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CATEGORY WEIGHT AND STEENROD OPERATIONS 

BY EDWARD F ADELL AND SUFIAN HUSSEINI 

1. Introduction 

Ifu1, ... , Un arecohomologyclasses ofpositivedimensionofaspaceX (over 
some coefficient system R) and their (cup) product w = u 1 u2 ... Un # 0, then 
the kngth l( w) of w is said to be n. Then, l(X) is defined to be max l( w) for all 
w of positive dimension. Then, an estimate of the Lusternik-Schnirelmann 
category of X, cat X, is classically given by cat X 2: 1 + l(X). Notice that 
each cohomology class in the product u1u2 ... Un is treated equally: namely, 
having "weight" 1. Our objective in this note is to observe that some inde­
composable cohomology classes carry more weight than others, where cate­
gory is concerned. We define category weight (cwgt) for O # u E H*(X;R) 
by saying that cwgt( u) 2: k if for every closed subset A c X with catx A s; k, 
u IA = 0, i.e., u restricted to A is zero. Then, cwgt u = k if k is maximal with 
cwgt u 2'. k. 

THEOREM (1.1). lfw = u1u2 .. . Un# 0 in H*(X;R), then 

(1) 

and therefore 

(2) cat X 2: 1 + cwgt (w). 

Our first general situation where cwgt ( u) > 1 is given by the following. 

THEOREM (1.2). If /3 is the m~d p Bockstein, and u E H 1(X;'l/.,p), then 
/3u f:. 0 implies cwgt (/3u) ;:::: 2. 

These results yield the following generalization ofa theorem ofKrasnosel­
ski ([8]) who proved it for the case of a single odd sphere s2n+ 1. 

THEOREM (1.3). Let M denote the product of k copies, k 2'.: 1, of the odd 
sphere s2n+I, and letp denote an odd prime. Suppose G =(~?acts freely 
on M so that the induced action on the 'l/.,p-cohomology of M is trivial. Then, 
the category of M /G is the maximum possible, i.e., cat M /G = 1 + dimM /G. 

A variation of this result for free actions of ('11.,p)k on the complex Stiefel 
manifold Dn,k(C) (see Theorem (3.8)) is also obtained using Theorems (1.1) 

and (1.2). If S!j is a modp Steenrod operation, it is natural to inquire about 

the category weight of a non-zero cohomology class of the form Stf,u. 

THEOREM (1.4). Let e(I) denote the excess of the Steenrod operat;or Sij. If 

dim u = e( I) 2: 2 and St}iu f:. 0, then cwgt ( Stf,u) 2: 2. 
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Theorems (1.2) and (1.4) may be summarized briefly by saying that the 
Bockstein {3 is universal in dimension 1 for cwgt ? 2 and the Steenrod op­
eration Stt is also universal in dimension e(I) ? 2 for cwgt ? 2. Of course, 
it is possible for cwgt (S4u) ? 2 and dimu > e(I) for some particular class 
u. For example, if X = Sp(2) andp = 3, we show that ifx3 E H 3(Sp(2); Z3) 
is a generator, cwgt (PJx3) ? 2, while the excess in this case is 2. This fact 
follows from a result of Schweitzer [10] that cat Sp(2) = 4. 

2. Preliminaries 

We let X denote an ANR (sep. metric) and take A C X. Then, catxA ~ k if 
Acanbeooveredbyksets U1, ... , Uk, openinXsuch that Ui is contractible in 
X. Then catxA =kif k is minimial with this property. There are numerous 
reformulations of this concept due to (e.g.) A. Svare [12], G. Whitehead [13], 
T. Ganea [5]. We review those given by A. Svare [12] for later use. The 
first is based on the fiberwise join of two (Hurewicz) fibrations over X. If 
Pl : E1 -+ X,p2 : E2 -+ X are fibrations over X, then "the" fiberwise join 
(called the "sum" of two fiberingsin [10]) will be denoted byp: E1 *xE2-+ X. 
Ifp 11(x) = F1 andp 21(x) = F2, then the fiber p- 1(x) = F1 * F2, the usual 
join of the spaces F1 and F2. When E = E1 = E2, we denote the fiberwise 
join by E*x 2 and the usual join F * F by F*2. Then, we have a sequence of 
fibrations over X 

F --+ F*2 --+ ... --+ F*k --+ . .. 

l l l 
(S) E --+ E*x2 --+ ... --+ .E•xk --+ 

pl P2l Pkl 

X id X id id X 
id 

--+ --+ --+ --+ 

where, e.g., E*xk = E*x(k- l) *X E, and the horizontal maps are injections. 
The (Serre) fibration 

is obtained by setting F* 00 = LJF*k and E*X 00 = LJE*xk, both with the 
k k 

inductive limit (weak) topology. The. basic relation of (S) to category is the 
following. 
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THEOREM (2.1) [12, Theorems 3 and 18]. If A C X, let EA = P(X,A,x 0) 

denote the space of paths a in X such that a ( 0) = xo E A, a( l) E A. Then, {he 

sequence ( S) for OX -+ EA L A, where p( a) = a( 1 ), has the property that 
catx A :S k if, and only if, pk : (EA)* xk -+ A has a section. 

Remark (2.2). SinceF* 00 in (S00 ) is contractible,p 00 is a homotopy equiv­
alence. 

A useful proposition in [12,Theorem 21] is the following. 

PROPOSITION(2.3). E*X 2 = E*xE ~Xmaybeidentified (up to homotopy) 
with the map q : SOX-+ X where q(a, t) = a(t), a E O(X). More precisely, 
there is a homotopy equivalence v 

E*xE ~ SOX 

X 
id .- X 

with qv =P2• 
The next useful sequence is the Milnor sequence [7] of principal G-bundles 

(M) 

* ---+ B2(G) - · · · - Bk(G) - · · · 

where Ek(G) = G*k and the limit is the universal G-bundle G-+ E=(G) -+ 

B 00 (G). The connection with category is the following. First, there is the 
Svare concept of "genus" of a fibration B : F -+ E -+ B. Namely, genus 
B :S k, if B admits an open covering { U 1, ... , Uk} and maps aj : 'lJ_j -+ E such 
thatpo-j(x) = x forx E 'll_j,j = l, ... ,k. Then, genus B =kif genus B ~ k and 
k is minimal with this property. 

THEOREM (2.4) [12, Theorem 9]. Let B : G -+ E -+ X denote a principal 
G-bundle. Then, genus B :S k if, and only if, there is a G-bundle map 
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Now, supposeX is a locally finite simplicial complex. Letxo denote a vertex of 
X and let Pa(X,xo) = Pa(X) and !:ta(X,xo) = !:ta(X) denote the Milnor sim-

plicial analogues [6] of P(X,xo) and !:t(X,xo). Then, r217(X) -+ Pa(X) ~ X, 
where p'(cx.) = a(l), is a principal G-bundle, with G = !:ta(X), that is fiber 

homotopy equivalent to !:t(X)-+ P(X) .!!... X. Let BA : Pa(X,A)-+ A denote 
the !:ta (X)-bundle over X induced by the inclusion A -+ X. Then, we have 
the following proposition. 

PROPOSITON (2.5) [10, Theorem 19]. Genus BA= catxA and hence catxA::;; 
k if, and only if, there is a G-bundle map 

l l 
where G = !:ta(X). 

3. Category weight of cohomology classes 

Let X denote a 0-connected space, which is ANR (sep. metric) throughout, 
R a coefficient ring (e.g. a P.I.D.), and H* (X; R) the co homology of X over R. 
Ifu E Hq(X,R) andj: A-+ Xis an inclusion map, then we denotej*(u) by 
u IA, the restriction of u to A. Ck (X) will denote the family of closed subsets 
of A c X such that catxA ::;; k. 

Definition (3.1). Let u E Hq(X,R) denote a non-zero cohomology class 
with q ~ 1. Define cwgt (u) ~ k to mean that ulA = 0 for every A E Ck(X). 
Then, set 

cwgt (u) = max{k: cwgt (u) ~ k}. 

Remark (3.2). cwgt (u) maybe infinite if cat X = oo. Also, cwgt (u) ~ k 
implies cwgt (u) 2: k - 1. 

Example (3.3). Let M denote a compact triangulate manifold of dimension 
m with cat M = m + 1 (i.e. M has maximal category). Letµ denote the 
fundamental class of M (over ,l if M is orientable, otherwise over ,l2). Then 
cwgt (µ)=mas follows. LetcatxA::;; m. ThenA -1-M andhenceA c M-xo. 
But M - xo is deformable into the (m - 1 )-skeleton of M and µIA = 0. Thus, 
we see that there are cohomology classes of arbitrarily high category weight. 
Of course, the classµ may be decomposable. However, there are cases where 
it is indecomposable. For example, letM = S3 /G, where G is a perfect group 
acting freely on s3. The fundamental classµ of M is indecomposable because 
Mis a homology sphere. On the other hand, one can show (using Theorem 
(3. 7)) that cat M = 4, thus obtaining an indecomposable classµ of category 
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weight equal to 3. Theorems (3.6) and (3.12) below will show, more gener­
ally, how to find indecomposable classes of category weight greater than 1, 
by means of cohomology operations. 

Obseroation (3.4). Ifu is any non-zero oohomology class of dimension 2: 1, 
then 

1 :5 cwgt (u) :5 cat X - 1. 

The main property of category weight is the following analogue of the classi­
cal result relating cup length and category. 

THEOREM (3.5). lfui, 1 :5 i :5 n, are non-zero colwmowgy classes of positive 
dimension and the cup product u1u2 ... Un f= 0, then 

(1) 

and hence 

Proof. We need only prove (1). Let u = u1u2 ... un,ki = cwgt (ui) and k = 
"f:,ki. Assume first that k is finite. Let A E Ck(X) and let O = {F1, ... ,Fk} 
i 

denote a categorical closed cover of A, with Fi C A, i.e., each Fi is contractible 
to a point in X. Partition n into n families n 1, ... , On such that ni has ki 
closed sets and let 

Ai= LJ F. 
FEfli 

Then, catx Ai :5 ki and ui IAi = 0. Then, by a standard argument, u IA = 0 on 
A= UAi and cwgt (u) 2 k. In case some ki, say k1, is infinite, let A be a set 
such that catxA :; k fork arbitrarily large. Let n = {F1, ... ,Fk} as above 
and partition n inton families 0 1, ... , On, where each ni, i 2 2 has one of the 
F/s and n1 has all the rest, and let Ai be defined as above. Then, uilAi = 0 
for all i and hence u IA = 0. Thus, cwgt ( u) 2: k and hence cwgt ( u) = CX). 

Our next result illustrates that there is a large class of cohomology classes 
of category weight greater than 1 derived from a cohomology operation. 

THEOREM (3.6). Let X denote a space, pa prime, and /3 : Hq(X; 7lp) -+ 

Hq+1(X;Zp) the Bockstein homomorphism. Then, if u E H 1(X;'llp) and 
f3u f= 0, then cwgt (f3u) 2 2. 

Proof. Let f : X -+ K(Zp, 1) be such that f*(ii) = u. If we set Y = 
K(Zp, 1), then OY consists ofp components C1, ... , Gp, each of which is con­
tractible and hence the suspension SOY has the same homotopy type as a 
wedge of circles. Thus, HQ(S0.Y; Zp) = 0 for q 2: 2. Now let A denote a 
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closed subset of X such that catx A ~ 2. We may also assume that X is 0-
connectecl. Let (for a base point in A C X) 

E = PX,EA = P(X,A),Ey = PY. 

Then, we have a diagram offibrations (from the Svare sequence (S) in §2) 

EA EA*AEA 
I*I E*xE f*f Ey *yEy ---+ ---+ --+ 

l pl l lq 
A 

id 
A 

i X 
f y ---+ ---+ --+ 

Using the diagram, 

p*(,'3uJA) =p*i*f*,'3(i1) = (ioi)*(/of)*q*(f3i1) = 0 

because Ey *Y Ey ~ SnY. On the other hand catxA :::; 2 implies that p 
admits a section. Hence f3u IA = 0 and cwgt (J3u) 2: 2. 

Alternate Proof. We use some of the notation above and assume (without 
loss of generality; see [6]) that X and Y are locally finite simplicial complexes 
and f : X __. Y is simplicial. Then, using Milnor paths and loops (§2), we have 
Milnor sequences with G = rla(X), G' = rla (Y) and a diagram of principal 
fibrations 

E 2G ---+--·~ K,aG Pa(X) - Pa(Y) E""G' -···- E 2G1 

l l l l l l 
B2G B""G 

Ci X L y J!_ BooG' B 2G1 ---+ ... ---+ - - ... +--

where a and /3 are homotopy equivalences and 13-1{ a ~ f 00 : B 00 G --> B 00 G', 
the map induced from rlf: G __. G'. Let Pa(X,A) -A denote the G-b1,mdle 
induced from P aX __. X by the inclusion map i. Then, there is a fiber homo­
topy equivalence 

Pa(X,A) ---+ EA 

A 
id 

--+ A 

and catx A :::; 2 implies EA --> A has genus S: 2 and, hence, the same is true for 
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Pa(X,A) --+ A. It then follows that there is a G-bundle map 

l l 
and we have a diagram 

A ~ B2(G) L B 00 (G) ~ X 

l 
j' 

---+ B 00 ( G') 
{3 

---+ y 

where /2 is induced by 0.f : G --+ G' andj andj' are inclusions. Then, if (as 
in the first proof) f3u E H 2(X, Zp), /Jul-A factors through B2(G'); but G' is up 
to homotopy the suspension ofZp and hence f3ujA = 0. Thus, cwgt (u) ~ 2. 
A simple application of Theorem (3.6) is the following new result on free ac­
tions on products of spheres. 

THEOREM(3.7). LetM denotetheproductofkcopiesofthespheres2ri+ 1(k ~ 
1) and let p denote a prime. Suppose that the group G = (Zpi acts freely on 
M (not necessarily linearly or coordinate-wise) and the induced action of G on 
H*(M;Zp) is trivial. Then, cat(MJG) = 1 + dimM, i.e. the category of MJG 

_is maximum possible. 

Proof. We restrict our proof to the case wherep is an odd prime. The case 
p = 2 is considerably simpler (and the sphere may be even dimensional) and 
is left to the reader. Using a result of Carlsson [2, Corollary 7, page 399], there 
is a surjection a: H*(BG;Zp)--+ H*(MJG;'llp). Recall that H*(BG;'ll.p) = 
E(x1, ... ,xk) ® P(y1, ... Sk), where dimxi = 1 and dimyi = 2. Then, since 
M JG is orientable, the fundamental classµ is a linear combination of terms 
of the form 

( q "2 "k fl 02 "k) a X1X2 ···XkY1Y2 ···Yk ' 

at least one of which is non-zero. Thus, letting a(u) = u, there is an element 
in H*(M JG; Zp) of the form 

where I: £i + 2 L £.i = k(2n + 1 ). Since cwgt (xi) ~ 1 and cwgt (yj) 
cwgt (f3ij) ~ 2, we have cwgt ( v) ~ k(2n + 1) and, hence, cat M JG > 
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k(2n + 1) + 1. Since, in general, cat::; dim +1, the result follows. 

Remark (3.8). The case k = 1 in Corollary (1.6) is due to Krasnoselski 
[8]. Several others (e.g., T. Bartsch, W. Marzantowicz, Z. Wang, J.C. G6mez­
Larraiiaga, F. Gonzalez-Acuna) have provided alternative proofs of this case. 
However, their methods do not seem strong enough to obtain our more gen­
eral result. It is interesting to note that, in this special case (k = 1), the 
fundamental class has the form xf3xf3x ... f3x, where the number of letters 
that appear in the notation for this class is 2n + 1. Finally, the case p = 2 in 
the proof of Theorem (3.6) requires only classical cup length. 

The methods used to prove Theorem (3. 7) may be employed to oompute the 
category of the orbit space of a free action on the complex Stiefel manifold 
M = On,k ( q of k-frames in en as follows. M is homomorphic to the space of 
isometric linearimbeddings ofek in en. Then, the unitary group U(k) acts 
freely on M by post multiplication. Recall that the p-rank r of a subgroup G 
of U(k) is the maximal r for which G oontains (~Y as a subgroup. 

THEOREM (3.9). Suppose G is a finite subgroup of U(k) of rank k. Then, 
cat M/G = dimM + 1, i.e., cat M/G, is maximal. 

Proof. Since, foracoveringspace.X--+ X, we have cat X 2'.: cat X, it suffices 
to assume G = (IZ.p i. Also, after conjugation if necessary, we may assume 
that G c T, where Tis the standard maximal torus of U(k). M/T = JF'k(en) 
is the space of k-flags in en. The inclusion G c T induces a fibration 

We also have a commutative diagram 

T/G 
id 

-+ T/G 

l l 
M/G L BG 

M/T 
g - BT 

where, as usual, BG and BT are classifying spaces for G and T, respectively, 
and the horizontal maps are classifying maps of M --+ M /G and T --+ T /G, 
respectively. Observe that the Leray-Hirsch Theorem applies to a and 7 
and g induces a surjection H*(BT;~) --+ H*(M/T;IZ.p), This forces f* : 
H*(BG;IZ.p) --+ H*(M/G;IZ.p) to be surjective. Thus, we may consider the 
fundamental class µ of the compact orientable manifold M /G and proceed 
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as in the proof of Theorem (3. 7) to obtain a cohomology class of cwgt = 
dimM/G = dimM. Thus, cat M/G = dimM + 1. 

Theorem (3.6) may be interpreted as follows. Let (J denote a cohomology 
operation of type (n,q), (J: Hn(-,'1l..p) -+Hq(·, '1l..p),p a prime. 

Definition (3.10). (J is called universal in dimension n for category weight 
c if for any spaceX and u E Hn(X;'1l..p), such that (Ju f 0, then cwgt (u) ~ c. 
Then, Theorem (3.6) says that the Bockstein homomorphism {J is universal 
in dimension 1 for category weight 2. 

Our next result investigates universality for Steenrod operations in dimen­
sion n ~ 2 for category weight 2. First we recall some standard notation [3, 
Expose 15]. A sequence of non-negative integers I = (a1, ... , ak) is called 
admissible if aj = 2,\(p - 1) + Ei, where Ei = 0 or 1, and ai ~ pai+l. Then, if 
P; is a Steenrod reduced power operation and a= 2,\(p- 1) + E, 

St;=P£ if t:=0 

and 

Then, set 
St!. S a1 S a2 S ak p= tp O tp o, .. o tp. 

k 
Furthermore, set III = E ai and the so-called excess 

i=l 

e(I) = 2,\lP + 2t:1 - III-

In [3, Expose 15], e(I) is denoted by n(I). We will also make use of the fol­
lowing classical result (see H. Cartan [3]). 

PROPOSITION (3.11). If I is a,n, admissible sequence and u E Hn(X; '1l..p) 
where n < e(I), then stf,(u) = 0. 

THEOREM (3.12) stf, is universal in dimension e(I) for category weight 2. 

Proof. Suppose X is a space and A C X with catxA ~ 2. Then, if u E 
Hn(X;'1l..p) and n = e(I), we need to show that S~(u)IA. = 0. Consider the 
Svare sequence as in the first proof of Theorem (3.6), where E = PX, EA = 
P(X,A), 

EA*AEA 
ioi 

E*xE E*XOO ---+ ---+ ... ---+ 

pl P2l roo 
A i X id X ---+ ---+ ... ---+ 
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where the fiber of p 00 is (!1X)*00 , which is contractible, forcing p 00 to be 
a homotopy equivalence. Also catxA _::; 2 implies that p admits a section. 
Let j : E *X E --+ E*x=, and recall (Prop. 2.3) that there is a homotopy 
equivalence v: 

E*xE ~ snx 

X X 

with qv = P2· Ifµ is a homotopy inverse for v, then we assert that 
µ*j*p~(St},u) = 0. Consider the suspension isomorphism, with, q 2: 2, 

Hq-I(nx; Zp) ~ Hq(Snx; Zp). 

Then, if L\.*(v) = µ*j*p~(u), St},(v) = 0 because dimv < e(J) and O = 
L\.*(St},v) = Sttl\.*(v) = µ*j*p~(Stf,u). Of course, this impliesj*p~(St{iu) = 
0. To complete the proof, observe that now 

and 
pz.(St;iu) =J*p~(St;iu) = 0. 

Hencep*(St/,ul-A) = 0 and sincep* injects, S~ul-A = 0. 

Remark (3.13). Let ln E Hn(zp,n; Zp) denote the fundamental class of the 
Eilenberg-MacLane space K(1r, n), and pis an odd prime. Then, St},(tn), as I 
ranges over admissible sequences such that e(J) ~ n, generate the cohomol­
ogy algebra H*(Zp,n; Zp). Those with e(J) = n are precisely the generators 
that do not arise as transgressions in H*(Zp, n - 1; Zp) (see Postnikov [9]). 
However, when p = 2, the algebra H* (Z2, n; Z2) is generated by the elements 
defined by those I with e(J) < n (see Serre [11]). 

Remark (3.14). While St}i(u) # 0 always has cwgt 2: 2, whenever dimu = 

e(J), it is possible for some elements u to have cwgt(S~u) 2: 2, even though 
dim u > e(I). LetX denote the symplectic group Sp(2), considered by Schweit­
zer in [10]. Then, according to [1], H*(Sp(2); Z3) = E(x3,x7) and x7 = PJx3. 

Note that Pl= Sti, where!= (2) ande(J) = 2. Thus, dimx3 > e(I) and The­
orem (3.11) does not apply. Nevertheless, we can show that cwgt(PJx3) 2: 2) 
as follows, using Schweitzer's result [10] that cat Sp(2) = 4. 

Proof. We use the cellular structure of Sp(2) which is of the form S 3 Ue 7 U 
e 10• LetX = S 3 U e7, the 7-skeleton of Sp(2). Since cat Sp(2) = 4, it follows 
that cat X 2: 3. We assert that cwgt (x7) 2: 2 in Z = S 3 U e1 U e 10. To prove 
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this, let A denote a subsrace of Z, with catzA ::; 2. Then, since cat Z = 4, 
some interior point of e1 is not in A and thus A is deformable relative to X 
to a set B in X. Then, since cat X ~ 3, B is deformable into 8 3 relative to 8 3 

and x1IB = 0. Thusx11A = 0 and cwgt (x1) ~ 2. 

Remark (3.15). We wish to thank the referee for the careful reading of our 
paper and for pointing out an error in the use of a result of Ganea [5] in our 
original proof that cat X 2: 3, which did not use the result that cat 8p(2) = 4. 
Another alternative argument for the result that cat X 2: 3, independent of 
the Schweitzer result that cat 8p(2) = 4, can be provided as follows. Let 
a = ff] E 1r5(8 3) = :iZ12 denote the generator with f ; 8 6 -+ 8 3 the charac­
teristic map of the bundle 8 3 --+ 8p(2) --+ 8 7. Then, as shown in Borel-Serre 
[1,p.442], the generalized Hopf-invariant H(f) is non-zero and H(f) can in 
turn be identified with the obstruction to finding a cross section in the second 
term of the Milnor sequence (M) in section 2. Thus, cat X 2: 3. This sketch 
will be pursued more generally in a future work. 

Remark (3.16). Fary [4] gave a definition of the category of a cohomology 
class that is unrelated to our cwgt and also not useful in considering product 
lengths. 
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