WHITEHEAD SQUARE IN EX-HOMOTOPY THEORY

BY YASUKUNI FURUKAWA

We deal here with the order of the Whitehead square in ex-homotopy theory. Also, we prove that under what conditions the fibre ex-space has a Hopf ex-space structure *.

Introduction

Let P be a principal SO(m)-bundle over $S^n (n \ge 2)$. The unreduced suspension \hat{a} of the antipodal self-map a of S^{m-1} is a pointed SO(m)-map of S^m into itself. Since P_{\sharp} constitutes a functor from the category of equivariant spaces to the category of ex-spaces, $P_{\sharp}\hat{a}$ is an ex-map of $E = P_{\sharp}S^m$ into itself. Let $w(\Sigma E)$ denote the Whitehead square $[\iota_{\Sigma E}, \iota_{\Sigma E}]$ of the ex-homotopy class of the identity on ΣE .

In [4, §8], I.M.James has shown that $4w(\Sigma E) = 0$ for *m* even, and raised the question when $w(\Sigma E) = 0$, i.e., when ΣE is a Hopf ex-space (see [4, p. 236]). In this note we give a partial answer to this question.

1. The case $w(\Sigma E) = 0$

Let m = 2 and the subgroup SO(2) of SO(4) act on S^3 which leaves the first and last basis vectors fixed. If n > 2, then the principal SO(2)-bundle P over S^n is a trivial bundle. Then P reduces to a principal bundle P' with a group SO(1). The multiplication of quaternion gives S^3 a Hopf SO(2)-space structure. Hence $P \times_{SO(2)} S^3 = P_{\sharp} S^3$ has a Hopf ex-space structure. Since $P'_{\sharp}S^2 = P' \times_{SO(1)} S^2 \cong P \times_{SO(2)} S^2 = P_{\sharp}S^2 = E$, we have $P \times_{SO(2)} S^3 \cong P' \times_{SO(1)} \Sigma S^2 = \Sigma P'_{\sharp}S^2 = \Sigma E$ (cf. [5, p. 53]). Thus ΣE is a Hopf ex-space; $w(\Sigma E) = 0$.

Let m = 6 and the subgroup SO(6) of SO(8) act on S^7 , with base point the point (1, 0, ..., 0), which leaves the first and last basis vectors fixed. Suppose that the structure group SO(6) of the principal bundle P reduces to the subgroup $SU(2) \times 1 \times 1$ with a reduced principal bundle P'. Then, we have the isomorphism of the associated bundles;

 $P' \times_{SU(2)} S^7 \cong P \times_{SO(6)} S^7.$

Since the multiplication of the Cayley numbers gives S^7 a Hopf SU(2)-structure, $P' \times_{SU(2)} S^7 \cong P'_{\sharp} S^7$ is a Hopf ex-space. Since $P'_{\sharp} S^6 = P' \times_{SU(2)} S^6 \cong P \times_{SO(6)} S^6 = E$, we have

 $P' \times_{SU(2)} S^7 \cong P' \times_{SU(2)} \Sigma S^6 = P'_{\sharp} \Sigma S^6 = \Sigma P'_{\sharp} S^6 \cong \Sigma E$ (cf. [5, p. 53]). Hence ΣE is a Hopf ex-space; $w(\Sigma E) = 0$. Therefore we have

^{*}AMS subject classification:Primary: 55Q15, Secondary: 55R25.

THEOREM (1.1). If m = 2 and n > 2 or m = 6 and the structure group SO(6) of the principal bundle P reduces to the subgroup $SU(2) \times 1 \times 1$, then $w(\Sigma E) = 0$.

2. The case $2w(\Sigma E) = 0$

Consider the sequence

 $\begin{array}{l} \pi_{n-1}(SO(m)) \xrightarrow{F} \pi_n(SO(m)) \xrightarrow{J} \pi_{n+m}(S^m) \xrightarrow{\Sigma_*^{m+1}} \pi_{n+2m+1}(S^{2m+1}) \\ \text{where } F \text{ denotes the Bott suspension. In [4, §6], James introduced the operator } D : \pi_{2m+2}(S^{m+1}) \longrightarrow \pi_{n+2m+1}(S^{m+1}) \text{ which is given by } D\alpha = \alpha \circ \\ \Sigma_*^{m+2} J\theta - 2\Sigma_* J\theta \circ \Sigma_*^{n-1}\alpha \text{ for the classifying element } \theta \in \pi_{n-1}(SO(m)) \text{ of } P. \\ \text{The following theorem was proved} \end{array}$

THEOREM (2.1). (see [4, Theorem 8.5]). Let *m* be even. Then $2w(\Sigma E) = 0$ if and only if $w_{m+1} \circ \Sigma_*^{m+1} JF\theta$ lies in the image of $D : \pi_{2m+2}(S^{m+1}) \to \pi_{n+2m+1}(S^{m+1})$, where $w_{m+1} \in \pi_{2m+1}(S^{m+1})$ denotes the ordinary Whitehead square of the generator of $\pi_{m+1}(S^{m+1})$.

First, we consider the stable range (n < m). Since $F\theta = \theta\eta_{n-1}$ (cf. [3, (17.2)]) we have $JF\theta = J(\theta \circ \eta) = J\theta \circ \eta_{n+m-1}$. If $m \equiv 0 \mod 4$ then $\pi_{2m+2}(S^{m+1}) = G_{m+1} + Z_2[\eta_{m+1}, \iota_{m+1}]$, where G_{m+1} denote the (m + 1)-stem stable homotopy groups of spheres (cf. [6, 3.7(b)]). Then

 $w_{m+1} \circ \Sigma_*^{m+1} JF\theta = [\iota_{m+1}, \iota_{m+1}] \circ \Sigma_*^{m+1} JF\theta = [\iota_{m+1}, \iota_{m+1}] \circ \Sigma_*^{m+1} J\theta \circ \eta_{n+2m}.$ This lies in the image of D, since

 $\begin{aligned} &D([\eta_{m+1}, \iota_{m+1}]) \\ &= (-1)^{n+m-1} D([\eta_{m+1}, \iota_{m+1}]) \\ &= (-1)^{n+m-1} ([\eta_{m+1}, \iota_{m+1}] \circ \Sigma_*^{m+2} J\theta - 2\Sigma_* J\theta \circ \Sigma_*^{n-1} [\eta_{m+1}, \iota_{m+1}]) \\ &= (-1)^{n+m-1} [\iota_{m+1}, \iota_{m+1}] \eta_{2m+1} \circ \Sigma_*^{m+2} J\theta \\ &= [\iota_{m+1}, \iota_{m+1}] \circ \Sigma_*^{m+1} J\theta \circ \Sigma^{m+n-1} \eta_{m+1} \end{aligned}$

(cf. [7, p. 481(8.12) and p. 484(8.18)]). So, by theorem 2.1 we have

COROLLARY (2.2). If n < m and $m \equiv 0 \mod 4$, then $2w(\Sigma E) = 0$.

However, in the case $m \equiv 2 \mod 4$ the homotopy group $\pi_{2m+2}(S^{m+1})$ is isomorphic to the stable group (cf. [6, 3.2(b)]).

Here is an example outside the stable range. Let $m = 2^{k+1} - 2$ and recall the strong form of the Kervaire invariant problem: does there exist an element $\theta_k \in \pi_m^S$ with $2\theta_k = 0$ and Kervaire invariant 1?. If there is such an element, then there is an element $\gamma \in \pi_{2m+1}(S^{m+1})$ with $2\gamma = w_{m+1} = [\iota_{m+1}, \iota_{m+1}]$ (cf. [1]). By [7, p. 479 (8.1) and (8.2)] we have the following relations $w_{m+1} \circ \Sigma_*^{m+1} JF\theta = 2\gamma \circ \Sigma_*^{m+1} JF\theta$

 $= (\gamma + \gamma)\Sigma_*^{m+1}JF\theta = \gamma \circ \Sigma_*^{m+1}JF\theta + \gamma \circ \Sigma_*^{m+1}JF\theta$ $= (\gamma \circ \Sigma_*^{m+1})(JF\theta + JF\theta) = (\gamma \circ \Sigma_*^{m+1})2JF\theta$ = 0

since 2F = 0 (cf. [3, p. 110]). Hence

COROLLARY (2.3). Let $m = 2^{k+1} - 2$. If there exists an element $\theta_k \in \pi_m^S$ with $2\theta_k = 0$ and Kervaire invariant one, then $2w(\Sigma E) = 0$.

DEPARTMENT OF MATHEMATICAL SCIENCES AICHI UNIVERSITY OF EDUCATION IGAYA CHO KARIYA CITY 448 JAPAN

REFERENCES

- [1] M.G. BARRATT, J.D.S. JONES AND M.E. MAHOWALD, The Kervaire invariant problem, Contemp. Math., 19 (1983), 9-22.
- [2] I.M. JAMES, On sphere bundles with certain properties, Quart. J. of Math., Oxford(2), 22 (1971), 353-370.
- [3] _____, The topology of Stiefel manifolds, London Math. Soc., L.N.S. 24, 1976.
 [4] _____, Alternative homotopy theories, Enseign.Math.,(2), 23 (1977), 221-237.
 [5] _____, Fibrewise topology, Cambridge Univ. Press 91, 1989.

- [6] S. THOMEIER, Einige Ergebnisse über Homotopiegruppen von Sphüren, Math. Ann., 164 (1966), 225-250.
- [7] G.W. WHITEHEAD, Elements of homotopy theory, Springer-Verlag GTM, 61, 1978.