RELATIONS IN THE MOD 3 COHOMOLOGY ALGEBRA OF A SPACE

BY JOHN R. HARPER

José Adem, in memoriam

Introduction

This paper is concerned with a method for establishing relations among cup products and Steenrod operations in the cohomology of any space. The method was developed in [HZ], with a particular application in mind. The primary motivation for writing this paper is to extend the scope of the ideas developed in [HZ]. Parts of the exposition are simpler if we confine our attention to mod 3 cohomology. At the end of the paper, we give the statements of the results for arbitrary odd primes.

To indicate the type of result sought, we first reformulate the case for p = 3 of the main result in [HZ].

THEOREM (1). Let $x \in H^{2n+1}(X; \mathbb{Z}/3)$ and suppose, a) $\mathcal{P}^n x = 0$ b) if $y \in H^{6n+4}$ satisfies $\mathcal{P}^2 y = 0$, then $y = \mathcal{P}^1 z$ for some $z \in H^{6n}$. Then, if $n \not\equiv 2 \mod 3$, the following relation holds,

$$x \cup \mathcal{P}^1 x \cup \mathcal{P}^2 x = \mathcal{P}^1 w$$

for some $w \in H^{6n+11}$.

Thus, under certain conditions involving the action of the Steenrod algebra, a relation involving cup products and Steenrod operations holds. We call such a relation a *conditional relation*.

A new result along these lines is

THEOREM (2). Suppose $x \in H^{2n+1}(X; \mathbb{Z}/3)$ is the reduction of an integral class and suppose,

a) $\mathcal{P}^n x = 0$

b) if $(y_1, y_2) \in H^{6n+4} \oplus H^{6n+5}$ satisfies $\Phi(y_1, y_2) = 0$, then $(y_1, y_2) = (\mathcal{P}^1, \mathcal{P}^1\beta)z$ for some $z \in H^{6n}$, where Φ is the 2×2 matrix

$$\Phi = \begin{pmatrix} \beta \mathcal{P}^1 + \mathcal{P}^1 \beta & \mathcal{P}^1 \\ 0 & \beta \mathcal{P}^1 + \mathcal{P}^1 \beta \end{pmatrix}.$$

Then if $n \not\equiv 2 \mod 3$, the following relation holds,

$$x \cup (\beta \mathcal{P}^1 x)^2 + \lambda \mathcal{P}^{n+2} \mathcal{P}^1 x = \beta \mathcal{P}^1 w_1 + \mathcal{P}^1 w_2$$

where $\lambda \in \mathbb{Z}/3$ and $\lambda = 0$ if $n \equiv 0 \mod 3$.

The information provided by conditional relations can be used to study an old problem first raised by Steenrod; the problem of whether a given algebra over the Steenrod algebra can be the cohomology algebra of a topological space. For example, let M be the module

$$M = \{x_{2n+1}, \mathcal{P}^{1}x_{2n+1}, \beta \mathcal{P}^{1}x_{2n+1}\}.$$

COROLLARY (3). The algebra U(M) is the cohomology algebra of a space only if n = 1, 4 or $n \equiv 2 \mod 3$.

Recall that, in this case $U(M) = \Lambda(x, y) \otimes Z/3[z]/(z^3)$ where $x = x_{2n+1}, y = \mathcal{P}^1 x$ and $z = \beta y$. Then Cor. 3 follows easily from Th 2; since the U(M) formulation implies that (a) is automatically satisfied for $n \neq 1$ and the value of λ is superfluous. In case n = 4, condition (b) may not hold as $(y_1, y_2) = (z^2, 0)$ is not in the image of $(\mathcal{P}^1, \mathcal{P}^1\beta)$.

The paper has the following organization. In section 1, two results are presented, from which Theorem 2 follows. The first of these is then developed in section 2 while the second is developed in section 3. In the final section 4 statements of the analogues of Th. 1 and 2 for primes > 5 are presented.

Section 1

Here we lay out the homotopy theory underlying Th. 2. We denote the Eilenberg-MacLane space K(Z/3,n) by K_n , and a product $\prod_i K_{n_i}$ by K(I) where $I = (n_1, n_2, \ldots)$.

THEOREM (1.1). The following tower of fibrations exists;

where k_0 is represented by $(\mathcal{P}^{1}\iota_{6n+1}, \mathcal{P}^{1}\beta\iota_{6n+1})$. The class k_1 is created by a null-homotopy of the composition

$$K_{6n+1} \xrightarrow{k_0} K(6n+5, 6n+6) \xrightarrow{\Phi} K(6n+10, 6n+11)$$

where Φ is the matrix appearing in Th. 2.b. The class k_2 is created by a null-homotopy of the composition

$$E_1 \xrightarrow{\kappa_1} K(6n+9, 6n+10) \xrightarrow{\varphi} K_{6n+14}$$

where φ is represented by $(\beta \mathcal{P}^1, \mathcal{P}^1)$.

THEOREM (1.2). Let Y = K(Z, 2n + 1) and define the homotopy class of $f_0: Y \to K_{6n+1}$ by $\mathcal{P}^n \iota_{2n+1}$. Then f_0 lifts through the tower of 1.1 and there

 $\mathbf{204}$

is a choice $f_2 : Y \to E_2$ such that the composition $k_2 \circ f_2$ is represented by $\iota \cup (\beta \mathcal{P}^1 \iota)^2 + \lambda \mathcal{P}^{n+2} \mathcal{P}^1 \iota$ where $\iota = \iota_{2m+1}$ and λ is as in Th. 2.

Now we obtain Th. 2 from these results. Consider the following diagram

where $g: X \to Y$ is represented by x of Th. 2, and (to avoid clutter) the lifts of f_0 are understood. Consider first the composition $f_1 \circ g$. Since $f_0 \circ g = \mathcal{P}^n x = 0$ by hypothesis (a), there is $g_1: X \to K(6n+4, 6n+5)$ such that $j_1 \circ g_1 \sim f_1 \circ g$. The composition $k_1 \circ j_1$ is $\Omega \Phi$ from 1.1, and $k_1 \circ j_1 \circ g_1 \sim k_1 \circ f_1 \circ g \sim *$. Therefore, by the hypothesis in part (b), g_1 factors through Ωk_0 . Consequently $j_1 \circ g_1$ is null. Now consider the composition $f_2 \circ g$. This map lifts $f_1 \circ g$ which is known from the above argument to be null. Hence there is a map $g_2: X \to K(6n+8, 6n+9)$ such that $j_2 \circ g_2 \sim f_2 \circ g$. Since the composition $k_2 \circ j_2$ is represented by $(\beta \mathcal{P}^1, \mathcal{P}^1)$, the conclusion of Th. 2 follows from 1.2 and the equation $k_2 \circ f_2 \circ g \sim k_2 \circ j_2 \circ g$.

Remark. Theorems 1.1 and 1.2 assert the existence and evaluation on $\mathcal{P}^n \iota$ of a tertiary cohomology operation associated with a Toda bracket

(1.4)
$$\langle (\beta \mathcal{P}^1, \mathcal{P}^1), \Phi, \begin{pmatrix} \mathcal{P}^1 \\ \mathcal{P}^1 \beta \end{pmatrix} \rangle.$$

By fixing the maps f_1 and f_2 , we can regard the diagram in (1.3) as a universal example into which X can be mapped. This formulation achieves precision of calculation at the expense of those parts of the theory of tertiary operations which depend on naturality.

Section 2

In this section we develop the ideas for Th. 1.1. This is just a matter of recollecting some of the ideas from the construction of the classical Adams spectral sequence. For us, the first ingredient is a *stable complex of unstable* A-modules, where A is the mod p Steenrod algebra;

(2.1)
$$\begin{array}{c} P_{0} \xleftarrow{\theta_{0}} P_{1} \xleftarrow{\theta_{1}} \dots \xleftarrow{\theta_{p-1}} P_{p} \xleftarrow{\theta_{p}} P_{p+1} \\ \uparrow & \uparrow & \uparrow \\ V_{0} \xleftarrow{\theta_{0}} V_{1} \xleftarrow{\theta_{1}} \dots \xleftarrow{\theta_{p-1}} V_{p} \xleftarrow{\theta_{p}} V_{p+1} \end{array}$$

where each P_i is a free unstable A-module, V_i is a free A-module mapping surjectively to P_i , each composition $\tilde{\theta}_i \circ \tilde{\theta}_{i+1} = 0$ and the diagram commutes. The portion of (2.1) through stage p is used to construct a tower. The additional stage is used to refine the evaluation of maps into the tower.

We next require a realizability property which could be summarized by saying that the higher Toda bracket $\langle \tilde{\theta}_{p-1}, \ldots, \tilde{\theta}_0 \rangle$ exists and contains 0, where the $\tilde{\theta}_i$ are regarded as maps of Eilenberg-MacLane spectra. One way to achieve realizability is by means of classical Adams resolutions. If there is a stable complex with cohomology isomorphic to coker $\tilde{\theta}_0$, and the stable complex of (2.1) is an initial segment of a resolution for H^*X as an A-module, then the Adams resolution for X can be constructed. From this a suitable tower of spaces can be extracted.

PROPOSITION (2.2). There exists a stable complex X with mod p (reduced) cohomology of the form $\{x, \beta x, \mathcal{P}^p x, \beta \mathcal{P}^p x\}$ with $\mathcal{P}^p \beta x = \beta \mathcal{P}^p x$.

Proof. (due to D. Ravenel) The complex is the mapping cone of a certain map of (stable) Moore spaces, (q = 2p - 2)

$$b: P^{pq+1} \to P^2$$

Recall that $\beta_1: S^{pq-2} \to S^0$ has order p. So, after raising dimension by 1, it factors through $\beta'_1: S^{pq-1} \to P^1$. Since P^1 is a ring spectrum, we have

$$P^{pq} = S^{pq-1} \wedge P^1 \to P^1 \wedge P^1 \to P^1.$$

Taking $\bar{\beta}_1$ as the composition of the above map followed by the pinch map $P^1 \to S^1$, we have an extension of β , which is annihilated by post-multiplication by p,

The desired map b is the coextension. Its mapping cone has the stated cohomology by a form of the mod p Hopf invariant one result.

By direct calculation (for p = 3) our initial segment of a resolution for H^*X can be constructed with maps

(1.3)
$$\begin{aligned} \tilde{\theta}_0 &= \begin{pmatrix} \mathcal{P}^1 \\ \mathcal{P}^1 \beta \end{pmatrix} \\ \tilde{\theta}_1 &= \Phi &= \begin{pmatrix} \beta \mathcal{P}^1 + \mathcal{P}^1 \beta & \mathcal{P}^1 \\ 0 & \beta \mathcal{P}^1 + \mathcal{P}^1 \beta \end{pmatrix} \\ \tilde{\theta}_2 &= \begin{pmatrix} \beta \mathcal{P}^1, & \mathcal{P}^1 \\ 0 & \beta \mathcal{P}^1 \end{pmatrix} \end{aligned}$$

$$ilde{ heta}_3 = \left(egin{array}{cc} \mathcal{P}^1eta & -\mathcal{P}^1 \\ \mathbf{0} & \mathcal{P}^1eta \end{array}
ight)$$

We shall employ the notation of [HM] to denote the spaces in the tower associated with a stable complex of unstable A-modules

(2.4)

$$E_{p-1} \xrightarrow{R_{p-1}} K(\Omega^{p-1}P_p)$$

$$\downarrow$$

$$\downarrow$$

$$E_1 \xrightarrow{k_1} K(\Omega P_2)$$

$$\downarrow$$

$$K(P_0)$$

Recall that in this situation, the k-invariant

$$E_s \xrightarrow{R_s} K(\Omega^s P_{s+1})$$

is determined by a null-homotopy for the composition $\theta_s \circ k_{s-1}$,

$$E_{s-1} \xrightarrow{k_{s-1}} K(\Omega^{s-1}P_s) \xrightarrow{\theta_s} K(\Omega^{s-1}P_{s+1}).$$

The main reason for the condition $\tilde{\theta}_k \circ \tilde{\theta}_{k+1} = 0$ is to have k-invariants created by null-homotopies after one de-looping, as well as in the tower (2.4).

Applying this construction with the data in (2.3) and then looping down yields the tower

$$(2.5) \qquad \begin{array}{c} E_{2} & \xrightarrow{k_{2}} & K(6n+13, 6n+14) & \xrightarrow{\theta_{3}} & K(6n+18, 6n+19) \\ \downarrow & & \\ & \downarrow & \\ & & \\$$

and the tower in Th. 1.1 is obtained by restriction to the first row in $\tilde{\theta}_2$ and ignoring $\tilde{\theta}_3$.

Section 3

In this section we construct the maps in Th. 1.2. This is one of the novel features of the argument in [HZ]. The main step is the reduction of the evaluation problem to a problem of pure algebra. This algebraic problem is described in detail here and called the *zig-zag equations*.

207

JOHN R. HARPER

The construction is based on the Milnor filtration for a classifying space and the associated spectral sequence for cohomology [RS]. We write $BY = \bigcup_{k\geq 0} B_k$ with $B_0 = *$ and $B_1 = \Sigma Y$. In the spectral sequence for cohomology

 $E_1^{s,t} = H^{s+t}(\Sigma^s Y^{(s)})$ and (E_1, d_1) is isomorphic to the cobar construction on H^*Y , if this is of finite type, with a degree shift. If H^*Y is a primitively generated Hopf algebra, we can pick a basis of monomials for H^*Y and define weight for a monomial as cup length. There results a gradation of E_1 by weights, written $E_1^{s,t,m}$. The differential d_1 preserves weights, although the higher differentials do not.

Our calculation depends on the following phenomenon. The composition

$$Y \xrightarrow{f_0} K(P_0) \xrightarrow{\theta_0} K(P_1)$$

must be null, while after one de-looping, there is a factorization

with u_p having $\Sigma^p[\iota|\ldots|\iota]$ in one component and 0 elsewhere. This is achieved in Th. 1.2 by taking Y = K(Z, 2n + 1) and $n \not\equiv 2 \mod 3$, since

$$\begin{pmatrix} \mathcal{P}^1 \\ \mathcal{P}^1_\beta \end{pmatrix} \mathcal{P}^n = \begin{pmatrix} (n+1)\mathcal{P}^{n+1} \\ n\beta\mathcal{P}^{n+1} + \mathcal{P}^{n+1}\beta \end{pmatrix}$$

and $\mathcal{P}^{n+1}\iota_{2n+2}$ has Milnor filtration p. We can now describe the zig-zag equation. We seek a sequence $\{u_1, \ldots, u_p\}$ of elements, extending u_p above,

 $u_r \in E_1^{r,*,p}$

where * may be a multi-degree, and the weight is p. Each u_r is to be regarded as a map

$$u_r: \Sigma^r Y^{(r)} \longrightarrow BK(\Omega^{p-r} P_{p-r+1})$$

where the targets are as in 2.4. These elements are required to satisfy the "zig-zag equations"

$$(3.2) d_1 u_r = \theta_{p-r} u_{r+1}$$

where θ_k are as in (2.1).

We illustrate these equations with the data in (2.3). To begin with, we have

$$B_{3} \xrightarrow{\qquad \Sigma^{3}Y^{(3)}} \downarrow \qquad \qquad \downarrow^{u_{3}}$$
$$BY \xrightarrow{\qquad \mathcal{P}^{n}} K_{6n+2} \xrightarrow{\qquad \theta_{0}} K_{6n+6} \times K_{6n+7}$$

with $u_3 = (\Sigma^3[\iota|\iota|\iota], 0)$. The first zig-zag equation is

$$d_1u_2 = \theta_1u_3.$$

Since $\beta \iota = 0$, a solution is given by

$$u_2 = (\Sigma^2 \{ [\iota \cdot \beta \mathcal{P}^1 \iota | \iota] - [\iota | \iota \cdot \beta \mathcal{P}^1 \iota] \}, \mathbf{0} \}$$

The next zig-zag equation is

$$d_1u_1=\theta_2u_2,$$

and a solution is given by

$$u_1 = (\Sigma^2 \iota \cdot (\beta \mathcal{P}^1 \iota)^2, 0) \; .$$

The solutions to these formal equations are not unique; u_2 can vary by elements in ker d_1 while u_1 can vary by elements in ker $d_1 \cup im\theta_2$. But there is the following invariance.

THEOREM (3.3). If Y is an Eilenberg-MacLane space, then in any set of solutions to (3.2) by elements of weight p, and no component of the multi-degree * is congruent to $0 \mod 2p$, the value of u_1 is unique modulo elements in the image of θ_{p-1} and primitives of H^*Y .

We sketch the proof after showing the connection between the sequence $\{u_r\}$ and the lifts of $f_0 : Y \to K(P_0)$ into the tower (2.4). This connection is based on the following elementary observation. In the diagram below, of based objects,

(3.4)

suppose $\beta \alpha$ and gf are null and $fr \sim s\beta$. Let ℓ_1, ℓ_2 and H denote respective homotopies;

$$\ell_1$$
 from $*$ to $\beta \alpha$
 H from $s\beta$ to fr
 ℓ_2 from gf to $*$.

We have a map

$$\Sigma A \longrightarrow C_{\beta} \longrightarrow Z$$

where the first map is the coextension to the mapping cone of β using ℓ_1 , and the second map extends gs using H and ℓ_2 . We also have a map

$$A \to F_f \to \Omega Z$$

where the first map is a lifting of r to the homotopy fibre of f using ℓ_1 and H while the second map is determined by the homotopy ℓ_2 . One checks directly that these maps are adjoint, up to reparametrization.

We now turn to the construction of maps from Y into the tower. This work makes use of the fact that $E_2 = E_{\infty}$ in the cohomology spectral sequence for BY, where Y is an Eilenberg-MacLane space. To begin, we enlarge diagram 3.1 to

to reveal the pattern of (3.4). Thus $(3.5)_p$ can be filled in on the right by

$$\hat{u}_p: \Sigma B_{p-1} \to BK(P_2)$$

and on the left by

$$B_{p-1} \xrightarrow{\hat{u}_{p-1}} BE_1 \xrightarrow{Bk_1} K(P_2)$$

such that the displayed maps are adjoint, up to homotopy. Then $f_1 : Y \to E_1$, is taken as the adjoint of the composition of the inclusion of ΣY in B_{p-1} with \tilde{u}_{p-1} .

Next, we note that $E_2 = E_{\infty}$ implies that the composition

$$\Sigma B_{p-2} \to \Sigma B_{p-1} \xrightarrow{\hat{u}_p} BK(P_2)$$

is null, since otherwise the cohomology class represented by $\theta_1 u_p$ would be the target of a differential d_r with r > 1. Thus \hat{u}_p factors as a composition

$$\hat{u}_p: \Sigma B_{p-1} \longrightarrow \Sigma^p Y^{(p-1)} \xrightarrow{u_{p-1}^*} BK(P_2)$$

The self-map theory in [HZ] is used to show that u_{p-1}^* can be chosen with weight $\equiv 1 \mod (p-1)$. By construction, $d_1 u_{p-1}^* = \theta_1 u_p$. We can assemble this information in

$$(3.5_{p-1}) \qquad \begin{array}{c} B_{p-2} \longrightarrow B_{p-1} \longrightarrow \Sigma^{p-1} Y^{(p-1)} \longrightarrow \Sigma B_{p-2} \\ \downarrow^{\tilde{u}_{p-1}} & \downarrow^{u_{p-1}} \\ BE_2 \longrightarrow BE_1 \longrightarrow & K(P_2) \longrightarrow K(P_3) \end{array}$$

to reveal the pattern of 3.4, where u_{p-1} is the adjoint of u_{p-1}^* .

The construction continues inductively, using the pair

$$(\tilde{u}_r, u_r) : (B_r, \Sigma^r Y^{(r)}) \to (BE_{p-r}, BK(\Omega^{p-r}P_{p-r+1}))$$

to produce

$$\hat{u}_r: \Sigma B_{r-1} \to BK(\Omega^{p-r}P_{p-r+2})$$

and

$$\tilde{u}_{r-1}: B_{r-1} \to BE_{p-r+1}.$$

Again $E_2 = E_{\infty}$ implies that \hat{u}_r factors through $\Sigma^r Y^{(r-1)}$, to produce u_{r-1}^* and the theory in [HZ] guarantees a factorization of weight $\equiv 1 \mod (p-1)$. Taking adjoints yields $(\tilde{u}_{r-1}, u_{r-1})$. At each stage, $f_r : Y \to E_r$ lifting f_{r-1} is obtained as the adjoint of

$$\Sigma Y \longrightarrow B_{p-r} \xrightarrow{\tilde{u}_{p-r}} BE_r.$$

By construction, we obtain a geometrically induced solution to the zig-zag equations from the u_{r-1}^* extending \hat{u}_r .

Now we turn to the invariance of solutions to the zig-zag equations stated in Theorem 3.3. We have introduced weights into (E_1, d_1) of the spectral sequence for H^*BY . Having taken Y to be an Eilenberg-MacLane space, $E_2 = E_{\infty}$ and [RS]

$$E_2^{s,t} = Ext_{H_*Y}^{s,t}(Z/p,Z/p).$$

The resulting algebra generators for H^*BY are in tri-degrees (1, *, 1), (2, 2kp, p) or (p, (2k-1)p, p). Thus, the following sequence is exact

$$(3.6) E_1^{r-1,*,p} \xrightarrow{d_1} E_1^{r,*,p} \xrightarrow{d_1} E_1^{r+1,*,p}$$

if 2 < r < p and also for r = 2 if * is not congruent to $0 \mod 2p$.

We can now prove (3.3). Let $\{u_r\}$ and $\{u_r^1\}$ be a pair of solutions to (3.2) with $u_p = u_p^1$. Then $u_{p-1}^1 = u_{p-1} + w_{p-1}$ with $d_1 w_{p-1} = 0$. By (3.6), $w_{p-1} = d_1 v_{p-2}$. Thus

$$d_1 u_{p-2}^1 = \theta_2 u_{p-1}^1 = d_1 (u_{p-2} + \theta_2 v_{p-2}).$$

Inductively, we obtain

$$u_r^1 = u_r + \theta_{p-r}v_r + w_r$$

with $d_1w_r = 0, u_r, v_r, w_r \in E_1^{r,*,p}$. The case r = 1 is (3.3).

For the case of Theorem 1.2, we have calculated u_2 of tri-degree (2, (6n + 8, 6n + 9), 3), so the hypotheses necessary to invoke (3.3) are fulfilled. Thus we obtain the conclusion to Theorem 1.2 in the form, $k_2 \circ f_2$ is represented by

$$\iota \cdot (\beta \mathcal{P}^1 \iota)^2 + \alpha \iota$$

for some element of degree 4n + 12 in the mod 3 Steenrod algebra.

Before analyzing this situation, we point out a feature of the constructions in $(3.5)_r$. At the end of this sequence, $(3.5)_2$, we have

and $u_1^* = \hat{u}_2$. The element \hat{u}_2 arises from the construction in 3.4 involving homotopies for maps to the left of \hat{u}_2 . While \hat{u}_2 can certainly be altered by maps from ΣB_2 , such alterations need not arise from the process in 3.4 and thus cannot be invoked in the construction of the map f_{p-1} , as the evaluation of the map depends on the adjoint relationship in 3.4.

To obtain information about the element α , we first enlarge the top of the diagram in Th. 1.1 using all of the data from (2.3), to obtain

with $\theta_3 k_2$ null, because the tower comes from an Adams resolution for the space constructed in Prop 2.2. Thus the value of $u_1 = k_2 \circ f_2$ is determined up to elements of the form $\alpha = (\alpha_1 \iota, \alpha_2 \iota)$ with deg $\alpha_1 = 4n+12$, deg $\alpha_2 = 4n+13$ and

$$\left(\begin{array}{c} \mathcal{P}^{1}\beta,-\mathcal{P}^{1}\\ \mathbf{0}\,\mathcal{P}^{1}\beta \end{array}\right)\left(\begin{array}{c} \alpha_{1}\iota\\ \alpha_{2}\iota \end{array}\right)=\mathbf{0}$$

Now the cohomology of K(Z,2n+1) is of the form $U(F_{2n+1}^{\prime})$ and our situation can be represented as

(3.8)
$$\Omega^2 P_4 \xrightarrow{\theta_3} \Omega^2 P_3 \xrightarrow{\theta_2} \Omega^2 P_2$$
$$\downarrow^{\alpha} F'_{2n+1}$$

with $\alpha \circ \theta_3 = 0$. If we are able to factor α through θ_2 , then we can adjust the map f_2 to remove this term. To see what can be done, we use a result from [MP] which states that the mod p Steenrod algebra A is injective as a self-module. The same is true of $\Sigma^{2n+1}A$, which maps surjectively to F'_{2n+1} , and we can lift α to $\alpha' : \Omega^2 P_3 \to \Sigma^{2n+1}A$. If we can choose α' to satisfy the equation $\alpha' \circ \theta_3 = 0$, then α' and hence α , factors through θ_2 . So we have to understand the role of excess in the equation $\alpha \circ \theta_3 = 0$.

Now $\mathcal{P}^1\beta$ raises excess by at most 3. So the influence of excess is confined to summands in α_1 or α_2 coming from

$$\operatorname{span}\{\mathcal{P}^{n+1}\mathcal{P}^{1}\iota\},\operatorname{span}\{\beta\mathcal{P}^{n+2}\mathcal{P}^{1}\iota,\mathcal{P}^{n+2}\beta\mathcal{P}^{1}\iota\}$$

respectively. Using the Adem relations and excess considerations, we have

$$\mathcal{P}^{1}\beta(\mathcal{P}^{n+2}\mathcal{P}^{1}\iota) = (n+2)\beta\mathcal{P}^{n+3}\mathcal{P}^{1}\iota + \mathcal{P}^{n+3}\beta\mathcal{P}^{1}\iota \\ = \mathcal{P}^{n+3}\beta\mathcal{P}^{1}\iota$$

and

$$\mathcal{P}^{1}(\mathcal{P}^{n+2}\beta\mathcal{P}^{1}\iota) = (n+3)\mathcal{P}^{n+3}\beta\mathcal{P}^{1}\iota.$$

Thus, if $n \equiv 0 \mod 3$, we can choose α' so that $\alpha' \circ \theta_3 = 0$, while if $n \equiv 1 \mod 3$, we are prevented only by a summand of α_1 involving $\mathcal{P}^{n+2}\mathcal{P}^1 \iota$. This completes the proof of Th. 1.2.

Section 4. Primes ≥ 5

Let p be an odd prime and q = 2p - 2. To state the corresponding version of Theorem 1, we first introduce the following integers. Fix n and define a_k, b_k, c_k for $1 \le k \le \frac{1}{2}(p-3)$ by the equations

$$a_1 = 2np, b_k = a_k + q, c_k = b_k + (p-1)q - 1$$

 $a_{k+1} = c_k - 1.$

THEOREM (4.1). [HZ]. Let $x \in H^{2n+1}(X : \mathbb{Z}/p)$ and suppose

a) $\mathcal{P}^n x = 0$

b) ker
$$\mathcal{P}^{p-1}|H^{b_k} = \operatorname{im} \mathcal{P}^1|H^{a_k}$$

ker $\mathcal{P}^1|H^{c_k} = \operatorname{im} \mathcal{P}^{p-1}|H^{b_k-1}, 1 \le k \le \frac{1}{2}(p-3)$
ker $\mathcal{P}^{p-1}|H^t = \operatorname{im} \mathcal{P}^1H^s$ where
 $t = 2np + 1 + p(p-2)^2, s = t - q$. Then, if $n \not\equiv -1 \mod p$,
 $x \cup \mathcal{P}^1x \cup \ldots \cup \mathcal{P}^{p-1}x = \mathcal{P}^1y$.

To state the corresponding version of Theorem 2, we use the following integers. Fix n and define a_k, b_k, c_k, d_k for $1 \le k \le p - 1$ by;

$$a_k = 2np + qk, b_k = a_k + 1, c_k = a_k - (q+1)$$

 $d_k = a_k - q.$

We also define 2×2 matrices over A;

$$\Phi_{k} = \left(egin{array}{c} arphi_{k}, (-1)^{k+1} \mathcal{P}^{1} \ 0, arphi_{k} \end{array}
ight)$$

with $\varphi_k = k\beta \mathcal{P}^1 - (k+1)\mathcal{P}^1\beta$. We have $\varphi_k \circ \varphi_{k-1} = 0$ and $\mathcal{P}^1\varphi_{k-1} = \varphi_k \circ \mathcal{P}^1$.

THEOREM (4.2). Let $x \in H^{2n+1}(X; \mathbb{Z}/p)$ be the reduction of an integral class and suppose

a) $\mathcal{P}^n x = 0$

b) ker $\Phi_1 | H^{a_1} \oplus H^{b_1} = \operatorname{im} (\mathcal{P}^1, \mathcal{P}^1\beta) | H^{2np}$ ker $\Phi_k | H^{a_k} \oplus H^{b_k} = \operatorname{im} \Phi_{k-1} | H^{c_k} \oplus H^{d_k}$ 2 < k < p-2. Then, if $n \not\equiv -1 \mod p$

$$x \cup (\beta \mathcal{P}^1 x)^{p-1} + \lambda \mathcal{P}^{n+p-1} \mathcal{P}^1 x = \beta \mathcal{P}^1 w_1 + \mathcal{P}^1 w_2$$

with deg $w_1 = a_{p-1}$ and deg $w_2 = b_{p-1}$ and $\lambda \in \mathbb{Z}/p, \lambda = 0$ unless $n \equiv 1 \mod p$.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ROCHESTER ROCHESTER, NY, 14627, U.S.A.

REFERENCES

[HM] J.R. HARPER AND H.R. MILLER, Looping Massey-Peterson towers in Advances in Homotopy Theory London Math. Soc. Lecture Note Series 139 (1989), 69–86.

[HZ] J.R. HARPER AND A. ZABRODSKY, Evaluating a p-th order cohomology operation Publicacions Matematiques 32 (1988), 61-78.

[MP] J.C. MOORE AND F.P. PETERSON Nearly Frobenius algebras and their module categories, in Symposium on Algebraic Topology Springer Lecture Notes 249 (1971), 94–98.

[RS] M. ROTHENBERG AND N.E. STEENROD The cohomology of classifying spaces of H-spaces Bull. AMS 71 (1965), 872–875.