RELATIONS IN THE MOD 3 COHOMOLOGY ALGEBRA OF A SPACE

By John R. Harper

José Adem, in memoriam

Introduction

This paper is concerned with a method for establishing relations among cup products and Steenrod operations in the cohomology of any space. The method was developed in [HZ], with a particular application in mind. The primary motivation for writing this paper is to extend the scope of the ideas developed in [HZ]. Parts of the exposition are simpler if we confine our attention to mod 3 cohomology. At the end of the paper, we give the statements of the results for arbitrary odd primes.

To indicate the type of result sought, we first reformulate the case for $p=3$ of the main result in [HZ].
THEOREM (1). Let $x \in H^{2 n+1}(X ; Z / 3)$ and suppose, a) $\mathcal{P}^{n} x=0$
b) if $y \in H^{6 n+4} \quad$ satisfies $\mathcal{P}^{2} y=0$, then $y=\mathcal{P}^{1} z$ for some $z \in H^{6 n}$. Then, if $n \not \equiv 2 \bmod 3$, the following relation holds,

$$
x \cup \mathcal{P}^{1} x \cup \mathcal{P}^{2} x=\mathcal{P}^{1} w
$$

for some $w \in H^{6 n+11}$.
Thus, under certain conditions involving the action of the Steenrod algebra, a relation involving cup products and Steenrod operations holds. We call such a relation a conditional relation.

A new result along these lines is
THEOREM (2). Suppose $x \in H^{2 n+1}(X ; Z / 3)$ is the reduction of an integral class and suppose,
a) $\mathcal{P}^{n} x=0$
b) if $\left(y_{1}, y_{2}\right) \in H^{6 n+4} \oplus H^{6 n+5}$ satisfies $\Phi\left(y_{1}, y_{2}\right)=0$, then $\left(y_{1}, y_{2}\right)=$ $\left(\mathcal{P}^{1}, \mathcal{P}^{1} \beta\right) z$ for some $z \in H^{6 n}$, where Φ is the 2×2 matrix

$$
\Phi=\left(\begin{array}{cc}
\beta \mathcal{P}^{1}+\mathcal{P}^{1} \beta & \mathcal{P}^{1} \\
0 & \beta \mathcal{P}^{1}+\mathcal{P}^{1} \beta
\end{array}\right)
$$

Then if $n \not \equiv 2 \bmod 3$, the following relation holds,

$$
x \cup\left(\beta \mathcal{P}^{1} x\right)^{2}+\lambda \mathcal{P}^{n+2} \mathcal{P}^{1} x=\beta \mathcal{P}^{1} w_{1}+\mathcal{P}^{1} w_{2}
$$

where $\lambda \in Z / 3$ and $\lambda=0$ if $n \equiv 0 \bmod 3$.
The information provided by conditional relations can be used to study an old problem first raised by Steenrod; the problem of whether a given algebra
over the Steenrod algebra can be the cohomology algebra of a topological space. For example, let M be the module

$$
M=\left\{x_{2 n+1}, \mathcal{P}^{1} x_{2 n+1}, \beta \mathcal{P}^{1} x_{2 n+1}\right\}
$$

Corollary (3). The algebra $U(M)$ is the cohomology algebra of a space only if $n=1,4$ or $n \equiv 2 \bmod 3$.

Recall that, in this case $U(M)=\Lambda(x, y) \otimes Z / 3[z] /\left(z^{3}\right)$ where $x=x_{2 n+1}, y=$ $\mathcal{P}^{1} x$ and $z=\beta y$. Then Cor. 3 follows easily from Th 2 ; since the $U(M)$ formulation implies that (a) is automatically satisfied for $n \neq 1$ and the value of λ is superfluous. In case $n=4$, condition (b) may not hold as $\left(y_{1}, y_{2}\right)=$ $\left(z^{2}, 0\right)$ is not in the image of ($\mathcal{P}^{1}, \mathcal{P}^{1} \beta$).

The paper has the following organization. In section 1 , two results are presented, from which Theorem 2 follows. The first of these is then developed in section 2 while the second is developed in section 3 . In the final section 4 statements of the analogues of Th .1 and 2 for primes ≥ 5 are presented.

Section 1

Here we lay out the homotopy theory underlying Th. 2. We denote the Eilenberg-MacLane space $K(Z / 3, n)$ by K_{n}, and a product $\Pi_{i} K_{n_{i}}$ by $K(I)$ where $I=\left(n_{1}, n_{2}, \ldots\right)$.

ThEOREM (1.1). The following tower of fibrations exists;

where k_{0} is represented by $\left(\mathcal{P}^{1} \iota_{6 n+1}, \mathcal{P}^{1} \beta \iota_{6 n+1}\right)$. The class k_{1} is created by a null- homotopy of the composition

$$
K_{6 n+1} \xrightarrow{k_{0}} K(6 n+5,6 n+6) \xrightarrow{\Phi} K(6 n+10,6 n+11)
$$

where Φ is the matrix appearing in Th. 2.b. The class k_{2} is created by a null-homotopy of the composition

$$
E_{1} \xrightarrow{k_{1}} K(6 n+9,6 n+10) \xrightarrow{\varphi} K_{6 n+14}
$$

where φ is represented by $\left(\beta \mathcal{P}^{1}, \mathcal{P}^{1}\right)$.
THEOREM (1.2). Let $Y=K(Z, 2 n+1)$ and define the homotopy class of $f_{0}: Y \rightarrow K_{6 n+1}$ by $\mathcal{P}^{n} \iota_{2 n+1}$. Then f_{0} lifts through the tower of 1.1 and there
is a choice $f_{2}: Y \rightarrow E_{2}$ such that the composition $k_{2} \circ f_{2}$ is represented by $\iota \cup\left(\beta \mathcal{P}^{1} \iota\right)^{2}+\lambda \mathcal{P}^{n+2} \mathcal{P}^{1} \iota w h e r e \iota=\iota_{2 m+1}$ and λ is as in Th. 2.

Now we obtain Th. 2 from these results. Consider the following diagram

where $g: X \rightarrow Y$ is represented by x of Th. 2, and (to avoid clutter) the lifts of f_{0} are understood. Consider first the composition $f_{1} \circ g$. Since $f_{0} \circ g=\mathcal{P}^{n} x=0$ by hypothesis (a), there is $g_{1}: X \rightarrow K(6 n+4,6 n+5)$ such that $j_{1} \circ g_{1} \sim f_{1} \circ g$. The composition $k_{1} \circ j_{1}$ is $\Omega \Phi$ from 1.1, and $k_{1} \circ j_{1} \circ g_{1} \sim k_{1} \circ f_{1} \circ g \sim *$. Therefore, by the hypothesis in part (b), g_{1} factors through Ωk_{0}. Consequently $j_{1} \circ g_{1}$ is null. Now consider the composition $f_{2} \circ g$. This map lifts $f_{1} \circ g$ which is known from the above argument to be null. Hence there is a map $g_{2}: X \rightarrow K(6 n+8,6 n+9)$ such that $j_{2} \circ g_{2} \sim f_{2} \circ g$. Since the composition $k_{2} \circ j_{2}$ is represented by $\left(\beta \mathcal{P}^{1}, \mathcal{P}^{1}\right)$, the conclusion of Th. 2 follows from 1.2 and the equation $k_{2} \circ f_{2} \circ g \sim k_{2} \circ j_{2} \circ g$.

Remark. Theorems 1.1 and 1.2 assert the existence and evaluation on $\mathcal{P}^{n} \iota$ of a tertiary cohomology operation associated with a Toda bracket

$$
\begin{equation*}
\left\langle\left(\beta \mathcal{P}^{1}, \mathcal{P}^{1}\right), \Phi,\binom{\mathcal{P}^{1}}{\mathcal{P}^{1} \beta}\right\rangle \tag{1.4}
\end{equation*}
$$

By fixing the maps f_{1} and f_{2}, we can regard the diagram in (1.3) as a universal example into which X can be mapped. This formulation achieves precision of calculation at the expense of those parts of the theory of tertiary operations which depend on naturality.

Section 2

In this section we develop the ideas for Th. 1.1. This is just a matter of recollecting some of the ideas from the construction of the classical Adams spectral sequence. For us, the first ingredient is a stable complex of unstable A-modules, where A is the $\bmod p$ Steenrod algebra;

where each P_{i} is a free unstable A-module, V_{i} is a free A-module mapping surjectively to P_{i}, each composition $\tilde{\theta}_{i} \circ \tilde{\theta}_{i+1}=0$ and the diagram commutes. The portion of (2.1) through stage p is used to construct a tower. The additional stage is used to refine the evaluation of maps into the tower.

We next require a realizability property which could be summarized by saying that the higher Toda bracket $\left\langle\tilde{\theta}_{p-1}, \ldots, \tilde{\theta}_{0}\right\rangle$ exists and contains 0 , where the $\tilde{\theta}_{i}$ are regarded as maps of Eilenberg-MacLane spectra. One way to achieve realizability is by means of classical Adams resolutions. If there is a stable complex with cohomology isomorphic to coker $\tilde{\theta}_{0}$, and the stable complex of (2.1) is an initial segment of a resolution for $H^{*} X$ as an A-module, then the Adams resolution for X can be constructed. From this a suitable tower of spaces can be extracted.

Proposition (2.2). There exists a stable complex X with $\bmod p$ (reduced) cohomology of the form $\left\{x, \beta x, \mathcal{P}^{p} x, \beta \mathcal{P}^{p} x\right\}$ with $\mathcal{P}^{p} \beta x=\beta \mathcal{P}^{p} x$.

Proof. (due to D. Ravenel) The complex is the mapping cone of a certain map of (stable) Moore spaces, $(q=2 p-2)$

$$
b: P^{p q+1} \rightarrow P^{2}
$$

Recall that $\beta_{1}: S^{p q-2} \rightarrow S^{0}$ has order p. So, after raising dimension by 1 , it factors through $\beta_{1}^{\prime}: S^{p q-1} \rightarrow P^{1}$. Since P^{1} is a ring spectrum, we have

$$
P^{p q}=S^{p q-1} \wedge P^{1} \rightarrow P^{1} \wedge P^{1} \rightarrow P^{1}
$$

Taking $\bar{\beta}_{1}$ as the composition of the above map followed by the pinch map $P^{1} \rightarrow S^{1}$, we have an extension of β, which is annihilated by post-multiplication by p,

The desired map b is the coextension. Its mapping cone has the stated cohomology by a form of the mod p Hopf invariant one result.

By direct calculation (for $p=3$) our initial segment of a resolution for $H^{*} X$ can be constructed with maps

$$
\begin{align*}
\tilde{\theta}_{0} & =\binom{\mathcal{P}^{1}}{\mathcal{P}^{1} \beta} \\
\tilde{\theta}_{1}=\Phi & =\left(\begin{array}{cc}
\beta \mathcal{P}^{1}+\mathcal{P}^{1} \beta & \mathcal{P}^{1} \\
0 & \beta \mathcal{P}^{1}+\mathcal{P}^{1} \beta
\end{array}\right) \\
\tilde{\theta}_{2} & =\left(\begin{array}{cc}
\beta \mathcal{P}^{1}, & \mathcal{P}^{1} \\
0 & \beta \mathcal{P}^{1}
\end{array}\right) \tag{1.3}
\end{align*}
$$

$$
\tilde{\theta}_{3}=\left(\begin{array}{cc}
\mathcal{P}^{1} \beta & -\mathcal{P}^{1} \\
0 & \mathcal{P}^{1} \beta
\end{array}\right)
$$

We shall employ the notation of [HM] to denote the spaces in the tower associated with a stable complex of unstable A-modules

Recall that in this situation, the k-invariant

$$
E_{s} \xrightarrow{k_{s}} K\left(\Omega^{s} P_{s+1}\right)
$$

is determined by a null-homotopy for the composition $\theta_{s} \circ k_{s-1}$,

$$
E_{s-1} \xrightarrow{k_{s-1}} K\left(\Omega^{s-1} P_{s}\right) \xrightarrow{\theta_{s}} K\left(\Omega^{s-1} P_{s+1}\right)
$$

The main reason for the condition $\tilde{\theta}_{k} \circ \tilde{\theta}_{k+1}=0$ is to have k-invariants created by null-homotopies after one de-looping, as well as in the tower (2.4).

Applying this construction with the data in (2.3) and then looping down yields the tower

$$
\begin{align*}
& \int_{2}^{E_{2}} \xrightarrow{k_{2}} K(6 n+13,6 n+14) \xrightarrow[\theta_{3}]{ } K(6 n+18,6 n+19) \tag{2.5}\\
& \underbrace{E_{1}}_{1} \xrightarrow{k_{1}} K(6 n+9,6 n+10) \xrightarrow[\theta_{2}]{ } K(6 n+14,6 n+15) \\
& K_{\theta_{0}=k_{0}} K(6 n+5,6 n+6) \xrightarrow[\theta_{1}]{ } K(6 n+10,6 n+11)
\end{align*}
$$

and the tower in Th. 1.1 is obtained by restriction to the first row in $\tilde{\theta}_{2}$ and ignoring $\tilde{\theta}_{3}$.

Section 3

In this section we construct the maps in Th. 1.2. This is one of the novel features of the argument in [HZ]. The main step is the reduction of the evaluation problem to a problem of pure algebra. This algebraic problem is described in detail here and called the zig-zag equations.

The construction is based on the Milnor filtration for a classifying space and the associated spectral sequence for cohomology [RS]. We write $B Y=$ $\bigcup B_{k}$ with $B_{0}=*$ and $B_{1}=\Sigma Y$. In the spectral sequence for cohomology $k \geq 0$
$E_{1}^{s, t}=H^{s+t}\left(\Sigma^{s} Y^{(s)}\right)$ and $\left(E_{1}, d_{1}\right)$ is isomorphic to the cobar construction on $H^{*} Y$, if this is of finite type, with a degree shift. If $H^{*} Y$ is a primitively generated Hopf algebra, we can pick a basis of monomials for $H^{*} Y$ and define weight for a monomial as cup length. There results a gradation of E_{1} by weights, written $E_{1}^{s, t, m}$. The differential d_{1} preserves weights, although the higher differentials do not.

Our calculation depends on the following phenomenon. The composition

$$
Y \xrightarrow{f_{0}} K\left(P_{0}\right) \xrightarrow{\theta_{0}} K\left(P_{1}\right)
$$

must be null, while after one de-looping, there is a factorization

with u_{p} having $\Sigma^{p}[\iota|\ldots| \iota]$ in one component and 0 elsewhere. This is achieved in Th. 1.2 by taking $Y=K(Z, 2 n+1)$ and $n \not \equiv 2 \bmod 3$, since

$$
\binom{\mathcal{P}^{1}}{\mathcal{P}^{1} \beta} \mathcal{P}^{n}=\binom{(n+1) \mathcal{P}^{n+1}}{n \beta \mathcal{P}^{n+1}+\mathcal{P}^{n+1} \beta}
$$

and $\mathcal{P}^{n+1} \iota_{2 n+2}$ has Milnor filtration p. We can now describe the zig-zag equation. We seek a sequence $\left\{u_{1}, \ldots, u_{p}\right\}$ of elements, extending u_{p} above,

$$
u_{r} \in E_{1}^{r, *, p}
$$

where $*$ may be a multi-degree, and the weight is p. Each u_{r} is to be regarded as a map

$$
u_{r}: \Sigma^{r} Y^{(r)} \longrightarrow B K\left(\Omega^{p-r} P_{p-r+1}\right)
$$

where the targets are as in 2.4. These elements are required to satisfy the "zig-zag equations"

$$
\begin{equation*}
d_{1} u_{r}=\theta_{p-r} u_{r+1} \tag{3.2}
\end{equation*}
$$

where θ_{k} are as in (2.1).
We illustrate these equations with the data in (2.3). To begin with, we have

$$
B Y \xrightarrow[\mathcal{p}^{n}]{\left.\right|_{6 n+2} ^{B_{3}} \longrightarrow} \begin{gathered}
\Sigma_{\theta_{0}} \\
\sum_{6 n+6} u^{3} u_{3}^{(3)} \\
K_{6 n+7}
\end{gathered}
$$

with $u_{3}=\left(\Sigma^{3}[|/|<], 0\right)$. The first zig-zag equation is

$$
d_{1} u_{2}=\theta_{1} u_{3} .
$$

Since $\beta \iota=0$, a solution is given by

$$
u_{2}=\left(\Sigma^{2}\left\{\left[\iota \cdot \beta \mathcal{P}^{1} \iota \mid \iota\right]-\left[\iota \mid \iota \cdot \beta \mathcal{P}^{1} \iota\right]\right\}, 0\right)
$$

The next zig-zag equation is

$$
d_{1} u_{1}=\theta_{2} u_{2},
$$

and a solution is given by

$$
u_{1}=\left(\Sigma^{2} \iota \cdot\left(\beta \mathcal{P}^{1} \iota\right)^{2}, 0\right) .
$$

The solutions to these formal equations are not unique; u_{2} can vary by elements in $\operatorname{ker} d_{1}$ while u_{1} can vary by elements in $\operatorname{ker} d_{1} \cup \operatorname{im} \theta_{2}$. But there is the following invariance.

Theorem (3.3). If Y is an Eilenberg-MacLane space, then in any set of solutions to (3.2) by elements of weight p, and no component of the multi-degree $* i$ congruent to $0 \bmod 2 p$, the value of u_{1} is unique modulo elements in the image of θ_{p-1} and primitives of $H^{*} Y$.
We sketch the proof after showing the connection between the sequence $\left\{u_{r}\right\}$ and the lifts of $f_{0}: Y \rightarrow K\left(P_{0}\right)$ into the tower (2.4). This connection is based on the following elementary observation. In the diagram below, of based objects,

suppose $\beta \alpha$ and $g f$ are null and $f r \sim s \beta$. Let ℓ_{1}, ℓ_{2} and H denote respective homotopies;

$$
\begin{aligned}
& \ell_{1} \text { from } * \text { to } \beta \alpha \\
& H \text { from } s \beta \text { to fr } \\
& \ell_{2} \text { from } g f \text { to } *
\end{aligned}
$$

We have a map

$$
\Sigma A \longrightarrow C_{\beta} \rightarrow Z
$$

where the first map is the coextension to the mapping cone of β using ℓ_{1}, and the second map extends $g s$ using H and ℓ_{2}. We also have a map

$$
A \rightarrow F_{f} \rightarrow \Omega Z
$$

where the first map is a lifting of r to the homotopy fibre of f using ℓ_{1} and H while the second map is determined by the homotopy ℓ_{2}. One checks directly that these maps are adjoint, up to reparametrization.

We now turn to the construction of maps from Y into the tower. This work makes use of the fact that $E_{2}=E_{\infty}$ in the cohomology spectral sequence for $B Y$, where Y is an Eilenberg-MacLane space. To begin, we enlarge diagram 3.1 to

to reveal the pattern of (3.4). Thus (3.5) $)_{p}$ can be filled in on the right by

$$
\hat{u}_{p}: \Sigma B_{p-1} \rightarrow B K\left(P_{2}\right)
$$

and on the left by

$$
B_{p-1} \xrightarrow{\hat{u}_{p-1}} B E_{1} \xrightarrow{B k_{1}} K\left(P_{2}\right)
$$

such that the displayed maps are adjoint, up to homotopy. Then $f_{1}: Y \rightarrow E_{1}$, is taken as the adjoint of the composition of the inclusion of ΣY in B_{p-1} with \tilde{u}_{p-1}.

Next, we note that $E_{2}=E_{\infty}$ implies that the composition

$$
\Sigma B_{p-2} \rightarrow \Sigma B_{p-1} \xrightarrow{\hat{u}_{p}} B K\left(P_{2}\right)
$$

is null, since otherwise the cohomology class represented by $\theta_{1} u_{p}$ would be the target of a differential d_{r} with $r>1$. Thus \hat{u}_{p} factors as a composition

$$
\hat{u}_{p}: \Sigma B_{p-1} \longrightarrow \Sigma^{p} Y^{(p-1)} \xrightarrow{u_{p-1}^{*}} B K\left(P_{2}\right)
$$

The self-map theory in [HZ] is used to show that u_{p-1}^{*} can be chosen with weight $\equiv 1 \bmod (p-1)$. By construction, $d_{1} u_{p-1}^{*}=\theta_{1} u_{p}$. We can assemble this information in

to reveal the pattern of 3.4 , where u_{p-1} is the adjoint of u_{p-1}^{*}.
The construction continues inductively, using the pair

$$
\left(\tilde{u}_{r}, u_{r}\right):\left(B_{r}, \Sigma^{r} Y^{(r)}\right) \rightarrow\left(B E_{p-r}, B K\left(\Omega^{p-r} P_{p-r+1}\right)\right)
$$

to produce

$$
\hat{u}_{r}: \Sigma B_{r-1} \rightarrow B K\left(\Omega^{p-r} P_{p-r+2}\right)
$$

and

$$
\tilde{u}_{r-1}: B_{r-1} \rightarrow B E_{p-r+1}
$$

Again $E_{2}=E_{\infty}$ implies that \hat{u}_{r} factors through $\Sigma^{r} Y^{(r-1)}$, to produce u_{r-1}^{*} and the theory in [HZ] guarantees a factorization of weight $\equiv 1 \bmod (p-1)$. Taking adjoints yields $\left(\tilde{u}_{r-1}, u_{r-1}\right)$. At each stage, $f_{r}: Y \rightarrow E_{r}$ lifting f_{r-1} is obtained as the adjoint of

$$
\Sigma Y \longrightarrow B_{p-r} \xrightarrow{\tilde{u}_{p-r}} B E_{r} .
$$

By construction, we obtain a geometrically induced solution to the zig-zag equations from the u_{r-1}^{*} extending \hat{u}_{r}.

Now we turn to the invariance of solutions to the zig-zag equations stated in Theorem 3.3. We have introduced weights into (E_{1}, d_{1}) of the spectral sequence for $H^{*} B Y$. Having taken Y to be an Eilenberg-MacLane space, $E_{2}=E_{\infty}$ and [RS]

$$
E_{2}^{s, t}=E x t_{H_{*} Y}^{s, t}(Z / p, Z / p)
$$

The resulting algebra generators for $H^{*} B Y$ are in tri-degrees $(1, *, 1),(2,2 k p, p)$ or $(p,(2 k-1) p, p)$. Thus, the following sequence is exact

$$
\begin{equation*}
E_{1}^{r-1, *, p} \xrightarrow{d_{1}} E_{1}^{r, *, p} \xrightarrow{d_{1}} E_{1}^{r+1, *, p} \tag{3.6}
\end{equation*}
$$

if $2<r<p$ and also for $r=2$ if $*$ is not congruent to $0 \bmod 2 p$.
We can now prove (3.3). Let $\left\{u_{r}\right\}$ and $\left\{u_{r}^{1}\right\}$ be a pair of solutions to (3.2) with $u_{p}=u_{p}^{1}$. Then $u_{p-1}^{1}=u_{p-1}+w_{p-1}$ with $d_{1} w_{p-1}=0$. By (3.6), $w_{p-1}=$ $d_{1} v_{p-2}$. Thus

$$
d_{1} u_{p-2}^{1}=\theta_{2} u_{p-1}^{1}=d_{1}\left(u_{p-2}+\theta_{2} v_{p-2}\right)
$$

Inductively, we obtain

$$
u_{r}^{1}=u_{r}+\theta_{p-r} v_{r}+w_{r}
$$

with $d_{1} w_{r}=0, u_{r}, v_{r}, w_{r} \in E_{1}^{r, * p}$. The case $r=1$ is (3.3).
For the case of Theorem 1.2, we have calculated u_{2} of tri-degree ($2,(6 n+$ $8,6 n+9$), 3), so the hypotheses necessary to invoke (3.3) are fulfilled. Thus we obtain the conclusion to Theorem 1.2 in the form, $k_{2} \circ f_{2}$ is represented by

$$
\iota \cdot\left(\beta \mathcal{P}^{1} \iota\right)^{2}+\alpha \iota
$$

for some element of degree $4 n+12$ in the $\bmod 3$ Steenrod algebra.

Before analyzing this situation, we point out a feature of the constructions in $(3.5)_{r}$. At the end of this sequence, (3.5) ${ }_{2}$, we have

and $u_{1}^{*}=\hat{u}_{2}$. The element \hat{u}_{2} arises from the construction in 3.4 involving homotopies for maps to the left of \hat{u}_{2}. While \hat{u}_{2} can certainly be altered by maps from ΣB_{2}, such alterations need not arise from the process in 3.4 and thus cannot be invoked in the construction of the map f_{p-1}, as the evaluation of the map depends on the adjoint relationship in 3.4.

To obtain information about the element α, we first enlarge the top of the diagram in Th. 1.1 using all of the data from (2.3), to obtain

with $\theta_{3} k_{2}$ null, because the tower comes from an Adams resolution for the space constructed in Prop 2.2. Thus the value of $u_{1}=k_{2} \circ f_{2}$ is determined up to elements of the form $\alpha=\left(\alpha_{1}, \alpha_{2} \iota\right)$ with $\operatorname{deg} \alpha_{1}=4 n+12, \operatorname{deg} \alpha_{2}=4 n+13$ and

$$
\binom{\mathcal{P}^{1} \beta,-\mathcal{P}^{1}}{0 \mathcal{P}^{1} \beta}\binom{\alpha_{1} \iota}{\alpha_{2^{\iota}}}=0
$$

Now the cohomology of $K(Z, 2 n+1)$ is of the form $U\left(F_{2 n+1}^{\prime}\right)$ and our situation can be represented as

with $\alpha \circ \theta_{3}=0$. If we are able to factor α through θ_{2}, then we can adjust the map f_{2} to remove this term. To see what can be done, we use a result from [MP] which states that the $\bmod p$ Steenrod algebra A is injective as a self-module. The same is true of $\Sigma^{2 n+1} A$, which maps surjectively to $F_{2 n+1}^{\prime}$, and we can lift α to $\alpha^{\prime}: \Omega^{2} P_{3} \rightarrow \Sigma^{2 n+1} A$. If we can choose α^{\prime} to satisfy the equation $\alpha^{\prime} \circ \theta_{3}=0$, then α^{\prime} and hence α, factors through θ_{2}. So we have to understand the role of excess in the equation $\alpha \circ \theta_{3}=0$.

Now $\mathcal{P}^{1} \beta$ raises excess by at most 3 . So the influence of excess is confined to summands in α_{1} or α_{2} coming from

$$
\operatorname{span}\left\{\mathcal{P}^{n+1} \mathcal{P}^{1} \iota\right\}, \operatorname{span}\left\{\beta \mathcal{P}^{n+2} \mathcal{P}^{1} \iota, \mathcal{P}^{n+2} \beta \mathcal{P}^{1} \iota\right\}
$$

respectively. Using the Adem relations and excess considerations, we have

$$
\begin{aligned}
\mathcal{P}^{1} \beta\left(\mathcal{P}^{n+2} \mathcal{P}^{1} \iota\right) & =(n+2) \beta \mathcal{P}^{n+3} \mathcal{P}^{1} \iota+\mathcal{P}^{n+3} \beta \mathcal{P}^{1} \iota \\
& =\mathcal{P}^{n+3} \beta \mathcal{P}^{1} \iota
\end{aligned}
$$

and

$$
\mathcal{P}^{1}\left(\mathcal{P}^{n+2} \beta \mathcal{P}^{1} \iota\right)=(n+3) \mathcal{P}^{n+3} \beta \mathcal{P}^{1} \iota
$$

Thus, if $n \equiv 0 \bmod 3$, we can choose α^{\prime} so that $\alpha^{\prime} \circ \theta_{3}=0$, while if $n \equiv$ $1 \bmod 3$, we are prevented only by a summand of α_{1} involving $\mathcal{P}^{n+2} \mathcal{P}^{1} \iota$. This completes the proof of Th. 1.2.

Section 4. Primes ≥ 5

Let p be an odd prime and $q=2 p-2$. To state the corresponding version of Theorem 1, we first introduce the following integers. Fix n and define a_{k}, b_{k}, c_{k} for $1 \leq k \leq \frac{1}{2}(p-3)$ by the equations

$$
\begin{aligned}
a_{1} & =2 n p, b_{k}=a_{k}+q, c_{k}=b_{k}+(p-1) q-1 \\
a_{k+1} & =c_{k}-1
\end{aligned}
$$

THEOREM (4.1). [HZ]. Let $x \in H^{2 n+1}(X: Z / p)$ and suppose
a) $\mathcal{P}^{n} x=0$
b) $\operatorname{ker} \mathcal{P}^{p-1}\left|H^{b_{k}}=\operatorname{im} \mathcal{P}^{1}\right| H^{a_{k}}$
ker $\mathcal{P}^{1}\left|H^{c_{k}}=\operatorname{im} \mathcal{P}^{p-1}\right| H^{b_{k}-1}, 1 \leq k \leq \frac{1}{2}(p-3)$
ker $\mathcal{P}^{p-1} \mid H^{t}=\operatorname{imP} \mathcal{P}^{1} H^{s} \quad$ where
$t=2 n p+1+p(p-2)^{2}, s=t-q$. Then, if $n \not \equiv-1 \bmod p$,

$$
x \cup \mathcal{P}^{1} x \cup \ldots \cup \mathcal{P}^{p-1} x=\mathcal{P}^{1} y .
$$

To state the corresponding version of Theorem 2, we use the following integers. Fix n and define $a_{k}, b_{k}, c_{k}, d_{k}$ for $1 \leq k \leq p-1$ by;

$$
\begin{aligned}
& a_{k}=2 n p+q k, b_{k}=a_{k}+1, c_{k}=a_{k}-(q+1) \\
& d_{k}=a_{k}-q
\end{aligned}
$$

We also define 2×2 matrices over A;

$$
\Phi_{k}=\binom{\varphi_{k},(-1)^{k+1} \mathcal{P}^{1}}{0, \varphi_{k}}
$$

with $\varphi_{k}=k \beta \mathcal{P}^{1}-(k+1) \mathcal{P}^{1} \beta$. We have $\varphi_{k} \circ \varphi_{k-1}=0$ and $\mathcal{P}^{1} \varphi_{k-1}=\varphi_{k} \circ \mathcal{P}^{1}$.
THEOREM (4.2). Let $x \in H^{2 n+1}(X ; Z / p)$ be the reduction of an integral class and suppose
a) $\mathcal{P}^{n} x=0$
b) ker $\Phi_{1}\left|H^{a_{1}} \oplus H^{b_{1}}=\operatorname{im}\left(\mathcal{P}^{1}, \mathcal{P}^{1} \beta\right)\right| H^{2 n p}$ $\operatorname{ker} \Phi_{k}\left|H^{a_{k}} \oplus H^{b_{k}}=\operatorname{im} \Phi_{k-1}\right| H^{c_{k}} \oplus H^{d_{k}}$ $2 \leq k \leq p-2$. Then, if $n \not \equiv-1 \bmod p$

$$
x \cup\left(\beta \mathcal{P}^{1} x\right)^{p-1}+\lambda \mathcal{P}^{n+p-1} \mathcal{P}^{1} x=\beta \mathcal{P}^{1} w_{1}+\mathcal{P}^{1} w_{2}
$$

with $\operatorname{deg} w_{1}=a_{p-1}$ and $\operatorname{deg} w_{2}=b_{p-1}$ and $\lambda \in Z / p, \lambda=0$ unless $n \equiv 1 \bmod p$.

Departmentof Mathematics
Universityof Rochester
Rochester, NY 14627, U.SA.

References

[HM] J.R. Harper and H.R. Miller, Looping Massey-Peterson towers in Advances in Homotopy Theory London Math. Soc. Lecture Note Series 139 (1989), 69-86.
[HZ] J.R. Harper and A. Zabrodsky, Evaluating a p-th order cohomology operation Publicacions Matematiques 32 (1988), 61-78.
[MP] J.C. Moore and F.P. Peterson Nearly Frobenius algebras and their module categories, in Symposium on Algebraic Topology Springer Lecture Notes 249 (1971), 94-98.
[RS] M. Rothenberg and N.E. Steenrod The cohomology of classifying spaces of H-spaces Bull. AMS 71 (1965), 872-875.

