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ON THE CHARACTER VARIETY OF GROUP REPRESENTATIONS 
OF A 2-BRIDGE LINKp/3 INTO PSL(2,(C) 

BY HUGH M. HILDEN, MARIA TERESA LOZANO* AND 

JOSE MARIA MONTESINOS-AMILIBIA * 

In studying hyperbolic structures on the complement of a knot or link in 
S3, one is led to consider the holonomies of these structures. They are, up 
to conjugation in PSL(2, q, representations of the group G of the knot or 
link in PSL(2, <C). The set of conjugacy classes of non abelian representa
tions of G into PSL(2, q is in a natural way a closed algebraic set ([CS], see 
also [GM]) which is called the character variety of representations of G into 
PSL(2, C). This variety has been intensively studied by a number of authors, 
starting with the pioneering and beautiful work of Riley ([Rii], [Ri2], [Ri 3]). 

In the paper [HLMl] this character variety was computed for the group ofa 
2-bridge knot or linkp/q. The result of the computation is a polynomial in 
two variables (three, if pis even) which represents a curve (surface) in <C2 (<C3 

respectively). The computation was carried out using a recursion procedure, 
essentially due to Burde ([Bu], see also [FK], [He], [Kl]), which consisted 
of looking at SL(2, <C) as the elements of norm 1 in the quaternion algebra 
M(2,<C). 

This recursion procedure is very useful for computational purposes. In 
fact, givenp, q it is fairly easy to obtain the corresponding polynomial. How
ever, for purposes of obtaining general results, it would be preferable to have 
a general formula, in the variables p, q (and in the polynomial indetermi
nates, as well) giving the different polynomials for the different values of 
p,q. 

Computational evidence shows that such a formula must exist if q is main
tained constant. To be more precise, fixing q, it seems possible to wtj.te for
mulas for the polynomials of the links p / q which belong to the same class of 
p modq. We have carried out this computation in the simplest case q = 3. It 
is not surprising (see [Rii], [Ri2] and [T]) that families of polynomials appear 
that are closely related to the Morgan-Voyce polynomials. 

To obtain these results, which are the contents of the present paper, we 
have used a different method of computation from the one used in [HLMl]. 
As Riley says in [Ri 11, it is possible to use the Fricke-character method. (See 
[CS], [Ma] and [GM]). It has been already used for computing the polyno
mials of the knot 5/3 ([Wh],[filM2]) and the link 8/3 [HLM3]. This is the 
method we will use in this paper. The main results are Theorems (2.2), (2.5) 
and Corollary (2.4), where formulas for the polynomials are given. An impor
tant and easy consequence of these results is that the curves of non abelian 
representations ofp/3 into PSL(2, C) are always irreducible. 

*This research was supported by grant PB89-0105 
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The shape of the curve is obtained in section 3. It follows another proof 
that the number of arithmetic orbifolds (p /3, n ), for a fixed p, must be finite, 
where (p /3, n) has singular set p /3 and isotropy cyclic of order n. (We refer 
to [Du], [HKM], [HLMl], [HLM2], [HLM3], [HLM4], [MR], [Re], [Ta], [Thu] 
and [V] for the definitions and results concerning orbifolds and arithmetic
ity.) 

We thank an anonimous referee for useful comments and additions. 

1. Some families of polynomials 

We will need some particular families of polynomials, closely related to the 
Morgan-Voyce polynomials, whose definition and properties are given below. 

Definition (1.1). P = {pm(z)lm E 'll,m 2: -1} is the familyofpolynomials 
defined by the recurrence formula 

Pm = ZPm-1 - Pm-2 

with the initial values p _ 1 = 0, Po = l. 
These polynomials are closely related to the Morgan-Voyce polynomials 

Bn(x) (see[S]), since Pn(z) = Bn(z - 2). They are also related to the polyno
mials Pn+1(x,y) defined in [T]. In factpn(z) = Pn+1(z, -1). 

PROPOSITION (1.2). The polynomials Pm(z) of P have the following proper
ties: 

(l) ( Z -1 ) n = ( Pn -Pn-1 ) . 
1 0 Pn-1 -Pn-2 

(2) p;i = 1 + Pm+lPm-1, m 2: 1 

(3)p;i-l +P~ = 1 +ZPmPm-1, m 2: 1 

(4) P2,i = P~ -P!-1 = t ( 2ni- i ) (-1/z 2(n-i), n 2: 0 

i=O 

_ (p ) _ ~ ( 2n + 1 - i ) ( l)i 2(n-i)+l P2n+ 1 - Pn n+ 1 - Pn-1 - ~ i - Z , 
i=O 

(5) Pm(-z) = (-lrpm(z) 

(6)/fpm(zo) = 0, thenpm-1(zo) = -Pm+1(zo) = ±1 

(7) For every m 2 0, Pm(z) has degree m, and has m real roots in the interval 
(-2,2). 

Proof. [S], [T] and easy inductive arguments. • 
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PROPOSITION (1.3). a) For z ~ 2 

Pm(z) > Pm-1(z), m ~ 1. 

b) If {xi, ... ,xm}, {yl, ... iYm-il are the roots of Pm(z) and Pm-1(z) we 
have: 

-2 <xi <Yi <x2 <Y2 < •·· <Xm-1 <Ym-1 <Xm < 2 

Proof. a) Let us show that if z ~ 2, Pm(z) > Pm-1(z). This is true for 
m= 1: 

Pl (z) = z ~ 2 > 1 = Po(z) 

Ifm > 1: 
Pm(z) - Pm-1(z) = (z - l)Pm-1 - Pm-2 > 0 

(using z - 1 ~ 1 and induction). 
b) If follows from (4) in Proposition (1.2) that z = 0 is a root of P2n+l, 

n ~ 0. Hence to show that the real roots ofpm(z) are intercalated with those 
of Pm-1(z) it is enought ((5) in Proposition (1.2)) to show thatp2n+1 andp2n 
haven different positive roots, say {zi, ... ,zn} and {yi, ... ,Yn} respectively, 
such that 

0 < YI < X1 < Y2 < · · · < Yi < Xi < Yi+l < · · · < Yn-1 < Xn-1 < Yn < 2 
0 < Yl < z1 < Y2 < • • • < Yi < Zi < Yi+ 1 < • • • < Yn-1 < Zn-1 < Yn < Zn < 2 

where {x1, ... ,Xn-1} are the roots ofp2n-1(z). 
Let us prove this by induction on n. This is clear for n = 0. Let 

{x1, ... ,Xn-il be the (n-1) positive real roots ofp2n-1 given by the induction 
hypothesis. 

From Proposition (1.2)(4) we have 

P2n-1(0) = 0,p2n(0) = (-lr, P2n-2(0) = (-1r- 1 

By the induction hypothesis, P2n-2(z) has a root between 0 and xi, there
fore the sign ofp2n-2(x1) is (-lt. Thereforep2n(x1) = XJP2n-1(x1) -
P2n-2(x1) = -P2n-1(x1) = -(-lta, where a> 0. Sincep2n(0) = (-lt, 
we conclude that there exists 0 < Yl < xi such thatp2n(y1) = 0. 

Similarly, for 1 < i < n - l,p2n(xi-1) = -P2n-2(xi-1) = (-lt+i-lai-li 
ai-1 > 0 

P2n(xi) = -P2n-2(xi) = (-1r+iai, ai > 0 

because of the induction hypothesis applied to Pn-2, as before. Therefore 
there existsyi, Xi-1 < Yi < Xi, such thatp2,n(yi) = 0, 1 < i < n - 1. 

Finally, P2n (xn-1) = ( -1 )2n-lan- l, an-1 > 0. 

P2n(2) > 0 



244 HILDEN, LOZANO AND MONTESINOS-AMILIBIA 

Therefore, there existsyn between Xn-1 and 2 such thatp2n6'n) = 0. 
The proof for P2n+ 1 is similar. D 

Polynomials Pm ( z) are characterized by 

{ 
P (z) = sin(~+l)0 

m sm0 
z = 2cos0, 

see[S]. Hence the roots ofpm(z) = 0 are 

k1r 
xk=2cos--

1
, k=l,2, ... ,m. 

m+ 

From this Proposition (l.3)(b) can also be obtained. 

Definition (1.4). Given two arbitrary polynomials Q1(z), Q2(z), we define 
the family of polynomials 

It is easy to check that 

fm Zfm-1 -fm-2 

fo Q1 

fi zQ1 + Q2 

We are interested in some particular cases of F(Q1, Q2), namely 

T F(l,-1) = {tm = Pm -Pm-llPi E P} 
S F(-l, 3 - z) = {sm =-Pm+ (3- z)Pm-llPi E P} 

n F(l, 3 - 2z) ={rm= Pm+ (3- 2z)Pm-llPi E P} 
U F(-l, 2z -y) ={um= -Pm+ (2z -Y)Pm-llPi E P,y E JR} 

V F(l,z -y) ={um= Pm+ (z -Y)Pm-llPi E P,y E JR} 
g F(-2, l) ={gm= -2pm + Pm-llPi E P} 

1-l F(l, -2) = {hm = Pm - 2Pm-llPi E P} 

PROPOSITION (1.5). The degree oftm, Sm, rm, Um, Vm,gm and hm in z ism. 
The polynomials tm,Sm, rm,gm and hm have m real roots. Let {x1, ... ,xm}, 
{yl, • • • ,Ym-d, {21, • • • ,zm}, h1, · • •, ,m}, {771, · · ·, 7Jm}, {0-1, ···,am}, {Pl,•••, 
Pm+d, be the ordered roots of Pm, Pm-1, tm, gm, hm, Sm, and rm+l, respec
tively. Then: 

(a) -2 < x1 < 1'1 < z1 < 771 < Yl < x2 < · · · < Xi < 1'i < Zi < 1Ji < Yi < · · · < 
< Ym-1 < Xm < ')'m < Zm < 2 < 1Jm < 3 

(b) -2 < X1 < Pl < Z1 < 0-1 < Yl < X2 < · · · < Xi < Pi < Zi < O"i < Yi < · · · < 
<Ym-1 < Xm <Pm< Zm < O"m < 2 < Pm+l < 3 
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Proof. 
Step 1. -2 < x1 < z1 < Yl < x2 < z2 · · · < Ym-1 < Xm < Zm < 2. 

By Proposition (1.3), tm(z) = Pm(z) - Pm-1(z) > 0, if z ~ 2. 
By Proposition (1.2) and (1.3), 

P2n(z) = P2n(-z) > Po(-z) = 1, if z::; -2; 

-P2n+1(z) = P2n+1(z) > Po(-z) = 1, if z::; -2. 

Therefore, for z ::; -2, tm(z) = Pm(z) - Pm-1(z) f= 0. Thus, the real roots of 
tm(z) belong to (-2, 2). 

Now, tm(2) > 0, tm(Xm) = Pm(Xm) - Pm-1(xm) = -Pm-1(xm) < 0, because 
Ym-1 < Xm < 2 and Pm-1 CYm-1) = 0, Pm-1 (2) > 0 and Ym-1 is the "last" 
root of Pm-1· Therefore, there existzm betweenxm and 2 such that tm(zm) = 
0 :Xm <Zm < 2. 

Also, tm(xi) 

tm(Yi) 

Pm(Xi) - Pm-1(xi) = -Pm-1(xi) = -(-1r+i-lai 

= PmCYd-Pm-lCYi) =PmCYi) = (-1r+i-lbi 

where ai, bi > 0, implies that there exists zi E (xi,yi) such that tm(zi) = 0, 
for i = I, 2, ... , m - 1. 

Step 2. -2 < 21 < 171 < Yl < z2 < · · · < Ym-1 < Zm <.2 < 17m < 3. 

In fact, for z ~ 3, hm(z) = Pm(z) - 2Pm-1(z) = ZPm-1(z) - Pm-2(z) -
2Pm-1(z) = (z - 2)Pm-1(z) - Pm-2(z) > Pm-1(z) - Pm-2(z) > 0. For z ::; 
-2, h2n(z) = p2n,(z) + 2P2n-1(-z) > 0, because p2n,(z) ·= P2n(-z) > 0, and 
-P2n-1(z) = P2n-1(-z) > 0; and h2n+1(z) = -P2n+1(-z) - 2p2n(z) < 0. 
Thus, the real roots of hm belong to (-2, 3). 

Now, hm(z) = Pm(z) - 2Pm-1(z) = Pm(z) - Pm-1(z) - Pm-1(z) = tm(z) -
Pm-1(z). 

Then, for i = I, 2, ... , m - 1, we have 

hm(Yi) = tm(yi) = (-tr+i-lai, ai > 0 
hm(zi) = -Pm-1(zi) = -(-tr+i-lbi, bi > 0. 

Therefore, there exists 17i E (zi ,Yi) such that hm( 17i) = 0. 
Also, hm(2) = Pm(2) - 2pm-1(2) = 2Pm-1(2) - Pm-2(2) - 2Pm-1(2) = 

-Pm-2(2) < 0; and hm(3) = Pm(3) - 2Pm-1(3) = 3Pm-1(3) - Pm-2(3) -
2pm...,.1 (3) = Pm-1 (3) - Pm-2(3) > 0, implies that there exists 17m E (2, 3) 
such that hm(1Jm) = 0. 

Step 3. -2 < x1 < ,1 < z1 < 171 < Y1 < x2 < · · · < xi < 'Yi < zi < 17i < Yi < 
· · · < Ym-1 < Xm < 'Ym < Zm < 2 < 17m < 3. 

Notethatgm = -2pm +Pm-1 = -(pm -Pm-1)-Pm = -tm -Pm• 
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Then, for i = 1, 2, ... , m, we have 

gm(xi) = -tm(xi) = (-lr+i-lai, ai > 0 
gm(zi) = -Pm(zi) = -(-1r+i-lbi, bi> 0 

Therefore, there exists ,i E (xi,zi) such that gm('Yi) = 0. Thus a) is proved. 

Step 4. -2 < z1 < 0-1 < Yl < z2 < · · · < Ym-l < Zm < O"m < 2. 

In fact, for z 2: 2, sm(z) = -pm(z) + (3- z)Pm-1(z) ~ -pm(z) + Pm-1(z) < 
0. For z ~ -2, s2n(z) = -P2n(z) + (3 - z)P2n-1(z) < 0, because P2n(z) = 
P2n(-z) > 0, (3-z) > 0, andP2n-1(z) = -P2n- 1(-z) < 0; s2n+1(z) = 
-P2n+1(z) + (3 - z)p2n(z) > 0. Thus, the real roots of Sm belong to (-2,2). 

Now, Sm(2) < 0, Sm(Zm) = -tm(Zm) + (2 - Zm)Pm-1(zm) = (2 -
Zm)Pm-1(zm) > 0, because Zm < 2, Pm-1(zm) > 0. Hence, there exist 
um E (zm, 2) such that sm(o-m) = 0. 

Also, for i = 1,2, ... ,m - 1, we have 

Sm(yi) = -pm(yi) = (-lr+i-lai, lli > 0 
Sm(zi) = (2-zi)Pm-1(zi) = (2-zi)(-1r+i-lbi, bi> 0 

Therefore, there exists o-i E (zi,yi) such that sm(o-i) = 0. 

Step 5. -2 < X1 < Pl < z1 < 0-1 < Yl < X2 < · · · < Xi < Pi < Zi < D"i < Yi < 
· · · < Ym-l < Xm <Pm< Zm < O"m < 2 < Pm+l < 3. 

Note that rm+l = Pm+l + (3 - 2z)Pm = (3 - z)pm - Pm-l· For z 2: 3, 
rm+1(z) = (3 - z)pm(z) - Pm-1(z) ~ _:Pm-1(z) < 0. For z ~ -2, r2n+1(z) = 
(3 - z)p2n(z) - P2n-1(z) = (3 - z)P2n(-z) + P2n-1(-z) > 0; r2n(z) = (3 -
z)P2n-1(z) - P2n-2(z) = (z - 3)P2n-1(-z) - P2n-2(-z) < 0. Thus, the real 
roots of rm+ 1 belong to ( - 2, 3). 

Now, for i = 1, ... , m, we have 

rm+l(yi) 
rm+1(zi) 

2-Zi > 0. 

(3-yi)Pm(yi) = (-1r+iai, ai > 0 

(3 - zi)pm(zi) - Pm-1(zi) = (2 - zi)Pm(zi) 

(2-zi)(-lr+i-lbi, bi> O; 

Hence, there exists Pi E (yi,zi), i = 1, ... ,m, such that rm+l(Pi) = 0. 
Also rm+1(3) < 0, rm+1(2) = Pm(2)-Pm-1(2) > 0, implies the existence of 

Pm+l E (2, 3) such that rm+l(Pm+l) = 0. • 
Remark. A different approach to prove the above Proposition is to compute 

the actual roots of the polynomials involved. For instance one has 

tm(z) = sin(m + ~)0 - sinm0 = 2sin(m + 1/2)0 cos(0/2) 
sm0 sm0 
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2. The character variety of representations of [p/3] into PSL(2, q 
In [HLM1;§2] the character varieties of representations of [p/q] into 

SL(2, q and PSL(2, q are defined. We recall here the notation and defi-
nitions. · 

The group [p/q] of the 2-bridge linkp/q (p, q relatively prime, q odd) has 
the following presentation (see [BZ], for instance): 

[p/q] = la, b : rl 

where r = wbw- 1a- 1, w = betae2be3 ... aeP- 1, if pis odd (knot), and r = 
waw- 1a- 1, w = betae2be3 ... beP-1, ifp is even (two component link), and in 
both cases €i is the sign (plus of minus 1) ofiq reduced mod 2p in the interval 
(-p,p). 

For a representation p : fp / q] ----+ SL(2, q define t(p) : [p / q] -+ C by 
t(p)(g) = t(p(g)). For each elementg E G the correspondence 

p I--+ t(p)g 

defines a function tg from the set R of conjugacy classes of representations 
of [p/q] into SL(2, q to C. This function, can be expressed as a polynomial 
with integer coefficients in the three variablesy1 = ta,Y2 = tb, z = tab· In the 
case that [p/q] is a knot, the generators a and bare conjugate, thus ta = tb 
and it is enough to consider the two variables y = Yl = Y2, z. 

Let i : R--+ C3 be the map i(p) = (y 1(p),Y2(P),z(p)). The image S([p/q]) 
by i of the set ofnon-abelian representations is called the surface of represen
tations of [p/q] into SL(2, q. 

Let R1 be the set of conjugacy classes of representations of [p/q] into 
SL(2, CC), sm;h that ta= tb. Note that R1 = R in the case of a knot. 

Let i: R1 ~ C2 be the map i(p) = (y(p),z(p)). The image C([p/g]) by i of 
the set of non-abelian representations is called the curve of representations 
of [p/q] into SL(2, CJ- · · 

Let) : RP --+ C be the' map on the set RP of conjugacy of representa
tions of [p /q] into PSL(2, q such that ta = tb, given by j(p) = (x(p), z(p) ), 
were x(p) := ta2. The image C([p /q]) by j of the set of non-abelian represen
tations is called the curve of representations of [p/q] into PSL(2, q. 

Remark (2.1) on S([p/q]), C([p/q]) and C([p/q]). 
(1) The character varieties of representations i(R) (and i(R 1) in the case 

of a knot) are algebraic varieties defined by the polynomials 

tr = 2, tra = ta, trb = tb (See [GM]). 

(2) If [p/q] is a knot, the polynomial tra = ta is twbw-I = ta, which implies 
that tb = ta, as we already know. If [p/q] is a two component link, the poly
nomial tra = ta is twaw-I = ta, Thus, i(R) is the subset of C3 given by the 
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points (ta, tb, tab) and which are zeroes of the polynomials tr= 2, trb = tb in 
the variables ta, tb, tab. Similarly i(R 1) is the subset of C2 given by the pairs 
(ta, tab) which are zeroes of the polynomials tr = 2, trb = tb in the variables 
ta, tab, andj(RP) is the subset of C2 given by the pairs (ta2, tab) which are 
zeroes of the polynomials tr= 2, trb = tb in the variables ta2, tab· 

(3) We remark that if p : [p/q] ---+ SL(2, q is a representation such that 
p( a) = A, p(b) = B, so is its conjugate p( a) = .A, p(b) = B. Therefore if 
(y1,Y2,z) E S([p/q]), so does (y1,y2,z): the equations of S([p/q]) have real 
coefficients. Therefore the equations of C([p/q]) and C([p/q]) also have real 
coefficients. 

(4) The points of the character variety ofrepresentations which correspond 
to the reducible representations are obtained as follows. Assume p : G ---+ 
SL(2, (C) is reducible. Then [CS], t(ABA - l n- 1) = 2 where A = p( a), B = 
p(b). Therefore the reducible representation (y1,Y2,z) E i(R) correspond to 
points satisfying 

D(y1,Y2,z) = 0 

where D(y1,y2,z) = z2 -ZY1Y2 + Y! + y~ - 4. 
Ify1 = Y2 = y, the above polynomial factors as follows 

(z - 2)(z - y 2 + 2) = 0 

We have let x = t(A 2) = y 2 - 2. Therefore the reducible representations 
(x,z) Ej(RP) correspond to points satisfying 

(z-2)(z-x)=0 

The points (x,z) for which x = z correspond to the representations p(a) = 
p(b) = A any arbitrary matrix, because z = t(AB) = t(A 2) = t(A) 2 - 2 = 
x in this case. Thereforej(RP) always contains the irreducible component 
corresponding to the equation x = z. In [HLMl] we showed (Proposition 1. 7) . 
that the image under i (or j) of the set of classes of abelian representations 
coincides with the image of the set of classes _!?f reducible representations. 
Therefore to obtain the equations of S([p/q]), C([p/q]) and C([p/q]) we only 
have to delete the algebraic component D = 0. 

(5) If (x,z) E C([p/q]) and x = ta2 = -2, this corresponds to representa-
tions p: G---+ SL(2, q such that{(a) = A satisfiesA 2 -t(A)A+l = 0, hence 
t(A 2) - t(A) 2 + 2 = 0, hence t(A) = 0, hence t(A) = 0. Up to conjugation A 
equals 

[ i o l A= 0 -i 

and therefore B2 = -1 also. Then p induce a homomorphism 
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The group ([p/q]) = la,b: R,a 2
1 is the group of the orbifold (p/q,2) with 

underlying space S 3, singular set p / q and isotropy cyclic of order 2. This has 
universal cover S 3• Therefore ([p/q]) is finite (dihedral of order 2p, as a mat
ter of fact). As a consequence p([p/q]) is finite. Therefore p(fp /q]) is finite. 
Hence the image p(fp/q]) is composed of elliptic elements. Therefore the set 
of traces of the elements of p(fp/q]) is real. In particular t(AB) = z is real, for 
every such p. We conclude that the line x = -2 cuts C ( fp / q]) in points ( -2, z) 
whose second coordinate z is always real. (Compare [Bu].) 

THEOREM (2.2). Let fp/3] be the group of the link p/3 (p even). Then the 
algebraic variety S(fp/3]) is defined by the equation q((Y1,Y2,z)) = 0, where 

(2.l) q = { Vm(Z,Y1Y2) + D(y1,y2,z)fpm-.1(z)]7m(z); if p = 6m + 2 
Um(Z,Y1Y2) +D(y1,Y2,z)fpm-1(z)] Pm-2(z); if p = 6m - 2 

and where D(y1,Y2,z) = z 2 - ZYlY2 +YI+ Yi- 4. 

Proof. The two polynomials tr-2 = 0, trb-tb = 0 definingS(fp/q]) reduce 
to 

(2.2) { 
Pl= t:w + t: + t~ - tawtwta - 4 = 0 
P2 = tawtabw - tawtbwta + tbwtw + t:tb - tatab - 2tb = 0 

In fact, tr= twaw-la-1 = twatw-la-1 - twaaw and twaaw = taaww = taawtw -
taa which yields pl; and similarly for P2. 

In the calculations that follow we will find thatp1,p2 above have the form 

(2.3) { 
Pl= D(y1,Y2,z)[q(y1,Y2,z)] 2 

P2 = D(y1,y2,z) · q2(y1,Y2,z) · q(y1,Y2,z) 

Therefore S(fp/q]) is the union of D(y1,Y2,z) = 0 and q(y1,Y2,z) = 0. The 
component D = 0 corresponds to the abelian representations. Therefore we 
are interested in the other component, given by the equation q(y 1,y2,z) = 0. 

Use the following notation 

Em,n 

Gm,n 

Fm,n 

t(ba)m(bar' E1,1 = D + 2. 

tb(bar(ba)m 

ta(ab)n(abr 

The following Lemma follows easily by induction: 

LEMMA (2.3). We have: 

(1) Em,O = Eo,m = ZPm-1(z) - 2Pm-2; m ~ 1 
E1,o = Eo,1 = z 

(2) Em,l = E1,m = (D + 2)Pm-1(z)-ZPm-2; m ~ 1 
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(3) Em,n = Em,lPn-1 (z) - Em,oPn-2; m, n ~ 1 

(4) Gm,O = G1,0Pm-1(z) - Go,oPm-2(z); m ~ 1 
Go,o =Y2, G1,o = 2Y2 -yi, Go,1 =Y1 

(5) Gm,1 = G1,1Pm-1(z) -Y1Pm-2(z); m ~ 1 

(6) Gm,n = Gm,1Pn-1(z)- Gm,oPn-2; m,n ~ 1 

(7) Fm,O = F1,oPm-1(z) -Fo,oPm-2(z); m ~ 1 
Fo,o = Y1, F1,o = zy1 -y2, Fo,1 =Y2 

(8) Fm,l = F1,1Pm-1(z) -Y2Pm-2(z); m ~ 1 

(9) Fm,n = Fm,1Pn-1(z) -Fm,oPn-2; m,n ~ 1 D 

Since pis an even number prime to 3 two cases are, in fact, possible p = 
6m + 2 or p = 6m - 2. We study these two cases separately. 

Case 1. p = 6m + 2. In this case w = (bar(barb(abr gives 
tw =EmmGom-Gm2m 
taw = G~ oFdm O -E~m+l O 
tbw = Gm:m Go,:n + E2m,m '_ Gm,2mY2 
tahw = Em,mGo,m+l - Gm,2m+l 

Replacing these values in (2.2), using Lemma (2.3), and (1.2)(3), we obtain 
the two equations (2.3) defining S([p/3]), where 

q(y1,Y2, z) = Vm(z) + D(y1 ,Y2, z)[pm-1(z)] 2Pm(z) 

Case 2. p = 6m - 2. Here w = b(abr- 1a(bar- 1b. Hence 
tw = (Gm-1 oFm-1 o -Eo 2m-1)Gm-l O - Fm-1 O 
taw = Gm-1,oY2 -Em 2m-'1 ' , 
tbw = twY2 ~ G2m-2,0Fm-l,O + Eo,3m-2 
tahw = (Gm-1,oFm-l,O -Eo,2m-1)Gm,O -Fm,O 

Computing as before one obtains 

q(y1,y2,z) = Um(z) +D(y1,y2,z)[pm-1(z)] 2Pm-2(z) • 

COROLLARY (2.4). Let [p/3] be the group of the link p/3 ( p even). Then the 
algebraic variety C([p/3]) is defined by the equation q((X,z)) = 0, where 

(2.4) { hm(z) - X[tm(z)] 2Pm-1(z); if p = 6m + 2 
q = gm-1(z)-X[tm-1(z)J2Pm-1(z); if p = 6m - 2 

and where X = y2 - z - 2. 

Proof. The result follows from (2.1), when Yl = Y2 = y. In this case D = 
(y2 - 2 - z)(2 - z) Call x = y2 - 2 - z. Then 
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Case 1. p = 6m + 2. 
q(y,z) = Vm(z) + D(y,zHPm-1(z)] 2Pm(z) = Vm(z) + (y2 - 2 - z)(2 -
z)[pm-1(z)] 2Pm(z). 
Using the definition ofvm and substitutingy 2 by X + z + 2, we get 
q(X,z) = Pm - (X + 2)Pm-1 + X(2 - z)p!-1Pm = Pm - 4l'm-1 + 
AFm-1((2 - Z)Pm-lPm - 1) = 
hm +AFm-1 (2Pm-1Pm -ZFm-lPm -1) = hm +AFm-1 (~m-lPm -p!_ 1-

p~) = hm -AFm-l(pm -Pm-1) 2 = hm -AFm-lt~ 

Case 2. p = 6m - 2. 
q(y,z) = Um(z) + D(y,z)fPm-1(z)] 2Pm-2(z) = Um(z) + (y2 - 2 - z)(2 -
z)[pm-1(z)] 2Pm-2(z). 
Using the definition of Um and substituting y 2 by X + z + 2, we get 
q(X,z) =-Pm+ (z -X - 2)Pm-1 +X(2-z)p!-1Pm-2 = 
-Pm+ (z - 2)Pm-1 +AFm-1((2- Z)Pm-lPm-2 - 1) = 
-(ZPm-1-Pm-2)+(z-2)Pm-1 +AFm-1 (~m-1/Jm:._2-ZPm- lPm-2- l) = 
-2Pm-1 + Pm-2 + Xpm-1 (2Pm-1Pm-2 - P!-1 - P!-2) = 
gm, - AFm-1 (pm-1 - Pm-2) 2 = gm - Xpm-1 t!-1 • D 

THEOREM (2.5). Let fp/3] be the group of the knotp/3. Then the algebraic 
variety C([p/3]) is defined by the equation q(X, z) = 0, where 

_ { sm(z) +X[pm-1(z)] 2(z - 2)tm(z); if p = 6m + 1 
(
2

-
5
) q - rm(z) +X[pm-1(z)] 2(-z + 2)tm-1(z); if p = 6m - 1 

and whereX =y 2 -z - 2. 

Proof. If p / q is a knot, the two polynomials tr _;_ 2 = 0, trb - tb = 0 defining 
C(fp/q]) reduce to 

(2.6) { 
P 1 = t:W - tbawtw + tab - 2 = 0 
P2 = taw[tawta - tbaw - tw] = 0 

lnfact,tr = twbw-la-l = twbtw-la-1-twbawandtwbaw = tlxLww = tbawtw-tba 
which yields p 1; and similarly for P2· 

Since p is an odd number primer to 3 two cases are, in fact, possible p = 
6m + 1 or p = 6m - 1. We study these two cases separately. 

Case 1. p = 6m + 1. In this case w = (ba)m(ba)fil(ba)fil gives 
tw = Em,nEo.m - Em,O 
tbaw = Em,m+1Eo,m - Em,l 
taw = Em,mF m,O - F m,O 
Replacing these values in (2.6), using Lemma (2.3), and 1.2(3), and substi-

tuting z + X + 2 for y2, we get the two equations defining C(fp /3]): 

{ 
X •q(X,z) 2 = 0 
X • q1(X,z) • q(X,z) = 0 
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where q(X,z) = sm(z) +X[pm-1(z)]2(z - 2)tm(z) 

Case 2. p = 6m - 1. Here w = (bar- 1b(cibra(bar- 1. Hence 
tw = Em,mEo,m-1 - Em,1 
tbaw = Em,mEo,m - Em,O 
law= Em,mFm-1,0 -Fm-1,0 
Computing as before one obtains 

q(X,z) = rm(z) +X[pm-1(z)] 2(z -2)(-tm-i(z)) • 

COROLLARY (2.6). Let [p/3] be the group of the knot or link p/3. Then the 
algebraic variety of non abelian representations in PSL(2, CC) is always irre
ducible. 

Proof. The algebraic variety of non abelian representations in PSL(2, CC) 
is defined by q(X,z) = 0, where q(X,z) is given in (2.4) and (2.5). Suppose 
q(X,z) = A(z) + B(z)X is the product of two polynomials qa and qb in the 
variables X and z. Necessarily one of then, say qa, has degree one in X and 
the other, qb, has degree zero inX. Then qb(z) is a common factor ofA(z) and 
B(z), i. e., the roots of qb(z) are roots of both A(z) and B(z). But Proposition 
1.5 shows that, in the four possible cases, A(z) and B(z) have no common 
roots. D 

3. The shape of the curve C([p/3]) 

Graphs in this section are depicted, not in C2, hut in JR2. 

Case 1. p = 6m.+2. Here q = hm(z)-X[tm(z)] 2Pm-1(z). Let {y1, ... ,Ym-.d, 
{z1, ... ,zni}, {171, ... , 1Jm} be the roots of Pm-1, tm, hm, respectively. One has 
(Proposition (1.5)): 

-2 < z1 < 171 < Yl < z2 < ... < Ym-1 < Zm < 2 < 1Jm < 3. 

The roots of hm define the intersection of q = 0 with the axis X = 0 . 
The roots of [tm(z)]2Pm-1(z) correspond to the asymptotes of q = 0, as 

follows: z = Zi, (i = 1, ... ,m.) are double asymptotes; z = Yi, (i = 1, ... , m-_ 1) 
are simple asymptotes. 

Moreover, the line L = X + z + 2 = 0 intersects q = 0 in 3m real points (3m 
is the degree of q), because the change of variables x = z + X, transforms L 
in the line x = -2, which interesects q(x,z) = 0 only in real points (Remark 
2.1 (5)). 

Therefore q = 0 looks like Figure 1 in coordinates (X, z). Figure 2 repre
sents q = 0 in coordinatesx = X + z, z = z. 
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z-axis 

(0,z m) 

· ----------------------·cc>;y~J 

(-2,0) 

\ ' \ 

(0,11 1) 
(O,z 1 ) 

X-axis 

-----------------------

,x+z+2=0 
Figure 1 
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21_ - - - - - - - - - -- - - - - - - - - - - - - -~ 
[ _ - - - - - - - - - - - - - - ~- - - - - - - - - - - - - - - - - -, 

. L----l 

0 

-------------- ---------------------

I --t---------------------------
1 

-2 IL...-----!.-----+----,~-+---t----t--
-2 Tl 1 0 ·z 1\nY z 

Figure 2, p=6m+2 

Case 2. p = 6m - 2. Here q = gm-1(z) - X[tm-1(z)J2Pm-1(z). Let 
b1, ... , ,m- i} be the roots of gm-1' which correspond to the intersections 
of q = 0 with the z-axis. 

The asymptotes are given by the roots of [tm-1(z)] 2Pm-1(z). z = xi(i = 
1, ... , m - 1) are simple, and z = zi, (i = 1, ... ,m - 1) are double asymp
totes. Here {x1, ... ,Xm-d and {z1, ... ,Zm-d aretherootsofPm-1 andtm-1 
respectively. We know that (Proposition (1.5)): 

-2 < x1 < ,1 < 2 1 < x2 < · · • < Xm-1 < 1m-l < Zm-1 < 2 

Again, we also know that X + Z + 2 = 0 cuts q = 0 in 3m - 2 real points 
(the degree of q). Thus the curve q = 0 looks like Figure 3 in coordinates 
(X,z). Figure 4 represents q = 0 in coordinatesx = X + z, z = z. 
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z-axis 

(0,2) 
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(~2,0) 
\. \. \ 

I 

I 
I 
~0,0) 

Figure 3 

X-axis 
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0 

-2 _____ ........_ ___ --+----+---+--+--+-----' 

-2 'Y I 0 z 2 

Figure 4, p=6m-2 

Case 3. p = 6m + l. Here q =Sm+ X(z - 2)p!_ 1)tm, Let {y1, ... ,Ym-d, 
{z1, ... ,zm}, {0-1, ... , o-m} be the roots of Pm-1, tm, Sm, respectively. One has 
(Proposition (1.5)): 

-2 < z1 < 0-1 < Yl < z2 < • • • < Ym-1 < Zm < O"m < 2 

The roots of Sm define the intersection of q = 0 with the axis X = 0. 
The roots of (z - 2)p!_ 1tm correspond to the asymptotes of q = 0, as 

follows: z = Yi, (i = 1, ... , m-1) are double asymptotes; z = zi, (i = 1, ... , m) 
and z = 2 are simple asymptotes. 

Moreover, the line L = X + z + 2 = 0 intersects q = 0 in 3m real points (3m 
is the degree of q), because the change of variables x = z + X, transforms L 
in the line x = -2, which interesects q(x, z) = 0 only in real points (Remark 
(2.1) (5)). 

Therefore q = 0 looks like Figure 5 in coordinates (X, z). Figure 6 repre
sents q = 0 in coordinates x = X + z, z = z. 
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\ 

z-axis 

(0.Ym-v 

I 
I 
I 
~0,0) 

I 

I 

X-axis 

~O~z _2} __________________ _ 

O,y I ) - - - - - - - - - - - - - - - - - - -

X+z+2=0 
Figure 5 
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0 

--~--------------------------

-2 -----------+-----+--+---+---+---+-----' 

-2 cr 
1 0 z ~-ly z 9n 2 

Figure 6, p=6m+ 1 

Case 4. p = 6m - l. Here q = rm -X(z - 2)p!_ 1tm-1· Let {p1, ... , Pm} 
be the roots of rm, which correspond to the intersections of q = 0 with the 
Z-axis. 

The asymptotes are given by the roots of (z - 2)p!_ 1 tm-1 · z = 2, and 
z = zi(i = 1, ... ,m - 1) are simple, and z = xi, (i = 1, ... , m - 1) are double 
asymptotes. Here {x1, ... ,Xm-d and {z1, ... ,Zm-d are the roots of Pm-1 
and tm-1 respectively. We know that (Proposition (1.5)): 

-2 < X1 <Pl< Zi < X2 < · · · < Xm-1 < Pm-1 < Zm-1 < 2 < Pm < 3 

Again, we also know that X + Z + 2 = 0 cuts q = 0 in 3m - 1 real points 
(the degree of q). Thus the curve q = 0 looks like Figure 7 in coordinates 
(X,z). Figure 8 represents q = 0 in coordinatesx = X + z, z = z. 
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Figure 7 
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2 

0 

-~-----------------------------

-2 

-2 0 2 

Figure 8, p=6m- l 

Let w be vm, ,m-1, um-1, or Pm-1 in cases 1,2,3, or 4 respectively. Let 0(w) 

be cos- 1(~ n [O, 1r]. Write 0(w) = n~:i), 2:::; n(w):::; oo. Given m >·2 say that 
Tis a conjugate of m if i is an integer such that 1 < i < i and (i, m) = 1. 
Define Lw = {ml each conjugate of mis:::; n(w)}. Propositions 8.2 and 8.3 
of [HLMl] implies that if (p /3, n) is arithmetic, then n E Lw. As the set Lw 
is finite, we can apply an algorithm to find the values n for which (p /3, n) is 
arithmetic, once p is given. In particular we have 

THEOREM (3.1). Let (p /3, n) be the orb if old with singular set p /3 and isotropy 
cyclic of order n > 2. Then, for each p, the set of values n for which (p /3, n) 
is arithmetic is finite. • 
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