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FUNCTIONS WHOSE CRITICAL SET CONSISTS OF TWO 
CONNECTED MANIFOLDS 

BY DUAN liAIBAO AND ELMER G. REES 

In menwry of Jose Adem 

1. Introduction 

A famous theorem due to G. Reeb [12] states that if/: M-+ Risa smooth 
function on a closed manifold with only two (non-degenerate) critical points 
then M is homeomorphic to a sphere. J. Milnor [9] used this result to show 
that a certain seven dimensional manifold not diffeomorphic to a sphere was 
homeomorphic to S7. Later, the requirement in Reeb's theorem that the 
critical points be non-degenerate was shown to be unnecessary (references 
are given in [10]). 

In this paper we consider the more general situation where the critical set 
of the smooth map f: M-+ R has only two components V1 and V2 both of 
which are smooth submanifolds of M. For example, Theorem 1 considers the 
case where V2 is a point and dim V1 > 0, its conclusion is that the topology of 
the pair (M, V1) is similar to that of the pair (FPn, FPn- l ). We do not assume 
that the critical sets off are non-degenerate in any sense. The ultimate aim 
would be to give a complete homotopy characterisation of the possible triples 
(M, V1, V2)- The situation that we consider has been previously studied by 
L. Pontrjagin [11] and he obtained information on the relationship between 
the various Betti numbers. We exploit the considerable advances in algebraic 
topology that were started in the 1950's through the work of Jose Adem and 
others and we show that the topology of V 1 (say) imposes very severe re­
strictions on M and V2. Similar methods have already been used by J. Eells 
and N.H. Kuiper [7] where they studied manifolds that admit a real valued 
function with three non-degenerate critical points. 

Our Theorem 1 is closely related to the Bott-Samelson theorem concerning 
Blaschke manifolds (see [ 4, especially Chapter 7] for a thorough discussion) ; 
by applying Theorem 1 to the square of the distance from a point, one can 
recover the Bott-Samelson theorem. The other results in this paper are nat­
ural generalisations of Theorem 1 and the methods we use can surely be used 
to handle other cases. 

2. Examples 

We give various examples of functions satisfying our hypotheses. In all 
the cases we know, a function f can be chosen so that the maximum and 
minimum submanifolds are non-degenerate in the sense of R. Bott [5]. We 
will be particularly interested in cases where one of the critical manifolds is 
a real projective space. 
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1. Let M be the total space of a bundle over a sphere sk with fibre the 
manifold V. Let f : sk --+ R be a function with only two critical points, then 
the composition off with the projection map has two copies ofV as its critical 
set. 

2. Let M be a real projective space and f be defined by a quadratic form on 
the associated vector space. The critical set off consists of a copy of a real 
projective space RPk-l for each eigenvalue off. The dimension k is deter­
mined by the fact that it is the dimension of the corresponding eigenspace. If 
the quadratic form defining f has only two distinct eigenvalues, one obtains 
an example of the required type. [There are similar examples for projective 
spaces over C, Hand O.] 

3. There is a function f : S4 --+ R whose critical set is two copies of RP 2; 
this is described in more detail in [6]. The manifold S 4 is regarded as the 
space of real symmetric 3 x 3 matrices A satisfying tr A = 0 and tr A 2 = 1, 
the function f is defined by f (A) = tr A 3 . 

4. Let M be Rpk-l x RPk- l, regarded as a quotient of sk- l x sk- l and 
f(x,y) = (x.y)2 . Then f attains its minimum (on sk-l x sk- 1) on the set 
{(x,y) I x.y = O} which is the Stiefel manifold Vk 2 . This corresponds to a 
projective Stiefel manifold in M. On the other ha~d f attains its maximum 
value on the set where x = ±y which corresponds to a projective space Rpk- l 

inM. It can easily be checked, using Lagrange multipliers, that f has no other 
critical points. 

5. Let M be Gk r the Grassmanian of all r dimensional linear subspaces of 
Rk and let e be a 

1

fixed non-zero vector in Rk. Define f by: f (,) is the max­
imum value of (x.e)2 as x varies over all unit vectors in,. By applying the 
method of Lagrange multipliers to the induced function on the Stiefel mani­
fold Vk r of all orthonormal r-frames in Rk, one can show that the critical set 
off co~sists of 

Gk-1 r = {, I e ..L 1} and Gk-1 r-1 = {, I e E , } . 
' ' 

In the case r = 2, the critical set consists of Gk-1 2 and Rpk- 2 . 
' 

6. Let Vo, V1 be connected closed manifolds and fo, 6 be vector bundles 
over them whose sphere bundles are diffeomorphic. Let M be a manifold 
obtained by using a diffeomorphism between the sphere bundles to glue the 
disc bundles of fo and l 1 together. Then M clearly admits a function of the 
required type. All examples where the critical manifolds are non-degenerate 
can be described in this way and so, in this case the question we are studying 
can be reduced to understanding which sphere bundles are diffeomorphic. 
However, it is not clear how to carry this out methodically. 
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Section 3 

THEOREM (1). Let f : M--+ R be a smooth function defined on a compact 
manifold such that its critical set consists of a point p and of a connected 
smooth submanifold V of positive dimension. Then, M has the cohomology 
ring structure of a projective space and the cohomology of V corresponds t;o 

a codimension one projective subspace. More precisely one has one of the fol­
lowing 

(i) M is homotopically equivalent to the projective space FPn and V to Fpn- l 

with either F = R or C, or 
(ii) M has the same cohomology ring as FPn and Vas Fpn-l with either 

F = H or F = 0 (the Cayley numbers) and n = 2. 

The simplest case of this theorem is when V = S 1 and the conclusion is 
that M is RP2. 

Remark. As in [4, p.186], one could say slightly more in the case F = R, 
namely, that the Browder-Livesay invariant of M vanishes (but this is es­
sentially the same as the existence of a oodimension one subspace V that is 
homotopy equivalent to a real projective space). 

Remark. One cannot deduce that M is diffeomorphic to FPn (or even ho­
motopy equivalent in the cases F = Hor 0) since there are 'exotic' such 
examples which admit functions of the given type. 

First, we prove the following 

PROPOSITION (1). Let W be a compact, connected, snwoth submanifold of 
the manifold M and let f : M --+ R be a proper snwoth function whose min­
imum set is W with f(W) = 0. Let c > 0 be such that f- 1[0,c] contains no 
critical points off other than those in W. Then, the inclusion map 

W--+ f- 1[0, c] 

is a homotopy equivalence. 

Proof. Choose a tubular neighbourhood N of W in M such that 

D = f- 1[0, c] -:J N. 

Since 8N is oompact, one can choose c' > 0 such that c' < f(x) for every 
x E 8N. Let D' = f- 1 [O, c']. Now choose a smaller tubular neighbourhood N' 
ofW insideD'. The inclusion mapsD'--+ D, andN'--+ N are both homotopy 
equivalences; hence, by Lemma 1 below, so is D' --+ N. The inclusion map 
W--+ N is also a homotopy equivalence; hence so is W--+ Das required. 

Clearly, Proposition 1 can also be applied to maxima. 
We have used the following well known result. 
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LEMMA (1). Let 

A ~ B L C -2+ D 

be maps between spaces such that (3a and 1/3 are homotopy equivalences. 
Then, a, (3, 1 are homotopy equivalences. 

Proof. Let <.p : C --+ A and 'ljJ : D ---+ B be homotopy inverses to (3a and 1 (3 
respectively. Then /3 has a homotopy inverse because 'l/;1/3::: lB and (3mp::: 
le and hence one has that 'l/;1 ::: 'l/;1/Jmp ::: a<.p is a homotopy inverse for 
(3. Now one can show that 1.p/3 and /J'lj; are homotopy inverses for a and 1 
respectively. For example 1.p/3a ::: lA and a.1.p/3::: 'l/;1/3 ::: lB. 

With the notation of the proof of Proposition 1 one has 

PROPOSITION (2). D\int N' is an h-cobordism between 8D and 8N. 

Proof. Consider the inclusion maps 

8N' --+ D'\int N' ---+ N\int N' ---+ D\int N'. 

Since D\int D' and N\int N' are diffeomorphic to 8D' x I and 8N' x I re­
spectively, one can apply Lemma 1 to conclude that 8N' --+ D\int N' is a 
homotopy equivalence. Similarly, by considering 

8D --+ D\int N ---+ D\int D' ---+ D\int N' 

one concludes that 8D --+ D\int N' is 8;1so a homotopy equivalence. 
We will also need 

PROPOSITION (3). Suppose the sphere sN is homotopy equivalent to the total 
space E of a sphere bundle over a manifold B of positive dimensiori: 

sd-l--+ E--+ B 

then d = 1, 2, 4 or 8 and N + 1 = d(s + 1) for some s ~ 1. Moreover, if d = 8 
thens= 1 or 2. The various cases are 

d=lB:::RP 5 

d=2 B:::CP 5 

d = 4 B has the same cohomology ring as HP5 

d = 8 B has the same cohomology ring as OP5
, s = 1, 2. 

Proof. If B is not simply connected, then the homotopy exact sequence 
shows that d = 1 and so E --+ B is a double cover. 

If B is simply connected, then the Gysin sequence of the fibration shows 
that 

H*(B; Z) ~ Z[e]/e5+1, 
the truncated polynomial algebra on the Euler class of the bundle. The solu­
tion of the Hopf invariant one problem [1] now yields the restrictions on d. 
The restriction on s when d = 8 is proved in [3]. 
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When d = l or 2 there will be a map B ~ FPn classifying the given bundle 
and inducing an isomorphism of cohomology rings. It is easy to check, using 
Whitehead's theorem, that this map is a homotopy equivalence. 

Proof of Theorem 1. Applying Proposition 1 with W = p we see that each 
intermediate level set off is a sphere, hence the sphere bundle of the normal 
bundle of Vis also a sphere. Proposition 3 then implies that V is a homology 
projective space and since M is obtained by taking a cone on the boundary of 
the neighbourhood of V one sees that M is a homology projective space of one 
higher dimension. Since a space with the cohomology of a "Cayley projective 
space of dimension three" cannot exist [3], one sees that the case where V is 
like OP 2 cannot occur. 

Section 4 

We now consider a more general situation. Let f : M ~ R be a smooth 
function defined on a closed manifold M and whose critical set consists of 
two smooth submanifolds Vo and V1, We can arrange that /(Vo) = 0 and 
f(V1) = 1 and choose tubular neighbourhoods No, N1 of Vo and V1 respec­
tively, such that Noc /- 1[0, 1/2[, N1 c /- 1]1/2, 1]. Using Proposition 2 we 
see that M\ {int(No) U int(N 1)} is an h-cobordism between 8N o and ·8N 1 · 

PROPOSITION (4). The inclusion map Vo ~Mis a (dimM - dim V1 - 1) 
equivalence. 

Proof. By a general position argument, one shows that every element in 
1rk (M) has a representative that misses V 1 if k < dimM - dim V 1 and so lies in 
some f- 1 [O, c] for O < c < 1. Using Proposition 1 one sees that it is homotopic 
to a map whose image lies in Vo. Hence 1rk(Vo) ~ 1rk(M) is surjective for 
k < dimM - dim V1. Similarly it is injective fork< dimM - dim V1 - 1. 

Section 5 

In this section we consider a particular case of the situation of §4 namely, 
that in which the critical set consists of RPk and a connected manifold V of 
dimension t with O < t < k. We will show that there are only three types of 
example, which we now describe. 
Type I. This type is modelled on Example 2 of§ 1. M is homotopy equivalent 
to RPk+t+l and V to RPt; the inclusions ofV and RPk inM are homotopic 
to the standard inclusions. 

For the other two types, it is convenient to consider the general level set L 
off : M ~ R; that is, the inverse image of a regular value of/. The manifold 
L is a sphere bundle over both RPk and V. For example, in the standard case 
of Type I, L is diffeomorphic to both S ( t >...k) and S ( k>...t) where Ar denotes the 
canonical real line bundle over RPr. 
Type II. An example of this type is one that has the same cohomology as one 
of the following examples. M is the connected sum of RPk+ 1 and FPr where 
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k + 1 = dr ( d = dimR F) ; r ~ 2 for d = 2, 4 and r = 2 for d = 8 ; V is 
FPr~ 1 and L is sk. The function on M is obtained by considering quadratic 
functions on RPk+ 1 and FPr whose critical sets consist of a point and a co­
dimension one subspace. Choose ball neighbourhoods of the single critical 
points whose boundaries are level sets, remove them from both manifolds 
and take M to be the connected sum; the function on M is then constructed 
in the obvious way. 
Type Ill. First we describe some examples. LetM 1 denote the total space of a 
smooth bundle with base FPr and fibre RPs. Consider a function fi : Ml -+ R 
obtained by composing the bundle projection with a quadratic function on 
FPr whose critical set consists of a point and FPr- l _ Let f 2 : M 2 = Rps+dr -+ 
R be a quadratic function whose critical set consists of RP8 and RPdr- l. The 
integers s and dr are chosen so that the normal bundle of RP8 c aps+dr is 
trivial. Then M is formed by glueing M 1 to M2 along level sets of ti and f2 
after removing suitable neighbourhoods of a fibre from M 1 and of RPs from 
M 2. The function f can now be easily constructed by modifying ti and f 2 
suitably, its critical set consists of Rpdr- l and the total space V of an RP 8 

bundle over FPr- l and the level set L is diffeomorphic to RP8 x sdr- l. The 
restrictions on the integers s, d, r that ensure that O < dim V < k = dr - 1 
and that RP 8 has trivial normal bundle in RPs+dr are: 

either d = 4, r ~ 2 and s = 1 or 2 
or d = 8, r = 2 and 1 s s s 6. 

A function f : Mn -+ R is of Type Ill if it has certain features in common 
with the examples just described. Namely, if the critical set consists of RPk 
and vt, that there are integers d, r, s satisfying 

(i) either d = 4 and r ~ 2 or d = 8 and r = 2 ; 

(ii) n = dr + s, k = dr - 1 and t = n - d ; 

(iii) 1r1(RPk)-+ 1r1(M) is an isomorphism and either 1r1(V)-+ 1r1(M) is an 
isomorphism (when s > 1) or it is the epimorphism Z-+ Z/2(when s = 1)}; 

(iv) the normal bundle v ofRPk inM has non-zero mod 2 Euler class; 

(v) the additive cohomology of the double cover L of Lis isomorphic to 
H*(Sk X S8

). 

THEOREM (2). Let f : M -+ R be a smooth function defined on the compact 
smooth manifold M and whose critical set consists of RPk and a connected 
manifold vt with O < t < k. Every other level set of M is diffeomorphic to a 
manifold denoted by L. Then the manifolds M, V, L are described by one of 
the above three -types. 

COROLLARY. Let f : M -+ R be a smooth function whose critical set consists 
ofRPk and RP 8 with k -=f; s. Then Mis homot:opy equivalent to RPk+s+l. 

Of course, if k = s there are several other possibilities, for example M could 
be any bundle over a sphere with fibre RPk or it could be example 3 of §2. 
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6. Proof of Theorem 2 

Leth ands denote the codimensions ofRPk and vt respectively; therefore 
h + k = s + t = dimM, ands > h since t < k. 

First, we consider the case where h = 1. If the normal bundle of RPk is 
trivial, then L is diffeomorphic to RPk x s0. However, L is also an ss-l 

bundle over V and s - 1 > 0 since s > h = 1; this implies that L is connected 
- a contradiction. Therefore the normal bundle must be the non-trivial line 
bundle over RPk ; hence L is homotopy equivalent to sk. By Proposition 
3, V is a cohomology projective space and the situation is of Type II ( we are 
assuming dim V > 0). 

Now we consider the case h > 1. 

PROPOSITION (5). Under the given hypotheses, the (mod 2) Euler class of 
the normal bundle v of RPk in M is non-zero, and hence, h ~ k. 

Proof. By Proposition 4, the inclusion map RPk --+ M is an (s - 1)­
equivalence and we have that s 2:: 3 ; hence the generator x E H 1(RPk) 
is the restriction of a classy E H 1(M) and so yk f:. 0. If the Euler class of v 

vanished, then one would have an injection ,r* : H* (RPk) --+ H* (L) induced 
by the projection 1r : L --+ RPk and so z = 1r*x would satisfy zk f:. 0. Consider 
the diagram 

It i~ commutative up to homotopy because both compositions are homotopic 
to the inclusion ofL inM. Hencez = 1r*j*y = 1ryi*y andzk f:. 0so (i*yl f:. 0; 
this contradicts the fact that dim V < k and so proves the result. 

PROPOSITION (6). Under the above hypotheses one hash~ t + 1. 

Proof. By our hypotheses we have 2 ~ t + 1 ~ k ; assume also that h > t + 1. 
Since t + 1 ~ k there is a linear inclusiong : apt+l --+ RPk. Let v denote the 
normal bundle of RPk in M, its dimension is h > t + I, so its pullback g*v 
has a nowhere vanishing section. Hence, the composition 

RPt+ 1 --+ RPk --+ M 

is homotopic to a map g' which factors through Land hence through a neigh­
bourhood N(V) ofV. Since we are assuming that h - 1 > t and so h - I 2:: 2 
we can use Proposition 4 to deduce that the inclusion V --+ M induces an iso­
morphism on fundamental groups; similarly for RPk --+ M, since s - 1 ~ 3. 
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Now consider the diagram 
g' RPt+_l ___ V 

l i 
which commutes up to homotopy. Since the composition RPt+ 1 -+ M induces 
an isomorphism 

Z/2 = H 1(M)-+ H 1(RPt+ 1); 

then, (i*yf+ 1 f:. 0 where y E H 1(M) is the generator. This contradicts the 
fact that dim V = t and hence the result is proved. 

Now we consider the case h = t + 1. We will conclude that we are in the 
situation of Type I. 

By Proposition 4, the inclusions RPk -+ M and vt -+ M are k and t equiva­
lences respectively. Hence Vis a manifold of dimension t having its homotopy 
groups isomorphic to those ofRPk in dimensions less than t. So V must be 
homotopy equivalent to RPt. 

The inclusion RPk -+ Mk+h is a k-equivalence; so if k > h, Mk+h is homo­
topy equivalent to RPk+h by Poincare duality. 

Now assume also that k = h. Consider the double cover M of M. There is a 
k-equivalencej: sk -+M. Ifjisnon-trivialon1rk, then1rk(M) = ZandMhas 
non-zero homology in dimensions 0, k and 2k only. Hence M has the fixed 
point property but it admits a free involution (whose quotient space is M). 
Hence 1rkM = 0 and M is a homotopy sphere, so M is a homotopy projective 
space, as required. 

The cases that remain have the following properties. 

(i)2:Sh:St<k; 
(ii) h < s :S k ; 
(iii) the normal bundle of RPk in M has non-trivial mod 2 Euler class; 
(iv) RPk -+ M is ans - 1 equivalence; so 1r1M ~ Z/2 ; and 
(v) V-+ Mis an h - 1 equivalence. 

We will need the following result. 

PROPOSITION (7). Let X be a space whose cohomology is isomorphic to 

Z[b]/(br+l) ® A(a) 

with dim b = s ~ 3, dim a :S s - 2 and r ~ 2. Then either s = 4 or s = B and 
r = 2. 
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Proof. We first consider cohomology with mod 2 coefficients. The Adem 
relations [13, p. 7] show that Sq 8 is decomposable in terms of Steenrod opera­
tions ifs is not a power of 2. J.F. Adams [1] showed that Sq 8 is decomposable 
in terms of secondary operations ifs is a power of 2 and s ~ 16. So, when 
s ~ 5 and s =I 8 one has Sq8 = I:i o:/l!i with o:i an element of the Steenrod 
algebra and <I>i a secondary operation. Hence, since r ~ 2 

one has that <I>i(b) = ab and o:i(ab) = b2 forsomei. SinceHi(X) vanishes for 
dim(ab) < j < dim(b2), o:i is indecomposable and so o:i must be Sqk for one 
of k = 2, 4 or 8. Using the Cartan formula one obtains 

which is a contradiction. Hences= 4 or 8. 

It remains to show that r = 2 in the cases = 8. We consider H*(X; Z/3) and 
use [13, pp. 72, 73] as a reference for the properties of the Steenrod operations 
pi. Since s = dim b = 8 one has P\b) = b3 and using the Adem relation 
P 4 =P 1P 3 oneseesthatP 3(b) = ±ab andP 1(ab2) = ±b 3 ;hencedima = 4. 
By the Cartan formula, 

But P 1(b) = ">..ab so the second term vanishes; hence P 1(a) = ±b. Using 
the Cartan formula and a2 = 0, one obtains 

this is a contradiction, hence r = 2. 

We now return to the main proof. 
First consider the case h = 2 and (so) k ~ 3, then, by Proposition 4, the 

map 1r1(V) -+ 1r1(M) induced by inclusion is onto. The normal bundle v of 
RPk inM is 2-dimensional and, by (iii) above, w2(v) =I 0. Such bundles have 
been classified (by J. Levine [8] fork = 3 and 4, and by J.F. Adams [2, Prop.4] 
fork ~ 5), the only possibility being that vis isomorphic to 2">.., where A is the 
canonical line bundle over RPk. Hence L is diffeomorphic to ( S 1 x sk) /Z/2, 
where the action is antipodal on both factors. Also L fibres over V with fibre 
ss- l wheres > 2, so 1r1 (V) ~ 1r1 (L) ~ Z. 

Let L and V be the connected double covers of L and V respectively. One 
has the fibration 

ss- 1 -+ L-+ v. 
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Let b E Hs (V) denote the transgression class of this fi.bration; then, using 
the Serre spectral sequence one obtains an isomorphism 

H*(V) ~ Z[b]/br+l@ A(a) where dim a= l. 

By Proposition 7 one has that, either s = 4 and r 2'.: 2, ors = 8 and r = 2. 
Hence we have the situation of Type III. 

The case h 2'.: 3 is easier because both inclusions_ RPk -+ Mand V -+ M 
induce isomorphisms on fundamental groups. Let M denote the (universal) 
double covering of Mandi the corresponding covering of the level set L. 
There is a fi.bration 

and, since h < k, there is an isomorphism 

Now, we consider the bundle 

ss- 1 - L- v 
where V denotes the (universal) double cover of V. If the transgression for 

this bundle is zero, then the Serre spectral sequence collapses and one has 
that 

H*(V) @H*(ss-l) ~ H*(Sk)@H*(sh-l) 

and so either s - l = k ors - l = h - l. Both these possibilities are, however, 
ruled out by our hypotheses. So we have that the transgression is non-zero; 
if b E Hs(V) denotes the image of the fundamental class, then 

H*(V) ~ Z[b]/br+l@ A(a) 

for some rand dima = h - l. As before we are in the situation described by 
Type III. 
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