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OPTIMAL RATIONAL CURVES AND HOMOTOPY PLANES 

BY TAMMO TOM DIECK 

L Introduction 

This paper is concerned with the construction of acyclic affine surfaces 
from plane algebraic curves. Foundational material for this construction can 
be found in TOM DIECK - PETRIE [1989,1991]. Here we concentrate on the 
curves and explicit examples. 

Surfaces will always be connected, non-singular, quasi-projective, algebraic 
surfaces over the complex numbers. Let R be a subring of the rational num
bers. A surface Vis called R-honwlogy plane if Hi(V;R) = 0 for i > 0. In 
the case R = :;z we simply refer to this as a homology plane. 

We investigate homology planes via their compactifications. If Xis a pro
jective surface and C C X a curve we call (X, C) or X a compactification of 
any surface V which is isomorphic to the complement X \ C. By the basic 
rationality theorem of GUR..JAR-SHASTRI [1989] we can and will assume that 
X is a rational projective surface and C a rational curve. 

Suppose X \ C = V is a homology plane and p : X -+ Y a contraction to a 
minimal rational surface Y. Then D = p(C) will be called a minimal divisor 
of V. In case Y = W>2 is the projective plane, we call D a pl,ane divisor of V. 

Only very special rational curves can be minimal divisors of Q-homology 
planes. In qualitative terms: If D = D 1 U ... U Dn is the decomposition into 
irreducible components, then the Di should have very few intersection points 
or singularities with several branches. For instance, if D c lF2 is irreducible, 
then D must be a cuspidal curve; this means, D is a topologically embedded 
2--sphere IJ:D1. · 

The minimal divisors of a homology plane V are by no means uniquely 
determined. In fact, by applying an arbitrary Cremona transformation to 
a plane divisor of some V we obtain again a plane divisor of V. Therefore 
we are looking for some kind of normal form. The normal forms should be 

· chosen so as to meet certain criteria: They should be as simple as possible 
(fewest number of components, lowest degree of components). They should 
be maximal in the following sense: It is shown in TOM DIECK- PETRIE [1991] 
that a minimal divisor of a homology plane gives raise to infinite families of 
surfaces, called towers of surfaces. (The members of a tower are in general 
Q-homology planes.) The maximality condition askes for curves for which 
the corresponding towers are not contained in larger towers of other curves. 
For instance, the tower of a cuspidal curve D c IJ:D2 consists of the complement 
lF2 \ D alone. But all known cuspidal curves are members of infinite towers. 
We offer two conjectures which help to explain these heuristic conditions. 

CONJECTURE (1.1). Every homology pl,ane has a plane divisor which con
sists of lines and quadrics. 
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Unfortunately, it is very difficult to classify arrangements oflines and quad
rics which can be plane divisors of homology planes. (For lines see TOM DIECK 
[1990]; for lines and quadrics NEUSEL [1992].) An affirmative answer to the 
corresponding conjecture for (rational) Q-homology planes would imply that 
a cuspidal curve can be transformed into a line by a Cremona transformation 
(compare MATSUOKA-SAKAI [1989] for remarks concerning the latter prob
lem). Actually, I believe that the methods of this paper lead to a construction 
of all cuspidal curves. 

Let D = D 1 U ... U Dn c Y be a rational curve in a minimal rational sur
face Y. There is a minimal expansionp : X--+ Y such that e = p- 1(D) has 
normal crossings (embedded resolution of singularities). The intersection 
pattern of e is usually codified in its weighted dual graph re. The curve D 
is called optimal if re is connected and has n - b2(X) cycles. Here b2 is the 
second Betti number; the number of cycles of a connected graph r is defined 
to be 1 - x(r), with x(r) the Euler characteristic of (the geometric realiza
tion of) r. The term "optimal" refers to the algorithm for the construction of 
homology planes from minimal divisors which was described in TOM DIECK -
PETRIE [1991]. This algorithm requires the choice ofa selection function and 
the choice of a cutting set. For optimal curves there is only a trivial selection 
function with constant value one. 

CONJECTURE (1.2). Homowgy planes have optimal minimal divisors. 

Whereas (1.1) may well be true for Q-homology planes, (1.2) seems to re
quire integral homology planes. Also it is not enough to deal only with plane 
divisors. Optimal plane divisors will not, in general, consist of lines and 
quadrics. 

One purpose of this paper is to describe the (maximal) optimal rational 
curves which have been found so far (up to Cremona transformations). Since 
homology planes oflogarithmic Kodaira dimension "ii. ~ 1 have been analyzed 
successfully by GURJAR - MIYANISHI [1987], we always concentrate on sur
faces of general type "ii. = 2. There probably exist no more than those coming 
from the curves described here. This belief is the main justification for this 
paper. But, loosely speaking, I conjecture that there exists a finite number of 
towers which comprise all homology planes of general type. 

The results of this paper suggest a number of more technical conjectures 
which I will explain in due course. 

In section 2 we construct the optimal curves and show that they are u
niquely determined by their weighted dual graph. In section 3 we present 
some numerical results for the construction of homology planes. In section 
4 we verify that the known homology planes have very special logarithmic 
Chern numbers. 
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2. Optimal curves 

The curves are described by their intersection pattern (weighted dual graph, 
singularities). Existence and uniqueness up to automorphism of the minimal 
rational surface is shown. Recall that the minimal rational surfaces are JP>2 

and the Hirzebruch surfaces :E(n), n = 0, 2, 3, .... We also show how our op
timal curves are related to arrangements of lines and quadrics in order to 
check (1.1). 

A. Six lines in :E(O). 

Note that :E(O) = JP>1 x JP>1. The arrangement consists of 

i = 0, 1, oo E IP'1. 

An equivalent optimal arrangement of Five Lines in IP'2 is the following: Take 
four lines in general position L1, ... , L4 and add a further line L which passes 
through two double points x andy of L1 U ... UL4. In order to obtain a normal 
crossing curve one has to blow up x and y. Then the proper transform of L 
becomes a ( -1 )-curve. Contracting this ( -1 )-curve leads to an arrangement 
of Six Lines in :E(O) as described above. The weighted dual graph has 4 cycles 
and is (the non-planar graph) given in Figure A. This is the only arrangement 
with 4 cycles. 

0 0 

0 0 

Figure A 

We remark that Four Lines in general position in JP>2 are an optimal curve 
(three cycles). But the towers of this arrangement are contained in towers 
of the arrangement (A) above. In order to see this, ones has to cut one of the 
three cycles with multiplicities (1, 1) (see TOM DIECK-PETRIE [1991] for ter
minology and background). Cutting a cycle with these multiplicities removes 
an edge in Figure A and replaces the weights of the adjacent vertices by -1. 
Contracting these ( -1 )-curves results in the graph of Four Lines (see TOM 
DIECK- PETRIE [1991], (5.2)). 
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B. Quadric with three tangents. 

Up to automorphisms ofn»2 there exists a unique curve consisting of a reg
ular quadric Q and three of its tangents T 1, T2, T3. The symmetric group 
S3 still acts on any such arrangement by projective automorphisms. Blow
ing up the points of tangency (twice) produces a normal crossing curve. The 
weighted dual graph is given in Figure B. 

As a matter of notation we display the negatives of the actual weights in 
order to avoid minus-signs. 

1 

1 1 

Figure B 

C. Quadric, two tangents, line through double point. 

Let Q be a quadric with two tangents Ti, T2 and a further line L through 
T 1 n T2. Any such arrangement has a projective symmetry group 'Z./2 x Z/2: 
Reflection inL, interchanging T1 and T2; reflection in the line through QnTi. 
The weighted dual graph of a minimal resolution is given in Figure C. 
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2 1 2 

0 

-
2 1 0 1 2 

Figure C 

PROPOSITION (2.1) The surfaces in towers ofB and Care obtainable from the 
following arrangement of Seven Lines (Figure 1): Let L1, ... , L4 be four lines 
in general position. Add the three possible lines M1,M2,M3 which connect 
the double points of L1 U ... U L4. 

Figure 1 

Proof. Note that the symmetric group S4 acts on this arrangement by per
muting the Lj. The construction of towers requires the choice of a selection 
function (see TOM DIECK- PETRIE [1991]). In the case of an arrangement of 
lines a selection function d assigns a value O or 1 to a point of multiplicity 
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greater than two. The combinatorics requires in our case that d assumes 
the value O on three non-collinear points. (Value O means: When this point 
is blown up the corresponding exceptional divisor will not be included in the 
compactification divisor of the homology plane. If three collinear points have 
value zero, then the resulting graph is no longer connected.) Up to symmetry 
these are the cases marked • and O in Figure 1. Case O leads to the graph 
B and case • to the graph C. 

In the case of graph B we can contract successively (-1 )-curves. We end up 
with four curves Q, T1, T2, T3 with self-intersections (respectively) 4, 1, 1, 1 
and intersection numbers IQ· TJI = 2. All this is read off from the graph. 
Thus any such graph arises from an arrangement B. A similar argument ap
plies to case C. D 

As a matter of notation we write S · T = L nixi when the irreducible curves 
Sand T intersect in the points Xi with multiplicity ni. The intersection num
ber IS · TI is then given by :Z::: ni. 

D. Cubic with two lines. 

Let C C TID2 be a cubic with a cusps. There is a unique point p E C which 
has a tangent L of order 3, i.e. C • L = 3p. Let M be an ordinary tangent to C 
in a regular point r. It intersects M in a further regular point q. The points 
q, rare different fromp, since C \ s carries a group structure (isomorphic to 
the additive group (C) such that the intersections of C \ s with a line add up to 
zero in this group structure. A cubic with a cusp is projectively unique and 
still carries a C*-action with fixed points p, sand orbit C \ {p, s }. This shows 
that the configuration CUL UM is projectively unique. The dual graph is 
specified in Figure D. 

2 1 

1 2 

2 2 

2 1 

Figure D 

E. Four sections in I:(2). 

3 

2 

Let 1r : I:(2) -+ JPl1 be the ruling , F a general fibre of 1r and E the section 
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with self-intersection IE · El = -2. The arrangement consist.s of curves 
Q2, Q1,L,E linearly equivalent to 

The intersection pattern is given as follows 

Herex,y, z, u, u denote 5 different point.s. From this intersection pattern one 
computes the dual graph of a minimal resolution to be as in Figure E. 

2 

2 3 

1 

2 

1 1 2 2 

2 
Figure E 

PROPOSITION (2.2) An arrangement with the intersection pattern as above 
exists and is unique up to automorphism ofE(2). 

Proof. We start with the following arrangement of lines L,M and quadrics 
Q1, Q2 in IID2. The intersection pattern is specified as follows: 

The construction is done in the following order: 
(1) Choose Q 1, Q2 with the given intersection pattern. This is projectively 

unique. 
(2) Mis the tangent to Q 1 in a. Then M is not tangential to Q2 in a and 

produces the other intersectiori d with Q2. We must have c # d. 
(3) From d draw the second tangent L to Q 1 · This determines L • Q 1 = 'lb. 

We have b # c since otherwise L would be tangent to Q2. We find e from 
L • Q2 and e is different from b and c. Having chosen Q 1, Q2, the construction 
is uniquely determined. 

We apply the following expansions and contractions to the arrangement. 
(a) Blow up a. This yields a (-1)-curve E and the proper transforms 

L'' M'' Ql' Q2. 
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(/3) E,M' and Q1 have a common point. We blow up this point. Then M' 
becomes a ( -1 )-curve M". 

( 1) Contract M". 

The proper transforms of L,E, Qi, Q2 are the curves we are looking for. 
Given an arrangement L,E, Q 1, Q2 as in the beginning we can certainly 

reverse (a) - ('Y) and arrive at a uniquely determined arrangement of lines 
and quadrics. • 

with oo - line 

Figure 2 

PROPOSITION (2.3). The surfaces in towers D and E are obtainahk from the 
following arrangement of Nine Lines in n»2 (Figure 2): The lines 

z1 = 0, 1, 2; z2 = 0, 1, 2; z1 = z2; z1 = z2 + 1; 

and the infinite line (affine coordinates z1,z!J. 

Proof. A selection function d must have value one on two points of multi
plicity 3. In order to obtain a connected graph one of these points has to be 
a point of multiplicity 3 on the infinite line. By symmetry of the figure the 
other point must be x or y. The case d(x) = 1 leads to the graph D and the 
case d(y) = 1 leads to the graph E. By contracting successively (-1)-curves 
in such graphs one arrives at a system of curves with intersection pattern as 
described under D and E. We have already seen that the intersection pattern 
determines the arrangement involved uniquely. • 
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F. Four sections in E(2). 

As in case (E) we find curves with linear equivalence classes 

But this time the intersection pattern has the following structure: 

C-E=x, C-L 1 =3y, C-L2=3z, L 1 -L2=u+v. 

This intersection pattern leads to the following dual graph (Figure F). 

2 

2 

2 1 

---2 
2 

2 1 

FigureF 

1 

1 
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PROPOSITION (2.4). An arrangement with the intersection pattern as above 
exists and is unique up to automorphism ofE(2). 

Proof. We start with the following arrangement in JP>2: Let·C be a cubic 
with node c. Let T be one of the tangents to C in c. Then there is no further 
intersection of C and T. There are exactly 3 regular points of C with tangents 
of order 3 (fl.exes). Let L1 and¼ be two of these tangents ind and e. We 
obtain intersections T · L1 = a, T • L2 = b, L1 · L2 = c. Up to automorphism 
of lF2 there is exactly one such arrangement. 

We now apply the following expansions and contractions to this arrange-
ment: 

(a) Blow up the point c. Let E be the corresponding ( -1 )-curve. 
(/3) Blow up the intersection of E with the proper transforms C' and T'. 
(,) Contract the resulting ( -1 )-curve T". 

The proper transforms ofC,L1,L2 andE constitute the arrangement we are 
looking for. • 
G. Nodal cubic with two tangents. 

This is the subsystem CUL1 UL2 which was described in the proofof(2.4). 
It leads to the following dual graph (Figure G). 
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2 2 1 2 

1 1 

2 2 1 2 

Figure G 

PROPOSITION (2.5). The surfaces in towers F and Gare obtainahle from the 
following arrangement of Nine Lines in w:2: 

and the infinite line (w f:. 1, w 3 = l). (This arrangement is not realizable over 
the real numbers.) 

Proof. A selection function must have value one on three points of mul
tiplicity 3. The points can be x,y or x, z (up to symmetry) with x = {z1 = 
1} n { z2 = 1}, y = { z 1 = 1} n { z2 = w}, z = { z 1 = w} n { z2 = w}. The proof is 
finished as for (2.3). D 

H. Cubic, quadric, line. 

PROPOSITION (2. 6). There exists an arrangement in JP2 consisting of a CU$p
idal cubic C, a regular quadric Q, and a line L with the following intersection 
pattern: 

C-L=3z, C-Q=3x+2z+y, Q-L=2z. 

The points x, y, z E C are regular. 

Proof. There certainly exist C and L with C • L = 3z. We use again the 
group structure on the regular part of C. Six regular intersection points Xj 

of C and Q (counted with multiplicities) must satisfy x1 + ... + x6 = 0 in 
this additive group structure. Since C • L = 3z, the point z corresponds to 
the zero element of this group. The points x and y therefore have to satisfy 
3x + y = 0. The quadric which is determined by these conditions is regular: 
Otherwise there would exist a line intersecting Cina subset of {x,y,z} and 
this is impossible. Again the configuration is unique up to automorphism of 
JF2. D 
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The dual graph of the minimal resolution is given in Figure H. 

2 1 3 

2 1 3 

2 2 

2 2 1 

Figure H 

Remark (2.7). The surfaces in towers ofH are obtainable from the follow
ing arrangement: A quadric Q with three tangents T1, T2, T3 together with 
two lines L1 through T1 n T2 and Q n T3 = y and L2 through Q n L1 \ {y} 
and T 1 n T3. 

In order to prove this one has to find a selection function which produces 
the graph H. Any configuration with this graph can be contracted to the ar
rangement of (2.6): Contract successively (-1)-curves which show up in the 
curves of the graph. This last remark applies to all other graphs. 

I. Quartic with bitangent. 

A quartic with three ~usps S C IF2 is projectively unique (Steiner quartic) 
and has a bitangent T. The graph of the minimal resolution of SU Tis given 
in Figure I. 

2 1 3 

2 1 2 

1 3 
6 

3 1 2 

2 1 3 

Figure I 
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This arrangement was used in TOM DIECK [1990] to produce homology 
planes with Z/3-action. There it is also shown that the towers of (I) can 
be obtained from an arrangement of two quadrics and three lines. 

There is another arrangement which yields the same result. There exists 
a cuspidal quinticD with four cuspsx1,x2,x3, andy (compare NAMBA [1984], 
p. 182, curve number 6). The pointsx 1 are ordinary cusps of multiplicity two. 
There exists a tangent L in y which intersects D in a single further point z 
which is a regular point of D. In order to see that this arrangment D U L 
exists and yields the same result as SU T above, one blows up one of the 
points S n T. Then the graph of (I) is modified so as to contain the piece 

2 1 3 2 2 

7 1 

and the vertical string can be contracted to the singular pointy. This con
struction also shows a Z/3--symmetry on the quintic which permutes the 
cusps. 

J. A 2-section and two sections in I;(2). 

There exists an arrangement S, L, E in I;(2) with the following intersection 
properties 

S,..,_,5F+2E, £,..,_,2F+E, E 

S • E = a, S • L = 4b + c. 

The curve S has two cuspidal singularities and a, b, c are regular points of S. 
The intersection pattern yields the graph of Figure J. 

2 1 3 

1 

2 2 2 

2 
5 

2 

2 1 3 

Figure J 
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PROPOSITION (2.8). An arrangement as above ex.ists and is unique up t:o 
automorphism of E(2). 

Proof. Start with two quadrics Q1, Q2 in Il_]J2 such that Q1 · Q2 = 4x and 
choose a further pointy E Q1. The triple (Q1, Q2,Y) is unique up to auto
morphism ofil_]J2, Let T1, T2 be the tangents ofQ2 which pass throughy. Let 
L be the line through Q n T1 and Q1 n T2 and letM denote the line through 
y and one of the intersections Q2 nL. By symmetry it does not matter which 
of the points in Q2 n L is chosen. 

Now apply a plane Cremona transformation with centers y, Q 1 nL to Q 1, Q2 , 

T1, T2,L,M. Then Q2 becomes a quartic Q2 with two cusps and a node z; 
and M and Q 1 become lines M', Q1. The next step is to contract the curves 
L, T 1, T2, Moreover M' is one of the tangents of Q1 iny. Now one blows up 
y twice and contracts the proper transform of M'. The proper transforms S 
of Q2, L of Q1, and E of the exceptional divisor ofy are the arrangement we 
are looking for. By reversing this procedure we obtain uniqueness, since the 
arrangement Q1, Q2, T2, T2,L,M was unique up to automorphism. • 
K. Quartic with tangent. 

In the previous section J we obtained a quartic S with two cusps, a node 
and a tangent L of order 4. The curve S UL is optimal and has the graph: 

2 

2 1 3 
2 

2 

1 1 
4 

3 
2 1 3 

Figure K 

The corresponding tower can be obtained from the arrangement Q1, Q2, T1, 
T2, L of the previous section. There exists an involution on~ which inter
changes the cusps of S and fixes S n L and the node of S. 

L. A quintic with cuspidal tangent. 

PROPOSITION (2.9) There ex,ists a quintic Q E Il_]J2 with three cusps. The mul
tiplicity sequence of each cusp is (2, 2). The tangent T at a cusp intersects Q 
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in a single further point which is regular. A quintic with these types of cusps 
is projectively unique. There exists a 'll/3-action on IF2 which permutes the 
cusps ofQ. 

Proof. We give a geometric contruction which exhibits the 'll/3--symmetry. 
The starting point is an arrangement of a quadric with six or seven lines. 

Let S be a quadric with three tangents T1, T2, T3. Set xij =Tin T1. There 
exist lines Lk through Xij, k rf. {i,j} such that Lk nL 1 ES fork i= l. Existence 
is shown as follows by working in the real plane: Let S be a circle about 
the origin in the plane. Suppose the Ti are permuted under a 21r /3-rotation 
about the origin. Add lines Lk such that Lk n Lz ES and such that the Lk 
are permuted under a 21r /3-rotation. Now rotate the configuration of the Lk 
until Lk passes through Xij, k rf. {i,j}. Starting from this construction it is 
also possible to show uniqueness of the arrangement. 

The quintic Q is now obtained by applying the following Cremona transfor
mation: Blowupthepointsxij andLknL 1. Then Ti becomesa(-1)-curveand 
Li a (-2)-curve. Contract these (-1)-curves and then the (-2)-curves. The 
proper transform of Sis Q. It is clear that this process is 'll/3-equivariant. 
Reverse this procedure to show uniqueness of Q. 

If we add a line through x 13 and S n L2 in the primary configuration, then 
T is the proper transform of this line under the birational map of the previ
ous paragraph. • 

The curve Q U T is optimal. The graph of the minimal resolution contains 
a ( -1 )-curve. We contract this curve and arrive at the graph of Figure L. 

2 

2 

2 

1 

2 

4 

1 

Figure L 

1 

3 2 

2 

3 • 

2 

Remark (2.10). The graph of figure L can be contracted to a curve S' UT' 
in IF2 . In this case S' is again a quintic, but this time with two cusps and a 
tacnode t, and T is a line passing through t. By applying a Cremona trans
formation with centers Xij to the primary configuration one obtains another 
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interesting one: A Steiner quartic together with three lines through its cusps; 
the lines intersect on the quartic. The Cremona transformation with centers 
Lk nL 1 yields another interesting configuration of three quadrics with a com
mon tangent. 

M. Nodal cubic, quadric, line. 

PROPOSITION (2.11). Let CC IID2 be a nodal cubic. There exists a quadric Q 
and a line L such that we have the following intersections: 

C-Q=4x+2y, C-L=3y, Q·L=2y. 

Proof. We use the group structure (C* on the complement of the double 
point of C. Then we takey = exp(21ri/3) and x = exp(21ri/12). There exists 
a regular quadric Q which intersects C inx1, ... ,x6 if and only if IT xi = 1 in 
this group structure. Since x4y 2 = 1 we can realize the intersection pattern 
C • Q as stated. A similar argument applies to L. • 

The dual weighted graph is displayed in Figure M. 

2 1 2 1 2 2 2 

1 

2 2 2 

Figure M 

The towers of the resulting Q-homology planes can be obtained by the fol
lowing arrangement of lines L1, ... , L 5 and a quadric Q (see NEUSEL [1992]): 
L1,L2,L3 are tangents to Q andL4 passes through QnL1 and QnL2. Finally 
L5 passes through L1 n L2 and L3 n L4. 
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N. Four sections in :E(O). 

2 1 2 
3 

2 1 2 

2 

Figure N 

PROPOSITION (2.12). There exist four sections S1, ... ,S4 ofpr1: JlD1 x JlD1 ---+ 

IID1 with the following properties: S 1 = IID1 x {yi}, i = I, 2, 3 and S4 · S 1 = 3x1, 
S4 · S2 = 2y1 + Y2, S4 · S3 = 2z1 + 2 2· 

Proof. We start with configuration D and add the line which passes through 
the transvers intersection of C and M. We then blow up the cusps and 
L n M = t and contract the proper transform of the line which connects s 
and t. The proper transforms of L, M, and Q become S1, S2, and S3 and the 
exceptional divisor of s becomes S4. D 

The towers of (Q-homology planes are obtainable from the following ar
rangement ofa quadric Q and lines L 1, ... ,Ls: The lines L1, L2, L3 are tan
gents of Q, L4 passes through L1 n L2 and Q n L3 and L5 (Ls) passes through 
Q nL4 and L1 nL3 (L2 nL3). 

Remark (2.13). A surface V is said to admit a en* -fibration if there is a 
morphism p : V ---+ U onto a curve U such that the general fibre of p is the 
n-punctured affine line C. From the construction of our optimal curves it 
is easy to see, that their complement admits a C2* -fibration (cases A,B,C) 
or a C3* -fibration (the other cases). Since the cases A, B, C also admit C3* -
fibrations we state: 

CONJECTURE (2.14). Every honwlogy pl,ane of general type admits a C3*
fibration. 

The classification of C3* -fibrations will be the subject of another essay. 

3. Discriminants 

This section explains the explicit construction of homology planes from 
the previously describrd curves. This construction is based on a blow-up 
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algorithm. The details of the algorithm are justified in the paper TOM DIECK 
- PETRIE [1991]. We recall from that paper that the construction of towers 
from a minimal divisor requires: 

(1) The choice of a selection function. 

(2) The choice of a cutting set. 
Since we are dealing with optimal· curves there is no choice of a selection 
function. A cutting set is a set of edges in the graph such that its omission 
produces a tree. The surfaces in a tower belonging to a given cutting set are 
parametrized by multiplicities: To each edge in a cutting set is assigned a 
pair (u, v) of positive coprime integers u and v, called multiplicities. There is 
a multilinear function in the multiplicities, called discriminant of the tower, 
such that its absolute value gives the order of the first homology group of the 
associated surface in the tower (provided this value is non zero). The surface 
is a homology plane if and only if the discriminant has absolute value one. 

All that matters for our present purpose is a description of the discriminant 
algorithm. We first describe this algorithm abstractly in words. Since this is 
slightly involved and its theory is not helpful at this point, the reader should 
carefully follow the steps in the example after the formal description of the 
algorithm. 

The discriminant is calculated via the following algorithm: Start with a 
curve C = C1 U ... U Cn in a minimal rational surface Y and let Ci E H 2 (Y; Z) 
also denote the Poincare dual of the cycle Ci. Let R1, ... , Rk denote a basis of 
the relations among the Ci; the R1 are certain integral linear combinations of 
the indeterminates Ci. Now blow up the surface to resolve the singularities of 
C. RewriteR 1 in terms of the proper transforms of the Ci and the exceptional 
divisors of the expansion. From the resulting linear combinations R1 the 
discriminant is produced in the following manner: 

Let Xe be an edge in the cutting set with vertices(= curves) A and B. Re
place A and Bin the R1 by a(A)xe,a(B)xe, where a(A),a(B) E 7Z are the mul-
tiplicities. If A occurs in several edges of the cutting set, replace A by the 
sum of the corresponding terms a(A)xe, Set A = 0, if A is not a vertex of 
an edge in a cutting set. It is a fact that k is also the cardinality of a cut
ting set. The coefficients of the Xe in the R1 after these replacements yield a 
(k, k )-matrix whose determinant is the value of the discriminant at the given 
multiplicities. 

Since some of our graphs have a large number of cutting sets (e.g. B has 11, 
up to symmetry), we give only the linear polynomials R1 in those variables 
which can appear in cutting sets. As for notation, we use the symbols for the 
curves which were introduced in the definition of the arrangement (A) to (N) 
in section 2. Moreover we need notation for some of the exceptional divisors: 
We draw again the relevant graphs and specify the symbol for the divisor at 
the corresponding vertex. 
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Example for the discriminant algorithm. 
We refer to arrangement H in the following list. We start with the curve 
CU Q UL in Y = lPl2. Then L generates H 2(1Pl2; Z) = Zand C = 3L, Q = 2L. 
A relation basis is a basis of the kernel of 

;:z,3 -+ H 2(IP>; Z), (a,b,c) 1--+ aC + bQ + cL. 

In this case we can take 

R1 = C-3L, R2 = Q-2L. 

Now one has to resolve the singularities in x,z given by the intersection C • 
Q = 3x+2z+y. Thisrequirestoblowupxthreetimesandztwice. Moreover, 
Chas a cuspidal singularity c which resolves after two blow up processes. The 
images of the (Cartier) divisors C, Q, L after these blow up processes are then 
(using e.g. HARTSHORNE [1977], V.3) respectively 

C H- C + 3A + 2B + B' + 3E + 2E' + E" + F' + 2{, 

Q 1--+ Q + 2A + 2B +B' + 3E + 2E' +E", 

L 1--+L+ 3A +2B+B' 

where A, B, B', E, E', E", F, F' are names for exceptional divisors and L, B', E', 
E",F,F' are not involved in cycles of the graph. The dual graph of the total 
transform is shown under arrangement H. It has two cycles. We have only 
named those vertices which appear in cycles. We substitute the expressions 
for C, Q,L into the relation basis R 1 = C - 3L, R2 = Q - 2L. The resulting 
linear combinations are R1 and R2. Ifwe omit the vertices which are not in
volved in cycles there remain the two linear combinations which are written 
next to the figure in arrangement H. 

Since the dual graph has two cycles a cutting set consists of two edges 
which, when removed, produce a tree. Let us take e. g. the edges AC and 
CE. 

The next step in the algorithm requires to replace A by ax, C by bx+ cy, 
Eby dy with unknowns x andy and integers a,b,c. Moreover we have to 
put B and Q equal to zero since they are not involved in cutting edges. The 
resulting linear forms are 

(b - 6a)x + (c + 3d)y 

-4ax+3dy. 

The discrimant is the resulting determinant 3d(b - .2a) + 4ac of the coeffi
cients. This is the discriminant of the corresponding tower. The multiplici
ties (a,b) = (c,d) = (1, 1) e.g. yield a homology plane. 
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In order to understand what is going on, one has to recall that an edge 
in the graph is an intersection point of two curves. The choice of multi
plicities means a standard iterated blow up process of this point with linear 
dual graph of exceptional divisors. It is well known that such expansions are 
parametrized by a pair of multiplicities via a continued fraction algorithm. 

Lo Mo 

Lo -L1, Lo -L 00 

Mo-M1, Mo-Moo 

Arrangement A 

Arrangement B 

T1 - T2 + 2A1 - 2A2 
T2 - T3 + 2A2 - 2A3 
Q - 2T3 + 2A1 + 2A2 - 2A3 
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E 

L 

Q 

Arrangement C 

E C 

L M 

Arrangement D 

B 

A 

Arrangement E 

Q + 2A1 + 2A2 - 2L - 2E 
T1-T2+2A1-2A2 
L-T1 -2A1 

C-3L+2F-6E 
L-M+3E-2F ~--

F 

Q1-L+3A-2C 
2Q2 - 3L + 6A - 6B - 2C 
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---c 

E 

A C 

B Q 

Arrangement F 

C 

Arrangement G 

L1-L2+3A.1-3A.2 
2C - 3L1 - 6A1 + 3A2 

L1 - L2 + 3A.1 - 3A.2 
C - 3L1 - 6A1 + 3A.2 + 2E 

C+3E-6A-4B 
=-------- Q + 3E - 4A - 2B 

E 

Arrangement H 
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s 
T 

S-4T-6A-6B 

Arrangement I 

A 

s 
2S-5L-BA 

L 

Arrangement J 

E 

Q - IOE' - 6E - 5T 

Q 

Arrangement L 
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4. Chern numbers 

In this section we compute the logarithmic Chern numbers of the homology 
planes which were constructed in section 2. Let X be a non-singular rational 
projective variety and D C X a normal crossing divisor with rational curves 
D 1, ... ,Du as irreducible components. Let f(D) denote the dual graph of D. 
We use the following notation: 

ao number of path-components of f(D), 
a 1 number of cycles off(D), 
a2 number of vertices of f(D). 

Let Kx be a canonical divisor of X. The logarithmic Chern numbers of 
V = X \Dare (defined as) 

c2(V) e(X) - e(D) 
c1(V) 2 = (Kx + D) 2 

difference of Euler numbers, 
self-intersection number. 

Let b2 = b2(X) denote the second Betti-number of X. From the homological 
and combinatorial definition of the Euler characteristic we obtain: 

(4.1) 
(1) e(X) = 2 + b2(X). 
(2) e(D) = ao - a1 - a2, 

Next we compute (Kx + D) 2 = KJ + (Kx + D) · D + Kx · D. 

LEMMA (4.2). 
(1) Kg = 10 - b2(X). 
(2) (Kx + D) · D = 2(a1 - ao)
(3) Kx · D = -2a2 - LiD[-
Proof. 
(1) is true for X = IID2 and follows in general by using the change of Kj and 

b2(X) under an expansion (HARTSHORNE [1977], V.3.3). 
(2). For a smooth rational curve C the adjunction formula says (Kx + D) • 

C = -2 (HARTSHORNE [1977], V.1.5). Using this, (2) is proved by induction 
on the number of irreducible curves. 

(3) is a rewriting of the adj unction formula. • 
From (4.1) and (4.2) we obtain (compare GURJAR- SHASTRI [1989]): 

(1) c2(V) = 2 + b2 - ao + a 1 - a2, 

(4.3) (2) c1(V) 2 = l0-b2 - 2ao + 2a1 - 2a2 - L.Pr, 
(3) 3c2(V) - c1(V) 2 = 4b2 - 4- ao + a1 - a2 + I: Dr, 

We abbreviate the value (4.3.3) by p(V). 
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PROPOSITION (4.4). The varieties V which appear in towers of arrange
ments (A) - (N) have p(V) = 5. 

Proof. One calculates p(V) by using (4.3.3) for the weighted graphs Fig
ure (A) - (N) and by noting that cutting a cycle increases the number p(V) 
by one. • 

Remark (4.5). For a homoloy plane V one always has c2(V) = 3. There
fore (4.4) is equivalent to c1(V) = -2 in the case of homology planes. 

Note that (4.4) is a sharpening of the Miyaoka inequality (MIYAOKA [1984], 
Theorem 1.1) for homology planes. This fact was also observed by FLENNER 
and ZAIDENBERG. They relate it to the deformation theory of the surfaces. 
The result seems surprising. So one is tempted to state the following conjec
ture. 

CONJECTURE (4.6). For every homology plane V of general type the relation 
p(V) = 5 holds. 

If a homology plane of general type is obtained from an arrangement of 
lines and quadrics one can translate p(V) = 5 into a combinatorial assertion 
about the arrangement. E.g., ifV is obtained from an arrangement ofn lines 
which has tr points of multiplicity r, then the relationp(V) = 5 amounts to 

(4.7) 

MATHEMATISCHFS lNSTITUT 

BUNSENSTRABE 3/5 
3400 GOTTINGEN 
GERMANY 

I)r - 2)tr = 2n - 8. 
r22 
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