
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and from (3.6) and (3.4), it follows that 

(3.8) { 
a2i+1,2J = a2;,2 1+1, 

a2i+1,2J+1 = -a2;,2 1. 

37 

In particular, if i = j, from (3.8) and the alternate property of A3, it follows that 

(3.9) 

Write 

a2;,2i+1 = a2i+1,2i = a 11 = 0. 

0 Vi 
W1 

a21 V2 

A3= 

Wp 
apl Up 

Where VJ= (aJ2, a 13, • • •, a 1p). The relations (3.9) imply that the following two 
consecutive components of v1 are zero: 

a2i,2i = a2i,2i+1 = 0 ifj = 2i, 

a2i+l,2i = a2i+l,2i+l = 0 if j = 2i+ I. 

Now, using the identities (3.8), the rows v1 of oddindexj = 2i+ 1 can.be written 
as follows, 

V2i+1 = (a2i,3, - a2i,2, • • • , -a2i,2i-1, 0, 0, a2;,2i+1, • • • , -a2i,p-1), 

and then it is easy to verify that 

where U is the matrix of order p - 1 defined in (2.3). Also, it follows from (3. 7) 
that 

(3.10) 

Then, since ail = -a1;, the matrix M3 can be written in the following form 

0 0 

(3.11) M3 = [A3, B3] = 

Now, it will be established that the existence of a normal map F4h+i X F 3 

- F 4h+z implies the existence of a Hurwitz-Radon map K 4h+z x K 3 - K 4h+ 2 . 

This last statement is equivalent to the existence of two alternate square 
matrices N2 and N3 over K, each of order 4h + 2, such that [(seep. 34)] 
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N2N/ = N3N/ = I4h+2 and N2N/ + NaN21 = 0. 

Set N2 and N3 in terms of M2 and M3, as follows 

N2= [[-:;,o]] and N3= [[-:f,o]J 
Clearly, these matrices are alternate. To verify the above conditions proceed 
directly as follows. First, that 

N2N/ = [[-:~, O]] [ M2{ -fi ]] = l4h+2, 

it is obtained from the equalities 

0 

0 

Recall that the conditions M:M 31 = I4h+1 means that any two rows of M1 are 
orthogonal and that the norm of any row of M3 is equal to 1. The matrix N3 is 
constructed by adding to M3 the expression [-B/, O] = [O, -v1U, O] as its (4h 
+ 2)-row. Consequently, to prove that NaN/= I4h+2 it is enough to show that 
the row [O, -vi U, O] has norm 1 and that it is orthogonal to all other rows of 
M3. These conditions are established using the form for Ma given in (3.11) and 
the fact that [O, v1, O] is its first row. Thus, because U is orthogonal and V1 has 
norm 1, it follows that [O, -vi U, O] has also norm 1. Because U is alternate, it 
follows that 

(v1U)v/ = v1(v1Ul = (v1U1)v1 = -(v1U)v1, 

hence, 2(v1U)v11 = 0. Therefore, [O, v1, O] and [O, -v1U, O] are orthogonal. 

To prove that the new row [O, -v1U, O] is orthogonal to all the other rows, 
use the relations V2;v/ = 0 and (v2;U)v/ = 0 of M3, as follows: 

V2;(v1U)1 = (v2;U 1)v11 = -(v2;U)v/ = 0, 

(v2;U}(v1U) 1 = V2;(UU 1)v/ = Vz;v/ = 0. 

Consequently, the condition NaNa1 = I4h+2 holds. 

The verification of the condition N2Na1 + NaN21 = 0 is automatic and is based 
on the fact that the same relation holds for M2 and M 3• The details are omitted. 

4. Nonexistence of normed maps for p = 4h + 2, q = 3 and n = 4h + 3 

Now the following generalization of [(8.1)] will be proved. 

THEOREM (4.1). For any field F of characteristic different from two, no 
normed map F 4h+2 X F 3 - F 4h+a can exist. 

Proof. As before, suppose that the map of (4.1) exists over some field F CK, 
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where K is algebraically closed. Let M1, M2 and M3 be the (4h + 2) X (4h + 3) 
matrices of [(2.5)] associated with the map. Then, from [(5.1)] and (2.6), it 
follows that M1 = [I4h+2, D], M2 = [U, D] and M3 = [A3, B3], can be regarded 
as matrices over K, where U and D are as in (2.3) and (2.4). 

Let U = (b;j) andA 3 = (aiJ) where 1 ~ i,j ~p andp = 4h + 2. The elements 
bii of U are given by 

(4_2) {b2H,2i = -b2;,2;-1 = 1 if 1 ~ i ~ 2h + 1, 
biJ = 0 otherwise. 

Since Dis the zero p-column, condition [(3.8)] becomes 

A3U+ UA3=0. 

In the same form that (3.8) was obtained, here, using (4.2) in the above relation, 
it follows that 

(4.3) { 
azi- I,2j = ~2i,2j-I, 

a2;-1,2;-1 - -a2;,2;. 

In particular, if i = j, from (4.3) and the fact that A 3 is an alternate matrix, it 
follows that 

(4.4) 

Let 

a2;-1,2i = a2;,2;-1 = a 11 = 0. 

where w1 = (a;1, • • • , a;p) and b; E K. As before, the relations (4.4) imply that 
the following two consecutive components of each w; are zero: 

{
a2;,2;-1 = a2;,2; = 0 if j = 2i, 
a2;-1,2i-1 = a2;-1,2i if j = 2i - 1. 

Then, using the identities (4.3) the W2; can be written as follows, 

W2; = [a2;-1,2, • • • , -a2;-1,2;-a, 0, 0, a2;-1,2;, • • • , -a2;-1,p-1]. 

Then, it is easy to check that 

(4.5) 

Using this relation (4.5) and the fact that the alternate matrix U is orthog
onal, the p-column B 3 will be shown to be the zero column. 

The condition MsMat = Ip is equivalent in terms of w; and b;, with the set of 
conditions given in (2.25). Then, from 

W2;w2/ = (w2;-1U)(w2;-1U)t = W2;-1W2;-1\ 

it follows that b2? = b2;-i2. On the other hand, since U is alternate, it quickly 
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follows that 

Hence, b2;-1b2; = 0. Therefore b1 = • • • = bp = 0, and B3 is the zero p-column. 
Thus, in the case, we have 

0 

0 

Now, under the assumption that the matrices M1, M2 and M3 over K, satisfy 
conditions [(2.5)], by taking out the part B; in each M;, it follows that the three 
square matrices A1 = 14h+2, A2 = U and Aa also fulfill conditions [(2.5)]. 
Consequently, the existence of these matrices imply the existence of a normed 
map K 4h+2 x K 3 - K 4h+2 and its restriction K 4h+1 x K3 - K 4h+ 2 is also a 
normed map. But this implies.a contradiction with (3.1). Hence, this ends proof 
of (4.1). 

5, Minimal values of n for 1 :s q $ 3 

The results of the last two sections will be used to prove the following 
generalizations of the first three cases of [(9.1)]. 

THEOREM (5.1). Let F be a field of characteristic different from two and let 
1 $ q $ 3. Then, for any p, the minimal n for the existence of a normed map 
FP x Fq - pn is independent of F and its value is given by the following 
table: 

q\p 4h+ 1 4h + 2 4h + 3 4h +4 

1 4h + 1 4h + 2 4h + 3 4h + 4 

2 4h + 2 4h + 2 4h + 4 4h + 4 

3 4h + 3 4h + 4 4h + 4 4h + 4 

Proof The same arguments already given in [ (9.1)] are used here to construct 
the maps and to prove that the values of n are minimal. 

The main difficulty is to settle the cases (p, q) = (4h + 1, 3) and (p, q) = (4h 
+ 2, 3). For these cases, the results (3.1) and (4.1) imply, respectively, that n 
2:: 4h + 3 and that n 2:: 4h + 4. On the other hand, the direct sum of F 4h x F 3 

- F 4h and F 1 x F 3 - F 3, constructs the map for the first case and the 
restriction of p 4h+4 X F 4 - F 4h+4 to p 4h+4 X F 2 C p 4h+4 x F4, gives the map for 
the second case. Hence, these two cases are decided. All other details are 
omitted and this ends the proof. 
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6. Concluding remarks 

Independent of the field, the results already established imply that n = 4h 
+ 4 is the minimal value for the existence of a normed map, in the following 
three cases: (p, q) = (4h + i, 4), for i = 2, 3, 4. 

The case (p, q) = (4h + 1, 4) with h > 1 has not been settled and we have 
the following question: 

Does there exists for some field Fa normed map F 4h+I X F 4 - F 4h+a? 

If h = 1 this was proved not to exist in [(7.1)]. If h > 1 the answer is not 
known even if F = C is the complex field and h = 2. 

If Fis a formally real field the Hopf theorem [ (1.6)] gives a negative answer 
to the existence of such map. For other fields, the possibility of having isotropic 
vectors seems to complicate the problem. A difficult general question appears 
to be the following: 

Does the Hopf theorem hold for any field of characteristic not two? 

Added remark. After this paper was written, and due to some delay in the 
publication of the Boletin, I can report that in July 1982 K. Y. Lam and T. Y. 
Lam informed me that they had settled the two above problems for any field 
of characteristic zero. The problems remain open for fields of characteristic p 
> 0. Also, quite recently, D. B. Shapiro has informed me of some extensions 
and substantial simplifications he has obtained regarding the results of this 
paper. 
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