CALCULATING THE GENUS OF CERTAIN NILPOTENT GROUPS

By Peter Hilton and Christopher Schuck

1. Introduction

Let N_{0} be the class of finitely generated, but not finite, nilpotent groups N with finite commutator subgroup $[N, N]$. Then for any N in \mathcal{N}_{0} the (Mislin) genus $\mathcal{G}(N)$ (see [M, HM]) has the structure of a finite abelian group. This genus-group was calculated in [CH] in the case that N belongs to a certain subclass N_{1} of N_{0}.

Thus consider the short exact sequence (valid for any nilpotent group N)

$$
\begin{equation*}
T N \gg N \xrightarrow{\pi} F N \tag{1.1}
\end{equation*}
$$

where $T N$ is the torsion subgroup of N, and $F N$ is the torsionfree quotient. Then $N \in \mathcal{N}_{0}$ if and only if $T N$ is finite and $F N$ is free abelian of finite rank. We say that $N \in \mathcal{N}_{1}$ if, additionally,
(a) $T N$ is commutative;
(b) (1.1) splits on the right, so that N is the semidirect product for an action $\omega: F N \rightarrow$ Aut $T N$, of $F N$ on $T N$;
(c) the action ω satisfies $\omega(F N) \subseteq Z($ Aut $T N)$, where Z is the center.

Note that, in the presence of (a), (c) is equivalent to the condition that, for each $\xi \in F N$, there exists an integer u, such that $\xi . a=u a$ for all $a \in T N$ (written additively).

Now let t be the height of $\operatorname{ker} \omega$ in $F N$; here the height of a (non-trivial) subgroup R of a free abelian group F is the largest positive integer h such that $R \subseteq h F$. Then the authors prove in [CH]

THEOREM (1.1). $\mathcal{G}(N) \cong(Z / t)^{*} /\{ \pm 1\}$ if $N \in \mathcal{N}_{1}$.
Let N^{k} be the $k^{\text {th }}$ direct power of $N, k \geq 2$. There is then a surjective homomorphism

$$
\rho: \mathcal{G}(N) \rightarrow \mathcal{G}\left(N^{k}\right)
$$

given by $\rho(M)=M \times N^{k-1}$ and the authors also prove in [CH]
THEOREM (1.2). Let TN be a cyclic p-group, for some prime p, and let FN be cyclic. Then ρ is an isomorphism.

Our object in this paper is to calculate $\mathcal{G}\left(N^{k}\right)$ for any $N \in \mathcal{N}_{1}$ and any $k \geq 2$. We know, by the principal result of [HS], that $\mathcal{G}(N)=0$ if $F N$ is not cyclic, so that $\mathcal{G}\left(N^{k}\right)=0$ under the same hypothesis, so that we may assume $F N$ cyclic. To state our result, let

$$
\begin{equation*}
\exp T N=n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{\lambda}^{m_{\lambda}}, p_{1}<p_{2}<\cdots<p_{\lambda}, m_{i} \geq 1 \tag{1.2}
\end{equation*}
$$

We say n is of Type 1 if $p_{1}=2, m_{1}=1$; otherwise it is of Type 2 . It is known that t must have the form

$$
\begin{equation*}
t=p_{1}^{l_{1}} p_{2}^{l_{2}} \cdots p_{\lambda}^{l_{\lambda}}, 0 \leq l_{i}<m_{i}, i=1,2, \ldots, \lambda \tag{1.3}
\end{equation*}
$$

Now we may ignore the case that n is of Type 1 with $\lambda=1$ since then $t=1$ and $\mathcal{G}(N)=\mathcal{G}\left(N^{k}\right)=0$. Thus the following theorem constitutes a complete statement of our result, generalizing Theorem 1.2; but note that we place no restriction on the structure of the finite abelian group $T N$. In stating our theorem, we identify $\mathcal{G}(N)$ with $(Z / t)^{*} /\{ \pm 1\}$, according to Theorem 1.1. We repeat that, to avoid triviality, we assume $F N$ cyclic.

THEOREM (1.3). For any $k \geq 2$, we obtain $\mathcal{G}\left(N^{k}\right)$ from $\mathcal{G}(N)$ by factoring out those residues m mod t such that (see (1.3))

$$
\begin{equation*}
m \equiv \varepsilon_{i} \bmod p_{i}^{l_{i}}, \varepsilon_{i}= \pm 1, i=1,2, \ldots, \lambda \tag{1.4}
\end{equation*}
$$

Thus $\mathcal{G}\left(N^{k}\right)=\mathcal{G}(N) / H$, where H is an elementary abelian 2-group, and

$$
\text { rank } H= \begin{cases}\lambda-2, & \text { if } n \text { is of Type } 1 ; \\ \lambda-1, & \text { if } n \text { is of Type } 2 .\end{cases}
$$

It is not difficult to prove that if $N \in \mathcal{N}_{1}$ and $k \geq 2$, then $N^{k} \in \mathcal{N}_{1}$ if and only if N is abelian. The condition which fails is, of course, condition (c). Thus we see how vital condition (c) is to the validity of Theorem 1.1; for clearly $t\left(N^{k}\right)=t(N)$.

In Section 2, we establish, or recall, some preliminary results; and in Section 3 we prove Theorem 1.3. In Section 4 we give a typical, illustrative example. The content of this paper forms part of the Ph.D. dissertation of the second-named author at the State University of New York at Binghamton, written under the direction of the first-named author.

2. Preliminaries

The key sequence for calculating $\mathcal{G}(N)$, for any $N \in \mathcal{N}_{0}$, is (see [HM])

$$
\begin{equation*}
T \text {-Aut } N \xrightarrow{\theta}(Z / e)^{*} /\{ \pm 1\} \longrightarrow \mathcal{G}(N) . \tag{2.1}
\end{equation*}
$$

Here T is the set of prime divisors of $n=\exp T N$, and a T-automorphism φ : $N \rightarrow N$ is an endomorphism such that, localizing at T, φ_{T} is an automorphism of N_{T}. We refer to [CH] for the definition of e, since it plays a minor role in our argument, but we will explain how θ acts. If $d=\exp T Z N$, then $d Z N$ is a free abelian group which is called the free center of N. It is shown in [M, HM] that any T-automorphism φ sends $F Z N$ to itself, so we may associate with φ the integer $\operatorname{det} \varphi \mid F Z N$. Then $\theta(\varphi)$ is the residue class, modulo ± 1, of this integer. We are now ready for our first lemma, valid for any N in \mathcal{N}_{0}.

LEMMA (2.1). Let $\varphi: N \rightarrow N$ be an endomorphism. Then φ induces ψ : $F N \rightarrow F N$ (see (1.1)). Moreover, if $\varphi(F Z N) \subseteq F Z N$, then $\operatorname{det}(\varphi \mid F Z N)=\operatorname{det} \psi$.

Proof. A famous theorem of I. Schur asserts that, if N is a group such that $N / Z N$ is finite, then $[N, N]$ is finite. It is not difficult to prove that the converse holds if N is finitely generated, nilpotent. Thus if $N \in \mathcal{N}_{0}$ then $N / Z N$
is finite, and hence $N / F Z N$ is finite. It follows that $\pi: N \longrightarrow F N$ maps $F Z N$ onto a subgroup $\pi(F Z N)$ of $F N$ of maximal rank. Thus

$$
\operatorname{det}(\varphi \mid F Z N)=\operatorname{det}(\psi \mid \pi(F Z N))=\operatorname{det}(\psi \mid \pi(F Z N) \otimes \mathcal{Q})=\operatorname{det}(\psi \otimes \mathcal{Q})=\operatorname{det} \psi
$$

-

Now (2.1) may be embedded in the commutative diagram

(see (4.1) of [CH]), where $\sigma(\varphi)=\varphi \times \mathrm{Id}$, Id being the identity on N^{k-1}. (It is easy to see that T and e remain unchanged when one passes from N to N^{k}). We claim then that it follows from (2.2) that Theorem 1.3 will be proved when we have established the following proposition.

Proposition (2.2). Let $N \in \mathcal{N}_{1}$ and let us adopt the notation and data of Section 1. Then, in (2.2), $\operatorname{Im} \bar{\theta}$ consists of those residue classes [m], modulo ± 1, such that

$$
\begin{equation*}
m \equiv \varepsilon_{i} \bmod p_{i}^{l_{i}}, \varepsilon_{i}= \pm 1, i=1,2, \ldots, \lambda \tag{2.3}
\end{equation*}
$$

This was, of course, precisely the approach taken in [CH] to prove Theorem 1.2. In that special case, however, no problem of realizability arose. Once it was shown that any $[m]$ in $\operatorname{Im} \bar{\theta}$ satisfied $m \equiv \pm 1 \mathrm{mod} t$, Theorem 1.2 followed immediately. Here we must also show that all m given by (2.3) can be realized by some T-automorphism of N^{k}.

We come now to our final set of preliminary observations before proceeding to the proof of Theorem 1.3. Let $M \in \mathcal{N}_{0}$ satisfy the supplementary conditions (a), (b) defining the subclass \mathcal{N}_{1}, but not necessarily (c); we will be applying our forthcoming remarks to the case $M=N^{k}$. Let T be defined as before. If φ is an endomorphism of M, then φ induces a commutative diagram

LEMMA (2.3). φ is a T-automorphism if, and only if, α is an automorphism and ψ is a T-automorphism.

Proof. It follows from the standard properties of localization that φ is a T automorphism if and only if α and ψ are T-automorphisms; but, since $T M$ is itself T-local, α is a T-automorphism if and only if it is an automorphism.

LEMMA (2.4.) (i) $\alpha(\xi \cdot a)=\psi \xi \cdot \alpha a$
(ii) Suppose, conversely, that a diagram

is given such that $\alpha(\xi . a)=\psi \xi . \alpha a$. Then we may find $\varphi: M \rightarrow M$ making a commutative diagram (2.4).

Proof. This argument was given in [H]; note that conclusion (i) requires that $T M$ be commutative, but conclusion (ii) does not. Of course, it is crucial that M be a semidirect product.

3. Proof of Theorem 1.3

Let $\varphi: N^{k} \rightarrow N^{k}$ be a T-automorphism. Then (see (2.4) and Lemma 2.3) φ gives rise to the commutative diagram

where ψ is a T-automorphism, so that $\operatorname{det} \psi$ is prime to T. Note that, by Lemma 2.1, $\operatorname{det} \psi=\bar{\theta}(\varphi)$ in (2.2). Let $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{\lambda}^{m_{\lambda}}, t=p_{1}^{l_{1}} p_{2}^{l_{2}} \cdots p_{\lambda}^{l_{\lambda}}$ as in (1.2), (1.3). Let p be a typical prime occurring in the prime factorization of t with exponent ${ }^{1} l$, and let $T N_{p}=\left\langle a_{1}, a_{2}, \ldots, a_{r}\right\rangle=\oplus_{i=1}^{r} Z / p^{d_{i}}$, with $m=d_{1} \geq$ $d_{2} \geq \cdots \geq d_{r}$. Now if $F N=\langle\xi\rangle$, then $\xi \cdot a=u a, a \in T N_{p}$, where u is of order $p^{l} \bmod p^{m}$. Write, in an obvious notation,

$$
\left.\begin{array}{ll}
T N_{p}^{k}=\left\langle a_{i(s)}\right\rangle, & i=1,2, \ldots, r ; s=1,2, \ldots, k \tag{3.2}\\
F N^{k}=\left\langle\xi_{(s)}\right\rangle, & s=1,2, \ldots, k .
\end{array}\right\}
$$

Let

$$
\begin{equation*}
\alpha a_{i(s)}=\sum \alpha_{i(s) j(v)} a_{j(v)}, \psi \xi_{(s)}=\sum \beta_{s f} \xi_{(f)} \tag{3.3}
\end{equation*}
$$

We now exploit the key relationship (Lemma 2.4(i)),

$$
\begin{equation*}
\alpha\left(\xi_{(w)} \cdot a_{i(s)}\right)=\psi \xi_{(w)} \cdot \alpha a_{i(s)} . \tag{3.4}
\end{equation*}
$$

First, set $w=s$. Then $u \sum \alpha_{i(s) j(v)} a_{j(v)}=\Pi \xi_{(f)}^{\beta_{\text {ef }}} \sum \alpha_{i(s) j(v)} a_{j(v)}$ $=\sum u^{\beta \cdot v} \alpha_{i(s) j(v)} a_{j(v)}$. We conclude that

$$
\begin{equation*}
\text { if } p \nmid \alpha_{i(s) 1(v)}, \text { then } \beta_{s v} \equiv 1 \bmod p^{l} \tag{3.5}
\end{equation*}
$$

[^0]Now let $w \neq s$. Then $\sum \alpha_{i(s) j(v)} a_{j(v)}=\Pi \xi_{(f)}^{\beta_{w f}} \sum \alpha_{i(s) j(v)} a_{j(v)}$
$=\sum u^{\beta_{w v}} \alpha_{i(s) j(v)} a_{j(v)}$. We conclude that

$$
\begin{equation*}
\text { if } p \not \backslash \alpha_{i(s) 1(v)} \text {, and } w \neq s, \text { then } \beta_{w v} \equiv 0 \bmod p^{l} \tag{3.6}
\end{equation*}
$$

Fix v. Then $\exists i(s)$ such that $p \nmid \alpha_{i(s) 1(v)}$, since α is an automorphism. With s chosen from such an $i(s), \beta_{s v} \equiv 1 \bmod p^{l}, \beta_{w v} \equiv 0 \bmod p^{l}, w \neq s$, by (3.5), (3.6). Thus the matrix of ψ, reduced $\bmod p^{l}$, reads

$$
\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

in each column. Now ψ is a T-automorphism, so that $p \nmid \operatorname{det} \psi$. Thus $\operatorname{det} \psi \not \equiv$ $0 \bmod \boldsymbol{p}^{l}$. This implies that, in the matrix of ψ, reduced $\bmod \boldsymbol{p}^{l}$, the non-zero entries occupy different rows. Thus $\operatorname{det} \psi \equiv \pm 1 \bmod p^{l}$. Thus

$$
\bar{\theta}(\varphi) \equiv \pm 1 \bmod p_{i}^{l_{i}}
$$

for all primes p_{i} in the factorization of t as $\prod p_{i}^{l_{i}}$. This shows that Proposition 2.2 holds in one direction.

We now move to the converse. We consider a residue $m \bmod t$ such that

$$
\begin{equation*}
m \equiv \varepsilon_{i} \bmod p_{i}^{l_{i}}, i=1,2, \ldots, \lambda, \text { where } \varepsilon_{i}= \pm 1 \tag{3.7}
\end{equation*}
$$

and we show the existence of a T-automorphism $\varphi: N^{k} \rightarrow N^{k}$ inducing ψ : $F N^{k} \rightarrow F N^{k}$ with $\operatorname{det} \psi=m$. Once again we fix a particular p among the prime factors of n and we describe α and ψ explicitly; actually, we determine α completely, but are content to determine the matrix of $\psi \bmod t$; once again, any prime p for which the exponent l in (1.3) is 0 plays essentially no role. We write ε_{p} for ε_{i} in (3.7), if $p=p_{i}$. Then if $\varepsilon_{p}=1, \alpha\left(a_{i(s)}\right)=a_{i(s)}$, all $i(s)$; while, if $\varepsilon_{p}=-1, \alpha\left(a_{i(1)}\right)=a_{i(2)}, \alpha\left(a_{i(2)}\right)=a_{i(1)}, \alpha\left(a_{i(s)}\right)=a_{i(s)}, s \geq 3$. Plainly α is an automorphism. We subject the matrix $\left(\beta_{s f}\right)$ of $\psi, 1 \leq s, f \leq k$, to the conditions

$$
\left\{\begin{array}{l}
\beta_{11}=\beta_{22} \equiv 1 \bmod p^{l} ; \beta_{12}=\beta_{21} \equiv 0 \bmod p^{l} ; \tag{3.8}\\
\beta_{s s}=1, s \geq 3 ; \beta_{s f}=0, \text { otherwise if } \varepsilon_{p}=1 \\
\beta_{11}=\beta_{22} \equiv 0 \bmod p^{l} ; \beta_{12}=\beta_{21} \equiv 1 \bmod p^{l} ; \\
\beta_{s s}=1, s \geq 3 ; \beta_{s f}=0, \text { otherwise if } \varepsilon_{p}=-1
\end{array}\right.
$$

It is clear from the Chinese Remainder Theorem that these conditions can be satisfied simultaneously for all p entering the factorization of t and that the matrix of ψ is determined mod t. It is also plain from (3.7) and (3.8) that $\operatorname{det} \psi \equiv m \bmod t$. Of course, m is prime to t, so ψ is a T-automorphism of $F N^{k}$.

It remains to verify the key relationship (3.4). For then, by Lemma 2.4(ii), we can find $\varphi: N^{k} \rightarrow N^{k}$ making the diagram (3.1) commutative and, by Lemma 2.3, φ will be a T-automorphism; finally, by Lemma $2.1, \bar{\theta}(\varphi)$ is the residue class of m, modulo ± 1, so that we have realized m. Thus Proposition 2.2 will have been proved and, with it, Theorem 1.3.

Thus we must verify that

$$
\begin{equation*}
\alpha\left(\xi_{(w)} \cdot a_{i(s)}\right)=\psi \xi_{(w)} \cdot \alpha a_{i(s)} \tag{3.9}
\end{equation*}
$$

It is plain that we need only concern ourselves with $w=1,2 ; s=1,2$, and that we can look at (3.9) at each prime p appearing in the factorization (1.3) of t.

Assume first that $\varepsilon_{p}=+1$. Then

$$
\begin{aligned}
& \alpha\left(\xi_{(1)} \cdot a_{i(1)}\right)=\xi_{(1)} \cdot a_{i(1)}, \psi \xi_{(1)} \cdot \alpha a_{i(1)}=\xi_{(1)}^{\beta_{11}} \cdot a_{i(1)}=\xi_{(1)} \cdot a_{i(1)} \\
& \quad \text { since } \beta_{11} \equiv 1 \bmod p^{l} ; \\
& \alpha\left(\xi_{(1)} \cdot a_{i(2)}\right)=a_{i(2)}, \psi \xi_{(1)} \cdot \alpha a_{i(2)}=\xi_{(1)}^{\beta_{12}} \cdot a_{i(2)}=a_{i(2)}, \text { since } \beta_{12} \equiv 0 \bmod p^{l} ; \\
& \alpha\left(\xi_{(2)} \cdot a_{i(1)}\right)=a_{i(1)}, \psi \xi_{(2)} \cdot \alpha a_{i(1)}=\xi_{(2)}^{\beta_{21}} \cdot a_{i(1)}=a_{i(1)}, \text { since } \beta_{21} \equiv 0 \bmod p^{l} ; \\
& \alpha\left(\xi_{(2)} \cdot a_{i(2)}\right)=\xi_{(2)} \cdot a_{i(2)}, \psi \xi_{(2)} \cdot \alpha a_{i(2)}=\xi_{(2)}^{\beta_{22} \cdot a_{i(2)}}=\xi_{(2)} \cdot a_{i(2)} \\
& \quad \text { since } \beta_{22} \equiv 1 \bmod p^{l} .
\end{aligned}
$$

Now assume that $\varepsilon_{p}=-1$. Then

$$
\begin{aligned}
\alpha\left(\xi_{(1)} \cdot a_{i(1)}\right) & =\xi_{(2)} \cdot a_{i(2)}, \psi \xi_{(1)} \cdot \alpha a_{i(1)}=\xi_{(2)}^{\beta_{12}} \cdot a_{i(2)}=\xi_{(2)} \cdot a_{i(2)}, \\
& \text { since } \beta_{12} \equiv 1 \bmod p^{l} ; \\
\alpha\left(\xi_{(1)} \cdot a_{i(2)}\right) & =a_{i(1)}, \psi \xi_{(1)} \cdot \alpha a_{i(2)}=\xi_{(1)}^{\beta_{11}} \cdot a_{i(1)}=a_{i(1)}, \text { since } \beta_{11} \equiv 0 \bmod p^{l} ; \\
\alpha\left(\xi_{(2)} \cdot a_{i(1)}\right) & =a_{i(2)}, \psi \xi_{(2)} \cdot \alpha a_{i(1)}=\xi_{(2)}^{\beta_{22}} \cdot a_{i(2)}=a_{i(2)}, \text { since } \beta_{22} \equiv 0 \bmod p^{l} ; \\
\alpha\left(\xi_{(2)} \cdot a_{i(2)}\right) & =\xi_{(1)} \cdot a_{i(1)}, \psi \xi_{(2)} \cdot \alpha a_{i(2)}=\xi_{(1)}^{\beta_{21} \cdot a_{i(1)}}=\xi_{(1)} \cdot a_{i(1)}, \\
& \text { since } \beta_{21} \equiv 1 \bmod p^{l} .
\end{aligned}
$$

Thus (3.9) (or (3.4)) is verified and the proof of Theorem 1.3 is complete.

4. An example

Let $N=\left\langle x, y ; x^{225}=1, y x y^{-1}=x^{16}\right\rangle$. It is then easy to see that $N \in \mathcal{N}_{1}$; indeed $T N=Z / 225=\langle a\rangle, F N=Z=\langle\xi\rangle$, and $\xi \cdot a=16 a$. Moreover $t=15$ and,
for any m prime to t, we obtain a group N_{m} in the genus of N corresponding to $[m] \in(Z / t)^{*} /\{ \pm 1\}$ by replacing 16 by 16^{m} in the second relation for N. Note that $(Z / t)^{*} /\{ \pm 1\} \cong Z / 4$, generated by the residue class [2]. Thus $\mathcal{G}(N)=$ $Z / 4$, but $\mathcal{G}\left(N^{k}\right)=Z / 2$ if $k \geq 2$. We pass from $\mathcal{G}(N)$ to $\mathcal{G}\left(N^{k}\right)$ by killing the residue class $m, \bmod 15$, such that $m \equiv+1 \bmod 3, m \equiv-1 \bmod 5$, that is, by killing $m=4$. Thus $\mathcal{G}\left(N^{k}\right)$ is generated by $N_{2} \times N^{k-1}$ and we have the non-cancellation phenomenon

$$
\begin{equation*}
N_{4} \times N \cong N \times N, N_{4} \neq N \tag{4.1}
\end{equation*}
$$

Note that

$$
\left\{\begin{array}{l}
N_{2}=\left\langle x, y ; x^{225}=1, y x y^{-1}=x^{31}\right\rangle \tag{4.2}\\
N_{4}=\left\langle x, y ; x^{225}=1, y x y^{-1}=x^{61}\right\rangle
\end{array}\right.
$$

Of course, the situation and phenomena described in this example are quite typical.

Department of Mathematical Sciences
State University of New York
Binghamton, NY 13902-6000
U.S.A.

References

[CH] C. Casacuberta and P. Hilton, Calculating the Mislin genus for a certain family of nilpotent groups, Comm. in Alg. 19(7) (1991), 2051-2069.
[H] P Hilton, Localization of crossed modules, Springer Lecture Notes in Mathematics 1029 (1984), 311-324.
[HM] - and G. Mislin, On the genus of a nilpotent group with finite commutator subgroup, Math. Z. 146 (1976), 201-211.
[HS] - and C. Schuck, On the structure of nilpotent groups of a certain type (to appear).
[M] G. Mislin, Nilpotent groups with finite commutator subgroups, Springer Lecture Notes in Mathematics 418 (1974), 103-120.

[^0]: ${ }^{1}$ We allow $l=0$ as a possibility rendering the argument trivial.

