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CATEGORY WEIGHT AND STEENROD OPERATIONS 

BY EDWARD F ADELL AND SUFIAN HUSSEINI 

1. Introduction 

Ifu1, ... , Un arecohomologyclasses ofpositivedimensionofaspaceX (over 
some coefficient system R) and their (cup) product w = u 1 u2 ... Un # 0, then 
the kngth l( w) of w is said to be n. Then, l(X) is defined to be max l( w) for all 
w of positive dimension. Then, an estimate of the Lusternik-Schnirelmann 
category of X, cat X, is classically given by cat X 2: 1 + l(X). Notice that 
each cohomology class in the product u1u2 ... Un is treated equally: namely, 
having "weight" 1. Our objective in this note is to observe that some inde
composable cohomology classes carry more weight than others, where cate
gory is concerned. We define category weight (cwgt) for O # u E H*(X;R) 
by saying that cwgt( u) 2: k if for every closed subset A c X with catx A s; k, 
u IA = 0, i.e., u restricted to A is zero. Then, cwgt u = k if k is maximal with 
cwgt u 2'. k. 

THEOREM (1.1). lfw = u1u2 .. . Un# 0 in H*(X;R), then 

(1) 

and therefore 

(2) cat X 2: 1 + cwgt (w). 

Our first general situation where cwgt ( u) > 1 is given by the following. 

THEOREM (1.2). If /3 is the m~d p Bockstein, and u E H 1(X;'l/.,p), then 
/3u f:. 0 implies cwgt (/3u) ;:::: 2. 

These results yield the following generalization ofa theorem ofKrasnosel
ski ([8]) who proved it for the case of a single odd sphere s2n+ 1. 

THEOREM (1.3). Let M denote the product of k copies, k 2'.: 1, of the odd 
sphere s2n+I, and letp denote an odd prime. Suppose G =(~?acts freely 
on M so that the induced action on the 'l/.,p-cohomology of M is trivial. Then, 
the category of M /G is the maximum possible, i.e., cat M /G = 1 + dimM /G. 

A variation of this result for free actions of ('11.,p)k on the complex Stiefel 
manifold Dn,k(C) (see Theorem (3.8)) is also obtained using Theorems (1.1) 

and (1.2). If S!j is a modp Steenrod operation, it is natural to inquire about 

the category weight of a non-zero cohomology class of the form Stf,u. 

THEOREM (1.4). Let e(I) denote the excess of the Steenrod operat;or Sij. If 

dim u = e( I) 2: 2 and St}iu f:. 0, then cwgt ( Stf,u) 2: 2. 
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Theorems (1.2) and (1.4) may be summarized briefly by saying that the 
Bockstein {3 is universal in dimension 1 for cwgt ? 2 and the Steenrod op
eration Stt is also universal in dimension e(I) ? 2 for cwgt ? 2. Of course, 
it is possible for cwgt (S4u) ? 2 and dimu > e(I) for some particular class 
u. For example, if X = Sp(2) andp = 3, we show that ifx3 E H 3(Sp(2); Z3) 
is a generator, cwgt (PJx3) ? 2, while the excess in this case is 2. This fact 
follows from a result of Schweitzer [10] that cat Sp(2) = 4. 

2. Preliminaries 

We let X denote an ANR (sep. metric) and take A C X. Then, catxA ~ k if 
Acanbeooveredbyksets U1, ... , Uk, openinXsuch that Ui is contractible in 
X. Then catxA =kif k is minimial with this property. There are numerous 
reformulations of this concept due to (e.g.) A. Svare [12], G. Whitehead [13], 
T. Ganea [5]. We review those given by A. Svare [12] for later use. The 
first is based on the fiberwise join of two (Hurewicz) fibrations over X. If 
Pl : E1 -+ X,p2 : E2 -+ X are fibrations over X, then "the" fiberwise join 
(called the "sum" of two fiberingsin [10]) will be denoted byp: E1 *xE2-+ X. 
Ifp 11(x) = F1 andp 21(x) = F2, then the fiber p- 1(x) = F1 * F2, the usual 
join of the spaces F1 and F2. When E = E1 = E2, we denote the fiberwise 
join by E*x 2 and the usual join F * F by F*2. Then, we have a sequence of 
fibrations over X 

F --+ F*2 --+ ... --+ F*k --+ . .. 

l l l 
(S) E --+ E*x2 --+ ... --+ .E•xk --+ 

pl P2l Pkl 

X id X id id X 
id 

--+ --+ --+ --+ 

where, e.g., E*xk = E*x(k- l) *X E, and the horizontal maps are injections. 
The (Serre) fibration 

is obtained by setting F* 00 = LJF*k and E*X 00 = LJE*xk, both with the 
k k 

inductive limit (weak) topology. The. basic relation of (S) to category is the 
following. 
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THEOREM (2.1) [12, Theorems 3 and 18]. If A C X, let EA = P(X,A,x 0) 

denote the space of paths a in X such that a ( 0) = xo E A, a( l) E A. Then, {he 

sequence ( S) for OX -+ EA L A, where p( a) = a( 1 ), has the property that 
catx A :S k if, and only if, pk : (EA)* xk -+ A has a section. 

Remark (2.2). SinceF* 00 in (S00 ) is contractible,p 00 is a homotopy equiv
alence. 

A useful proposition in [12,Theorem 21] is the following. 

PROPOSITION(2.3). E*X 2 = E*xE ~Xmaybeidentified (up to homotopy) 
with the map q : SOX-+ X where q(a, t) = a(t), a E O(X). More precisely, 
there is a homotopy equivalence v 

E*xE ~ SOX 

X 
id .- X 

with qv =P2• 
The next useful sequence is the Milnor sequence [7] of principal G-bundles 

(M) 

* ---+ B2(G) - · · · - Bk(G) - · · · 

where Ek(G) = G*k and the limit is the universal G-bundle G-+ E=(G) -+ 

B 00 (G). The connection with category is the following. First, there is the 
Svare concept of "genus" of a fibration B : F -+ E -+ B. Namely, genus 
B :S k, if B admits an open covering { U 1, ... , Uk} and maps aj : 'lJ_j -+ E such 
thatpo-j(x) = x forx E 'll_j,j = l, ... ,k. Then, genus B =kif genus B ~ k and 
k is minimal with this property. 

THEOREM (2.4) [12, Theorem 9]. Let B : G -+ E -+ X denote a principal 
G-bundle. Then, genus B :S k if, and only if, there is a G-bundle map 
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Now, supposeX is a locally finite simplicial complex. Letxo denote a vertex of 
X and let Pa(X,xo) = Pa(X) and !:ta(X,xo) = !:ta(X) denote the Milnor sim-

plicial analogues [6] of P(X,xo) and !:t(X,xo). Then, r217(X) -+ Pa(X) ~ X, 
where p'(cx.) = a(l), is a principal G-bundle, with G = !:ta(X), that is fiber 

homotopy equivalent to !:t(X)-+ P(X) .!!... X. Let BA : Pa(X,A)-+ A denote 
the !:ta (X)-bundle over X induced by the inclusion A -+ X. Then, we have 
the following proposition. 

PROPOSITON (2.5) [10, Theorem 19]. Genus BA= catxA and hence catxA::;; 
k if, and only if, there is a G-bundle map 

l l 
where G = !:ta(X). 

3. Category weight of cohomology classes 

Let X denote a 0-connected space, which is ANR (sep. metric) throughout, 
R a coefficient ring (e.g. a P.I.D.), and H* (X; R) the co homology of X over R. 
Ifu E Hq(X,R) andj: A-+ Xis an inclusion map, then we denotej*(u) by 
u IA, the restriction of u to A. Ck (X) will denote the family of closed subsets 
of A c X such that catxA ::;; k. 

Definition (3.1). Let u E Hq(X,R) denote a non-zero cohomology class 
with q ~ 1. Define cwgt (u) ~ k to mean that ulA = 0 for every A E Ck(X). 
Then, set 

cwgt (u) = max{k: cwgt (u) ~ k}. 

Remark (3.2). cwgt (u) maybe infinite if cat X = oo. Also, cwgt (u) ~ k 
implies cwgt (u) 2: k - 1. 

Example (3.3). Let M denote a compact triangulate manifold of dimension 
m with cat M = m + 1 (i.e. M has maximal category). Letµ denote the 
fundamental class of M (over ,l if M is orientable, otherwise over ,l2). Then 
cwgt (µ)=mas follows. LetcatxA::;; m. ThenA -1-M andhenceA c M-xo. 
But M - xo is deformable into the (m - 1 )-skeleton of M and µIA = 0. Thus, 
we see that there are cohomology classes of arbitrarily high category weight. 
Of course, the classµ may be decomposable. However, there are cases where 
it is indecomposable. For example, letM = S3 /G, where G is a perfect group 
acting freely on s3. The fundamental classµ of M is indecomposable because 
Mis a homology sphere. On the other hand, one can show (using Theorem 
(3. 7)) that cat M = 4, thus obtaining an indecomposable classµ of category 
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weight equal to 3. Theorems (3.6) and (3.12) below will show, more gener
ally, how to find indecomposable classes of category weight greater than 1, 
by means of cohomology operations. 

Obseroation (3.4). Ifu is any non-zero oohomology class of dimension 2: 1, 
then 

1 :5 cwgt (u) :5 cat X - 1. 

The main property of category weight is the following analogue of the classi
cal result relating cup length and category. 

THEOREM (3.5). lfui, 1 :5 i :5 n, are non-zero colwmowgy classes of positive 
dimension and the cup product u1u2 ... Un f= 0, then 

(1) 

and hence 

Proof. We need only prove (1). Let u = u1u2 ... un,ki = cwgt (ui) and k = 
"f:,ki. Assume first that k is finite. Let A E Ck(X) and let O = {F1, ... ,Fk} 
i 

denote a categorical closed cover of A, with Fi C A, i.e., each Fi is contractible 
to a point in X. Partition n into n families n 1, ... , On such that ni has ki 
closed sets and let 

Ai= LJ F. 
FEfli 

Then, catx Ai :5 ki and ui IAi = 0. Then, by a standard argument, u IA = 0 on 
A= UAi and cwgt (u) 2 k. In case some ki, say k1, is infinite, let A be a set 
such that catxA :; k fork arbitrarily large. Let n = {F1, ... ,Fk} as above 
and partition n inton families 0 1, ... , On, where each ni, i 2 2 has one of the 
F/s and n1 has all the rest, and let Ai be defined as above. Then, uilAi = 0 
for all i and hence u IA = 0. Thus, cwgt ( u) 2: k and hence cwgt ( u) = CX). 

Our next result illustrates that there is a large class of cohomology classes 
of category weight greater than 1 derived from a cohomology operation. 

THEOREM (3.6). Let X denote a space, pa prime, and /3 : Hq(X; 7lp) -+ 

Hq+1(X;Zp) the Bockstein homomorphism. Then, if u E H 1(X;'llp) and 
f3u f= 0, then cwgt (f3u) 2 2. 

Proof. Let f : X -+ K(Zp, 1) be such that f*(ii) = u. If we set Y = 
K(Zp, 1), then OY consists ofp components C1, ... , Gp, each of which is con
tractible and hence the suspension SOY has the same homotopy type as a 
wedge of circles. Thus, HQ(S0.Y; Zp) = 0 for q 2: 2. Now let A denote a 
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closed subset of X such that catx A ~ 2. We may also assume that X is 0-
connectecl. Let (for a base point in A C X) 

E = PX,EA = P(X,A),Ey = PY. 

Then, we have a diagram offibrations (from the Svare sequence (S) in §2) 

EA EA*AEA 
I*I E*xE f*f Ey *yEy ---+ ---+ --+ 

l pl l lq 
A 

id 
A 

i X 
f y ---+ ---+ --+ 

Using the diagram, 

p*(,'3uJA) =p*i*f*,'3(i1) = (ioi)*(/of)*q*(f3i1) = 0 

because Ey *Y Ey ~ SnY. On the other hand catxA :::; 2 implies that p 
admits a section. Hence f3u IA = 0 and cwgt (J3u) 2: 2. 

Alternate Proof. We use some of the notation above and assume (without 
loss of generality; see [6]) that X and Y are locally finite simplicial complexes 
and f : X __. Y is simplicial. Then, using Milnor paths and loops (§2), we have 
Milnor sequences with G = rla(X), G' = rla (Y) and a diagram of principal 
fibrations 

E 2G ---+--·~ K,aG Pa(X) - Pa(Y) E""G' -···- E 2G1 

l l l l l l 
B2G B""G 

Ci X L y J!_ BooG' B 2G1 ---+ ... ---+ - - ... +--

where a and /3 are homotopy equivalences and 13-1{ a ~ f 00 : B 00 G --> B 00 G', 
the map induced from rlf: G __. G'. Let Pa(X,A) -A denote the G-b1,mdle 
induced from P aX __. X by the inclusion map i. Then, there is a fiber homo
topy equivalence 

Pa(X,A) ---+ EA 

A 
id 

--+ A 

and catx A :::; 2 implies EA --> A has genus S: 2 and, hence, the same is true for 
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Pa(X,A) --+ A. It then follows that there is a G-bundle map 

l l 
and we have a diagram 

A ~ B2(G) L B 00 (G) ~ X 

l 
j' 

---+ B 00 ( G') 
{3 

---+ y 

where /2 is induced by 0.f : G --+ G' andj andj' are inclusions. Then, if (as 
in the first proof) f3u E H 2(X, Zp), /Jul-A factors through B2(G'); but G' is up 
to homotopy the suspension ofZp and hence f3ujA = 0. Thus, cwgt (u) ~ 2. 
A simple application of Theorem (3.6) is the following new result on free ac
tions on products of spheres. 

THEOREM(3.7). LetM denotetheproductofkcopiesofthespheres2ri+ 1(k ~ 
1) and let p denote a prime. Suppose that the group G = (Zpi acts freely on 
M (not necessarily linearly or coordinate-wise) and the induced action of G on 
H*(M;Zp) is trivial. Then, cat(MJG) = 1 + dimM, i.e. the category of MJG 

_is maximum possible. 

Proof. We restrict our proof to the case wherep is an odd prime. The case 
p = 2 is considerably simpler (and the sphere may be even dimensional) and 
is left to the reader. Using a result of Carlsson [2, Corollary 7, page 399], there 
is a surjection a: H*(BG;Zp)--+ H*(MJG;'llp). Recall that H*(BG;'ll.p) = 
E(x1, ... ,xk) ® P(y1, ... Sk), where dimxi = 1 and dimyi = 2. Then, since 
M JG is orientable, the fundamental classµ is a linear combination of terms 
of the form 

( q "2 "k fl 02 "k) a X1X2 ···XkY1Y2 ···Yk ' 

at least one of which is non-zero. Thus, letting a(u) = u, there is an element 
in H*(M JG; Zp) of the form 

where I: £i + 2 L £.i = k(2n + 1 ). Since cwgt (xi) ~ 1 and cwgt (yj) 
cwgt (f3ij) ~ 2, we have cwgt ( v) ~ k(2n + 1) and, hence, cat M JG > 
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k(2n + 1) + 1. Since, in general, cat::; dim +1, the result follows. 

Remark (3.8). The case k = 1 in Corollary (1.6) is due to Krasnoselski 
[8]. Several others (e.g., T. Bartsch, W. Marzantowicz, Z. Wang, J.C. G6mez
Larraiiaga, F. Gonzalez-Acuna) have provided alternative proofs of this case. 
However, their methods do not seem strong enough to obtain our more gen
eral result. It is interesting to note that, in this special case (k = 1), the 
fundamental class has the form xf3xf3x ... f3x, where the number of letters 
that appear in the notation for this class is 2n + 1. Finally, the case p = 2 in 
the proof of Theorem (3.6) requires only classical cup length. 

The methods used to prove Theorem (3. 7) may be employed to oompute the 
category of the orbit space of a free action on the complex Stiefel manifold 
M = On,k ( q of k-frames in en as follows. M is homomorphic to the space of 
isometric linearimbeddings ofek in en. Then, the unitary group U(k) acts 
freely on M by post multiplication. Recall that the p-rank r of a subgroup G 
of U(k) is the maximal r for which G oontains (~Y as a subgroup. 

THEOREM (3.9). Suppose G is a finite subgroup of U(k) of rank k. Then, 
cat M/G = dimM + 1, i.e., cat M/G, is maximal. 

Proof. Since, foracoveringspace.X--+ X, we have cat X 2'.: cat X, it suffices 
to assume G = (IZ.p i. Also, after conjugation if necessary, we may assume 
that G c T, where Tis the standard maximal torus of U(k). M/T = JF'k(en) 
is the space of k-flags in en. The inclusion G c T induces a fibration 

We also have a commutative diagram 

T/G 
id 

-+ T/G 

l l 
M/G L BG 

M/T 
g - BT 

where, as usual, BG and BT are classifying spaces for G and T, respectively, 
and the horizontal maps are classifying maps of M --+ M /G and T --+ T /G, 
respectively. Observe that the Leray-Hirsch Theorem applies to a and 7 
and g induces a surjection H*(BT;~) --+ H*(M/T;IZ.p), This forces f* : 
H*(BG;IZ.p) --+ H*(M/G;IZ.p) to be surjective. Thus, we may consider the 
fundamental class µ of the compact orientable manifold M /G and proceed 
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as in the proof of Theorem (3. 7) to obtain a cohomology class of cwgt = 
dimM/G = dimM. Thus, cat M/G = dimM + 1. 

Theorem (3.6) may be interpreted as follows. Let (J denote a cohomology 
operation of type (n,q), (J: Hn(-,'1l..p) -+Hq(·, '1l..p),p a prime. 

Definition (3.10). (J is called universal in dimension n for category weight 
c if for any spaceX and u E Hn(X;'1l..p), such that (Ju f 0, then cwgt (u) ~ c. 
Then, Theorem (3.6) says that the Bockstein homomorphism {J is universal 
in dimension 1 for category weight 2. 

Our next result investigates universality for Steenrod operations in dimen
sion n ~ 2 for category weight 2. First we recall some standard notation [3, 
Expose 15]. A sequence of non-negative integers I = (a1, ... , ak) is called 
admissible if aj = 2,\(p - 1) + Ei, where Ei = 0 or 1, and ai ~ pai+l. Then, if 
P; is a Steenrod reduced power operation and a= 2,\(p- 1) + E, 

St;=P£ if t:=0 

and 

Then, set 
St!. S a1 S a2 S ak p= tp O tp o, .. o tp. 

k 
Furthermore, set III = E ai and the so-called excess 

i=l 

e(I) = 2,\lP + 2t:1 - III-

In [3, Expose 15], e(I) is denoted by n(I). We will also make use of the fol
lowing classical result (see H. Cartan [3]). 

PROPOSITION (3.11). If I is a,n, admissible sequence and u E Hn(X; '1l..p) 
where n < e(I), then stf,(u) = 0. 

THEOREM (3.12) stf, is universal in dimension e(I) for category weight 2. 

Proof. Suppose X is a space and A C X with catxA ~ 2. Then, if u E 
Hn(X;'1l..p) and n = e(I), we need to show that S~(u)IA. = 0. Consider the 
Svare sequence as in the first proof of Theorem (3.6), where E = PX, EA = 
P(X,A), 

EA*AEA 
ioi 

E*xE E*XOO ---+ ---+ ... ---+ 

pl P2l roo 
A i X id X ---+ ---+ ... ---+ 
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where the fiber of p 00 is (!1X)*00 , which is contractible, forcing p 00 to be 
a homotopy equivalence. Also catxA _::; 2 implies that p admits a section. 
Let j : E *X E --+ E*x=, and recall (Prop. 2.3) that there is a homotopy 
equivalence v: 

E*xE ~ snx 

X X 

with qv = P2· Ifµ is a homotopy inverse for v, then we assert that 
µ*j*p~(St},u) = 0. Consider the suspension isomorphism, with, q 2: 2, 

Hq-I(nx; Zp) ~ Hq(Snx; Zp). 

Then, if L\.*(v) = µ*j*p~(u), St},(v) = 0 because dimv < e(J) and O = 
L\.*(St},v) = Sttl\.*(v) = µ*j*p~(Stf,u). Of course, this impliesj*p~(St{iu) = 
0. To complete the proof, observe that now 

and 
pz.(St;iu) =J*p~(St;iu) = 0. 

Hencep*(St/,ul-A) = 0 and sincep* injects, S~ul-A = 0. 

Remark (3.13). Let ln E Hn(zp,n; Zp) denote the fundamental class of the 
Eilenberg-MacLane space K(1r, n), and pis an odd prime. Then, St},(tn), as I 
ranges over admissible sequences such that e(J) ~ n, generate the cohomol
ogy algebra H*(Zp,n; Zp). Those with e(J) = n are precisely the generators 
that do not arise as transgressions in H*(Zp, n - 1; Zp) (see Postnikov [9]). 
However, when p = 2, the algebra H* (Z2, n; Z2) is generated by the elements 
defined by those I with e(J) < n (see Serre [11]). 

Remark (3.14). While St}i(u) # 0 always has cwgt 2: 2, whenever dimu = 

e(J), it is possible for some elements u to have cwgt(S~u) 2: 2, even though 
dim u > e(I). LetX denote the symplectic group Sp(2), considered by Schweit
zer in [10]. Then, according to [1], H*(Sp(2); Z3) = E(x3,x7) and x7 = PJx3. 

Note that Pl= Sti, where!= (2) ande(J) = 2. Thus, dimx3 > e(I) and The
orem (3.11) does not apply. Nevertheless, we can show that cwgt(PJx3) 2: 2) 
as follows, using Schweitzer's result [10] that cat Sp(2) = 4. 

Proof. We use the cellular structure of Sp(2) which is of the form S 3 Ue 7 U 
e 10• LetX = S 3 U e7, the 7-skeleton of Sp(2). Since cat Sp(2) = 4, it follows 
that cat X 2: 3. We assert that cwgt (x7) 2: 2 in Z = S 3 U e1 U e 10. To prove 
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this, let A denote a subsrace of Z, with catzA ::; 2. Then, since cat Z = 4, 
some interior point of e1 is not in A and thus A is deformable relative to X 
to a set B in X. Then, since cat X ~ 3, B is deformable into 8 3 relative to 8 3 

and x1IB = 0. Thusx11A = 0 and cwgt (x1) ~ 2. 

Remark (3.15). We wish to thank the referee for the careful reading of our 
paper and for pointing out an error in the use of a result of Ganea [5] in our 
original proof that cat X 2: 3, which did not use the result that cat 8p(2) = 4. 
Another alternative argument for the result that cat X 2: 3, independent of 
the Schweitzer result that cat 8p(2) = 4, can be provided as follows. Let 
a = ff] E 1r5(8 3) = :iZ12 denote the generator with f ; 8 6 -+ 8 3 the charac
teristic map of the bundle 8 3 --+ 8p(2) --+ 8 7. Then, as shown in Borel-Serre 
[1,p.442], the generalized Hopf-invariant H(f) is non-zero and H(f) can in 
turn be identified with the obstruction to finding a cross section in the second 
term of the Milnor sequence (M) in section 2. Thus, cat X 2: 3. This sketch 
will be pursued more generally in a future work. 

Remark (3.16). Fary [4] gave a definition of the category of a cohomology 
class that is unrelated to our cwgt and also not useful in considering product 
lengths. 
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