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CATEGORY WEIGHT AND STEENROD OPERATIONS
BY EDWARD FADELL AND SUFIAN HUSSEINI

1. Introduction

Ifuq,...,u, arecohomology classes of positive dimension of a space X (over
some coefficient system R) and their (cup) product w = ujug...u, # 0, then
the length l(w) of w is said to be n. Then, /(X) is defined to be max(w) for all
w of positive dimension. Then, an estimate of the Lusternik-Schnirelmann
category of X, cat X, is classically given by cat X > 1+ [(X). Notice that
each cohomology class in the product ujus . . .u, is treated equally: namely,
having “weight” 1. Our objective in this note is to observe that some inde-
composable cohomology classes carry more weight than others, where cate-
gory is concerned. We define category weight (cwgt) for 0 # u € H*(X; R)
by saying that cwgt(u) > k& if for every closed subset A C X with catxA < k,
ulA = 0, i.e., u restricted to A is zero. Then, cwgt u = k if k is maximal with
cwgtu > k.

THEOREM (1.1). If w = uqusy .. .uy # 0in H*(X;R), then

1) cwgt (w) >y cwgt (u;),
i

and therefore

(2) cat X > 1+ cwgt (w).

Our first general situation where cwgt (u) > 1 is given by the following.
THEOREM (1.2). If B is the mod p Bockstein, and u € H(X;Zp), then
Bu # 0 implies cwgt (Bu) > 2.
These results yield the following generalization of a theorem of Krasnosel-
ski ([8]) who proved it for the case of a single odd sphere S%*+1,

THEOREM (1.3). Let M denote the product of k copies, k > 1, of the odd
sphere S+ and let p denote an odd prime. Suppose G = (Zp)k acts freely
on M so that the induced action on the Zp-cohomology of M is trivial. Then,
the category of M /G is the maximum possible, i.e.,cat M /G = 1 + dimM/G.

A variation of this result for free actions of (Z,)* on the complex Stiefel
manifold O, (C) (see Theorem (3.8)) is also obtained using Theorems (1.1)
and (1.2). If StII, is a mod p Steenrod operation, it is natural to inquire about
the category weight of a non-zero cohomology class of the form St{,u.

THEOREM (1.4). Let e(I) denote the excess of the Steenrod operator St;. If
dimu =e(I) > 2and Stgu # 0, then cwgt (Stlgu) >2
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Theorems (1.2) and (1.4) may be summarized briefly by saying that the
Bockstein S is universal in dimension 1 for cwgt > 2 and the Steenrod op-
eration Stg is also universal in dimension e(I) > 2 for cwgt > 2. Of course,
it is possible for cwgt (Stgu) > 2 and dimu > e(I) for some particular class
u. For example, if X = Sp(2) and p = 3, we show that if x3 € H3(Sp(2); Z3)
is a generator, cwg? (P31x3) > 2, while the excess in this case is 2. This fact
follows from a result of Schweitzer [10] that caz Sp(2) = 4.

2. Preliminaries

We let X denote an ANR (sep. metric) and take A C X. Then, catxA < kif
A canbe covered by & sets Uy, .. ., U, openin X such that Uj is contractible in
X. Then catxA = k if k is minimial with this property. There are numerous
reformulations of this concept due to (e.g.) A. Svarc [12], G. Whitehead [13],
T. Ganea [5]. We review those given by A. Svarc [12] for later use. The
first is based on the fiberwise join of two (Hurewicz) fibrations over X. If
p1: E1 — X,pg : E9 — X are fibrations over X, then “the” fiberwise join
(called the “sum” of two fiberingsin [10]) will bedenoted by p : E{*xE9 — X.
prfl(x) = F; and pz_l(x) = Fy, then the fiber p~1(x) = F; * Fy, the usual
join of the spaces F; and Fy. When E = E; = E9, we denote the fiberwise
join by E*x2 and the usual join F * F by F*2, Then, we have a sequence of
fibrations over X

F N F*Z e F*k _
(S) E — EX2 ., ... . Ext _,

| s N

x 4, x M4 | d 5 i

where, e.g., E*x* = E*x(¢=1) +» E, and the horizontal maps are injections.
The (Serre) fibration

(Seo) Fro x> B x

is obtained by setting F*®° = |JF** and E*x*®° = |JE*X*, both with the

k k
inductive limit (weak) topology. The basic relation of (S) to category is the
following.
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THEOREM (2.1) [12, Theorems 3 and 18]. If A C X, let E4 = P(X,A,x,)
denote the space of paths a in X such that «(0) = xg € A,a(1) € A. Then, the
sequence (S) for QX — E4 2, A, where p(a) = (1), has the property that
catyA < kif, and only if, p, : (E4)*X* — A has a section.

Remark (2.2). Since F** in (S,) is contractible, p, is a homotopy equiv-

alence.
A useful proposition in [12,Theorem 21] is the following.

PROPOSITION (2.3). E*x2 = E«xE 2%, X maybe identified (up to homotopy)
with the map q : SQX — X where q(a,t) = ao(t),a € Q(X). More precisely,
there is a homotopy equivalence v

ExxE 2 SOX

|

x 4 x

with qv = po.
The next useful sequence is the Milnor sequence [7] of principal G-bundles

G — EG) — - — EG) —
(M) q1l qzj le
£ — By@) — - — Bi(G) —

where E,(G) = G** and the limit is the universal G-bundle G — E(G) —
B, (G). The connection with category is the following. First, there is the
Svarc concept of “genus” of a fibration B : F — E — B. Namely, genus
B < k, if B admits an open covering {Uy, ..., U} and maps g; : U; — E such
that poj(x) = x forx € Uj,j = 1,...,k. Then, genus B = k if genus B < k and
k is minimal with this property.

THEOREM (2.4) [12,Theorem 9]. Let B : G — E — X denote a principal
G-bundle. Then, genus B < k if, and only if; there is a G-bundle map

E — E,(GQ

|

X — B(G)
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Now, suppose X is a locally finite simplicial complex. Let x; denote a vertex of
X and let P,(X,x¢) = Po(X) and Q,(X,x9) = Q¢ (X) denote the Milnor sim-

plicial analogues [6] of P(X,x() and Q(X,x¢). Then, Q,(X) — P,(X) P, X,
where p’(a) = a(1), is a principal G-bundle, with G = Q,(X), that is fiber
homotopy equivalent to Q(X) — P(X) 2 X LetB 4 : Ps(X,A) — A denote
the Q,(X)-bundle over X induced by the inclusion A — X. Then, we have
the following proposition.

PROPOSITON (2.5) [10, Theorem 19]. Genus B4 = catx A and hence catxA <
k if, and only if, there is a G-bundle map

Po(X,A) — ER(G)

|

A — Bip(GQ)
where G = Qq(X).
3. Category weight of cohomology classes

Let X denote a O-connected space, which is ANR (sep. metric) throughout,
R a coefficient ring (e.g. a P1.D.), and H*(X; R) the cohomology of X over R.
Ifu € HI(X,R) andj : A — X is an inclusion map, then we denote j*(u) by
u|A, the restriction of u to A. Cp(X) will denote the family of closed subsets
of A C X such that catyA < k.

Definition (3.1). Let u € H%(X,R) denote a non-zero cohomology class
with ¢ > 1. Define cwgt (1) > k to mean that u|A = 0 for every A € Cp(X).
Then, set

cwgt (u) = max{k : cwgt (u) > k}.

Remark (3.2). cwgt (u) may be infinite if cat X = co. Also, cwgt (u) > &
implies cwgt (1) > & — 1.

Example (3.3). Let M denote a compact triangulate manifold of dimension
m with cat M = m + 1 (i.e. M has maximal category). Let p denote the
fundamental class of M (over Z if M is orientable, otherwise over Zg). Then
cwgt () = mas follows. Let catyA < m. ThenA # M and hence A C M —x,.
But M —x) is deformable into the (m — 1)-skeleton of M and u|A = 0. Thus,
we see that there are cohomology classes of arbitrarily high category weight.
Of course, the class 1 may be decomposable. However, there are cases where
it is indecomposable. For example, let M = S3/G, where G is a perfect group
acting freely on S3. The fundamental class y of M is indecomposable because
M is a homology sphere. On the other hand, one can show (using Theorem
(3.7) that cat M = 4, thus obtaining an indecomposable class y of category
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weight equal to 3. Theorems (3.6) and (3.12) below will show, more gener-
ally, how to find indecomposable classes of category weight greater than 1,
by means of cohomology operations.

Observation (3.4). If u is any non-zero cohomology class of dimension > 1,
then
1<cwgt(u)<catX—1.

The main property of category weight is the following analogue of the classi-
cal result relating cup length and category.

THEOREM (3.5). If u;, 1 < i < n, are non-zero cohomology classes of positive
dimension and the cup product uiug...un # 0, then

(1) cwgt (ujug...up) > chgt (u)),
i
and hence
(2) cat X > cwgt (uqug...up)+1>1+ chgt (u;)-

1

Proof. We need only prove (1). Let u = ujug...un,k; = cwgt (v;) and & =
5" k;. Assume first that % is finite. Let A € Cp(X) and let Q = {Fy,...,F},}

2
denote a categorical closed cover of A, with F; C A, i.e., each Fj is contractible
to a point in X. Partition (2 into n families Q;,...,Q, such that Q; has &;
closed sets and let
A; = U F.

Feq;

Then, catxA; < k; and u;|A; = 0. Then, by a standard argument, u|A = Oon
A = UA; and cwgt (1) > k. In case some k;, say kj, is infinite, let A be a set
such that catxA < k for k arbitrarily large. Let Q = {Fy,...,F}} as above
and partition Q inton families Q,...,Q,, where each ;,i > 2 has one of the
F;’s and Q; has all the rest, and let A; be defined as above. Then, u;|4; = 0
for all i and hence u|A = 0. Thus, cwgt (v) > k and hence cwgt (1) = oco.

Our next result illustrates that there is a large class of cohomology classes
of category weight greater than 1 derived from a cohomology operation.

THEOREM (3.6). Let X denote a space, p a prime, and § : HY(X;Zp) —
HI+Y(X ;Zp) the Bockstein homomorphism. Then, ifu € H \(X;Zp) and
Pu # 0, then cwgt (Bu) > 2.

Proof. Let f : X — K(Zp,1) be such that f*(:;) = u. If wesetY =
K(Zp, 1), then QY consists of p components Cy, ..., Cp, each of which is con-
tractible and hence the suspension SQY has the same homotopy type as a
wedge of circles. Thus, HI(SQY;Zp) = 0 for ¢ > 2. Now let A denote a
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closed subset of X such that catyA < 2. We may also assume that X is O-
connected. Let (for a base point in A C X)

E=PX E4=PX,A),Ey =PY.
Then, we have a diagram of fibrations (from the Svarc sequence (S) in §2)

Ey — Eg+sEs 2% ExxE 1 EysyEy

I

A 4 4 L x 1 Y
Using the diagram,

P*(BulA) = p*i*f*f(i1) = (i0i)*(f o f)"q" (Bir) = 0
because Ey sy Ey ~ SQY. On the other hand catyA < 2 implies that p

admits a section. Hence fu|A = 0 and cwgt (Su) > 2.

Alternate Proof . We use some of the notation above and assume (without
loss of generality; see [6]) that X and Y are locally finite simplicial complexes
andf : X — Y issimplicial. Then, using Milnor paths and loops (§2), we have
Milnor sequences with G = Q,(X),G’ = 2,(Y) and a diagram of principal
fibrations :

E;G — - — E.G — PoX) — Ps¥) — E.G — . — EG

I O

BG —...— B.G & x L v L B.G — . — B

where o and 3 are homotopy equivalences and 8~ f a ~ foo : BooG — Boo G/,
the map induced from Qf : G — G'. Let P,(X,A) — A denote the G-bundle
induced from P,X — X by the inclusion map i. Then, there is a fiber homo-
topy equivalence

Po(X,A) — E4

St

A 14 4

and catyA < 2implies E4 — A has genus < 2 and, hence, the same is true for
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P,(X,A) — A. It then follows that there is a G-bundle map
P,(X,A) — Eg(G)

.

A X By

and we have a diagram

A 2 ByG) L Bo(G) = X

o

ByG@) L. Bo(@) & v
where f3 is induced by Qf : G — G’ and j and j/ are inclusions. Then, if (as
in the first proof) fu € H2(X, Zp), BulA factors through By(G'); but G’ is up
to homotopy the suspension of Z, and hence fu|A = 0. Thus, cwgt (1) > 2.
A simple application of Theorem (3.6) is the following new result on free ac-
tions on products of spheres.

THEOREM (3.7). Let M denote the product of k copies of the sphere S¥*+ Lk >
1) and let p denote a prime. Suppose that the group G = (Z, )* acts freely on
M (not necessarily linearly or coordinate-wise) and the induced action of G on
H*(M;Zp) is trivial. Then, cat(M/G) = 1+ dimM, i.e. the category of M /G
_is maximum possible.
Proof. We restrict our proof to the case where p is an odd prime. The case
p = 2 is considerably simpler (and the sphere may be even dimensional) and
isleft to the reader. Usinga result of Carlsson [2, Corollary 7, page 399], there
is a surjection o : H*(BG;Zp) — H*(M/G;Zp). Recall that H*(BG;Zp) =
E(xq,...,x3) ® P(y1,...,¥), where dimx; = 1 and dimy; = 2. Then, since
M /G is orientable, the fundamental class 4 is a linear combination of terms
of the form

1,62 | R 12
X\ XXXy Yy Yy Yy
at least one of which is non-zero. Thus, letting a(z) = &, there is an element
in H*(M /G;Zp) of the form
21 kil %
0:,£U:x1 ...xkyl yk s

where 5 ¢; + ZZeJ’- = k(2n + 1). Since cwgt (x;) > 1 and cwgt (¥;) =
cwgt (f%;) > 2, we have cwgt (v) > k(2n + 1) and, hence, cat M/G >
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k(2n + 1) + 1. Since, in general, cat < dim +1, the result follows.

Remark (3.8). The case k = 1 in Corollary (1.6) is due to Krasnoselski
[8]. Several others (e.g., T. Bartsch, W. Marzantowicz, Z. Wang, J.C. Gémez-
Larrafiaga, F. Gonzélez-Acufia) have provided alternative proofs of this case.
However, their methods do not seem strong enough to obtain our more gen-
eral result. It is interesting to note that, in this special case (¢ = 1), the
fundamental class has the form x3x0x...03x, where the number of letters
that appear in the notation for this class is 2n + 1. Finally, the case p = 2 in
the proof of Theorem (3.6) requires only classical cup length.

The methods used to prove Theorem (3.7) may be employed to compute the
category of the orbit space of a free action on the complex Stiefel manifold
M = O, ;(C) of k-frames in C" as follows. M is homomorphic to the space of
isometric linear imbeddings of C* in C". Then, the unitary group U(k) acts
freely on M by post multiplication. Recall that the p-rank r of a subgroup G
of U(k) is the maximal r for which G contains (Z,)" as a subgroup.

THEOREM (3.9). Suppose G is a finite subgroup of U(k) of rank k. Then,
cat M/G = dimM + 1, i.e, cat M /G, is maximal.

Proof . Since, for a coveringspace X — X, wehave cat X > cat X, it suffices
to assume G = (Zp)k. Also, after conjugation if necessary, we may assume
that G C T, where T is the standard maximal torus of U(k). M/T = F,(C")
is the space of k-flags in C*. The inclusion G C T induces a fibration

T/G = (S})*—M/G—M/T = F,(C").

We also have a commutative diagram

T/6 “. T/G

]

m/¢c L. BG

| b
M/T 2. BT

where, as usual, BG and BT are classifying spaces for G and T, respectively,
and the horizontal maps are classifying maps of M - M /G and T — T/G,
respectively. Observe that the Leray-Hirsch Theorem applies to o and 4
and g induces a surjection H*(BT';Zp) — H*(M/T;Zp). This forces f* :
H*(BG;Zp) — H*(M/G;Zp) to be surjective. Thus, we may consider the
fundamental class p of the compact orientable manifold M /G and proceed
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as in the proof of Theorem (3.7) to obtain a cohomology class of cwgt =
dimM /G = dimM. Thus, cat M/G = dimM + 1.

Theorem (3.6) may be interpreted as follows. Let ¢ denote a cohomology
operation of type (n,q), 6 : H"(-,Zp) — HY(-,Zp), p a prime.

Definition (3.10). 6 is called universal in dimension n for category weight
c if for any space X and u € H"(X;Z,), such that 6u # 0, then cwgt (u) > c.
Then, Theorem (3.6) says that the Bockstein homomorphism £ is universal
in dimension 1 for category weight 2.

Our next result investigates universality for Steenrod operations in dimen-
sion n > 2 for category weight 2. First we recall some standard notation [3,
Exposé 15]. A sequence of non-negative integers I = (ay,...,a;) is called
admissible if a; = 2X;(p — 1) +¢;, where¢; = Oor 1, and @; > pa;, ;. Then, if
P} is a Steenrod reduced power operation and a = 2A(p — 1) + ¢,

StZ=Py if e=0
and
St =pP) if e=1.

Then, set .
Sti = Stgl o Stg2 0---0 Stpk.

k
Furthermore, set [I| = }_ a; and the so-called excess

=
e(I) = 2/\1p + 261 - |I'
In [3, Exposé 15], e(I) is denoted by n(I). We will also make use of the fol-
lowing classical result (see H. Cartan [3]).

PROPOSITION (8.11). If I is an admissible sequence and u € H™(X;Zp)
where n < e(I), then St} (u) = 0.

THEOREM (3.12) Stg is universal in dimension e(I) for category weight 2.

Proof. Suppose X is a space and A C X with catxA < 2. Then, ifu €
H™(X;Zp) and n = e(I), we need to show that St/ (x)|A = 0. Consider the
Svarc sequence as in the first proof of Theorem (3.6), where E = PX, E4 =
P(X,A),

EA*AEA L.lr E*XE —_— e — E*Xoo

SO B

A 4, x 0M ., X
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where the fiber of p, is (2X)**°, which is contractible, forcing p, to be
a homotopy equivalence. Also catxA < 2 implies that p admits a section.
letj : E+x E — E*X*°, and recall (Prop. 2.3) that there is a homotopy
equivalence v:

W

x 4 x

with qv = po. If p is a homotopy inverse for v, then we assert that
,u*j*p;o(Stgu) = 0. Consider the suspension isomorphism, with, ¢ > 2,

- a*
HIY(QX;Z,) == HY(SQX; Zp).
Then, if A*(v) = /,L*j*p’;o(u),St},(u) = 0 because dimv < e(I) and 0 =

A*(St;v) = St{,A"(u) = u*j*pgo(Stﬁu). Of course, this impli%j*p;o(St},u) =
0. To complete the proof, observe that now

P (StlulA) = (i 0 i)*p3(Stiu)

and )
P3(Stlu) = j*p%.(Sthu) = 0.

Hence p*(Stgu |A) = 0 and since p* injects, St},ulA =0.

Remark (3.13). Let i, € H"(Zp,n;Zp) denote the fundamental class of the
Eilenberg-MacLane space K (7, n), and p is an odd prime. Then, St},(zn), as]
ranges over admissible sequences such that e(I) < n, generate the cohomol-
ogy algebra H*(Zy,n;Zp). Those with e(I) = n are precisely the generators
that do not arise as transgressions in H*(Zp,n — 1;Zp) (see Postnikov [9]).
However, when p = 2, the algebra H*(Zg,n;Zg) is generated by the elements
defined by those I with e(I) < n (see Serre [11]).

Remark (3.14). While St (x) # 0 always has cwgt > 2, whenever dimu =

e(I), it is possible for some elements u to have cwgt(StII,u) > 2, even though
dimu > e(I). Let X denote the symplectic group Sp(2), considered by Schweit-
zer in [10]. Then, according to [11, H*(Sp(2); Z3) = E(x3,x7) and x7 = Pix3.
Note that P} = Stl, where I = (2) and e(I) = 2. Thus, dimx3 > e(I) and The-
orem (3.11) does not apply. Nevertheless, we can show that cwgt(Péxg) > 2)
as follows, using Schweitzer’s result [10] that cat Sp(2) = 4.

Proof We use the cellular structure of Sp(2) which is of the form S3Ue” U
el? Let X = S3 Ue’, the 7-skeleton of Sp(2). Since cat Sp(_;‘Z) = 4, it follows
that cat X > 3. We assert that cwgt (x7) > 2in Z = S3 U e’ Uel0. To prove
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this, let A denote a subsgaoe of Z, with catzA < 2. Then, since cat Z = 4,
some interior point of e1? is not in A and thus A is deformable relative to X
to aset Bin X. Then, since cat X > 3, B is deformable into S3 relative to S3
and x7|B = 0. Thus x7]A = 0 and cwgt? (x7) > 2.

Remark (3.15). We wish to thank the referee for the careful reading of our
paper and for pointing out an error in the use of a result of Ganea [5] in our
original proof that cat X > 3, which did not use the result that cat Sp(2) = 4.
Another alternative argument for the result that cat X > 3, independent of
the Schweitzer result that cat Sp(2) = 4, can be provided as follows. Let
a = [f] € 76(S3) = Z;9 denote the generator with f : S5 — §3 the charac-
teristic map of the bundle S3 — Sp(2) — S7. Then, as shown in Borel-Serre
[1,p.442], the generalized Hopf-invariant H(f) is non-zero and H(f) can in
turn be identified with the obstruction to finding a cross section in the second
term of the Milnor sequence (M) in section 2. Thus, cat X > 3. This sketch
will be pursued more generally in a future work.

Remark (3.16). Fary [4] gave a definition of the category of a cohomology
i:lass }t;hat is unrelated to our cwgt and also not useful in considering product
engths.
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