CALCULATING THE GENUS OF CERTAIN NILPOTENT GROUPS

BY PETER HILTON AND CHRISTOPHER SCHUCK

1. Introduction

Let \mathcal{N}_0 be the class of finitely generated, but not finite, nilpotent groups N with finite commutator subgroup [N, N]. Then for any N in \mathcal{N}_0 the (Mislin) genus $\mathcal{G}(N)$ (see [M, HM]) has the structure of a finite abelian group. This genus-group was calculated in [CH] in the case that N belongs to a certain subclass \mathcal{N}_1 of \mathcal{N}_0 .

Thus consider the short exact sequence (valid for any nilpotent group N)

$$(1.1) TN \rightarrowtail N \xrightarrow{\pi} FN$$

where TN is the torsion subgroup of N, and FN is the torsionfree quotient. Then $N \in \mathcal{N}_0$ if and only if TN is finite and FN is free abelian of finite rank. We say that $N \in \mathcal{N}_1$ if, additionally,

(a) TN is commutative;

(b) (1.1) splits on the right, so that N is the semidirect product for an action $\omega : FN \to Aut TN$, of FN on TN;

(c) the action ω satisfies $\omega(FN) \subseteq Z(\operatorname{Aut} TN)$, where Z is the center.

Note that, in the presence of (a), (c) is equivalent to the condition that, for each $\xi \in FN$, there exists an integer u, such that $\xi \cdot a = ua$ for all $a \in TN$ (written additively).

Now let t be the *height* of ker ω in FN; here the height of a (non-trivial) subgroup R of a free abelian group F is the largest positive integer h such that $R \subseteq hF$. Then the authors prove in [CH]

THEOREM (1.1). $\mathcal{G}(N) \cong (\mathbb{Z}/t)^*/\{\pm 1\}$ if $N \in \mathcal{N}_1$.

Let N^k be the k^{th} direct power of $N, k \geq 2$. There is then a surjective homomorphism

$$\rho: \mathcal{G}(N) \to \mathcal{G}(N^k),$$

given by $\rho(M) = M \times N^{k-1}$ and the authors also prove in [CH]

THEOREM (1.2). Let TN be a cyclic p-group, for some prime p, and let FN be cyclic. Then ρ is an isomorphism.

Our object in this paper is to calculate $\mathcal{G}(N^k)$ for any $N \in \mathcal{N}_1$ and any $k \geq 2$. We know, by the principal result of [HS], that $\mathcal{G}(N) = 0$ if FN is not cyclic, so that $\mathcal{G}(N^k) = 0$ under the same hypothesis, so that we may assume FN cyclic. To state our result, let

(1.2)
$$\exp TN = n = p_1^{m_1} p_2^{m_2} \cdots p_{\lambda}^{m_{\lambda}}, \, p_1 < p_2 < \cdots < p_{\lambda}, \, m_i \geq 1.$$

We say n is of Type 1 if $p_1 = 2$, $m_1 = 1$; otherwise it is of Type 2. It is known that t must have the form

(1.3)
$$t = p_1^{l_1} p_2^{l_2} \cdots p_{\lambda}^{l_{\lambda}}, 0 \le l_i < m_i, i = 1, 2, \dots, \lambda.$$

Now we may ignore the case that n is of Type 1 with $\lambda = 1$ since then t = 1 and $\mathcal{G}(N) = \mathcal{G}(N^k) = 0$. Thus the following theorem constitutes a complete statement of our result, generalizing Theorem 1.2; but note that we place no restriction on the structure of the finite abelian group TN. In stating our theorem, we identify $\mathcal{G}(N)$ with $(\mathbb{Z}/t)^*/\{\pm 1\}$, according to Theorem 1.1. We repeat that, to avoid triviality, we assume FN cyclic.

THEOREM (1.3). For any $k \geq 2$, we obtain $\mathcal{G}(N^k)$ from $\mathcal{G}(N)$ by factoring out those residues $m \mod t$ such that (see (1.3))

(1.4)
$$m \equiv \varepsilon_i \mod p_i^{l_i}, \ \varepsilon_i = \pm 1, \ i = 1, 2, \dots, \lambda.$$

Thus $\mathcal{G}(N^k) = \mathcal{G}(N)/H$, where H is an elementary abelian 2-group, and

$$rank \ H = egin{cases} \lambda-2, & \mbox{if n is of Type 1;} \\ \lambda-1, & \mbox{if n is of Type 2.} \end{cases}$$

It is not difficult to prove that if $N \in \mathcal{N}_1$ and $k \geq 2$, then $N^k \in \mathcal{N}_1$ if and only if N is abelian. The condition which fails is, of course, condition (c). Thus we see how vital condition (c) is to the validity of Theorem 1.1; for clearly $t(N^k) = t(N)$.

In Section 2, we establish, or recall, some preliminary results; and in Section 3 we prove Theorem 1.3. In Section 4 we give a typical, illustrative example. The content of this paper forms part of the Ph.D. dissertation of the second-named author at the State University of New York at Binghamton, written under the direction of the first-named author.

2. Preliminaries

The key sequence for calculating $\mathcal{G}(N)$, for any $N \in \mathcal{N}_0$, is (see [HM])

(2.1)
$$T \operatorname{-Aut} N \xrightarrow{\theta} (Z/e)^* / \{\pm 1\} \longrightarrow \mathcal{G}(N).$$

Here T is the set of prime divisors of $n = \exp TN$, and a T-automorphism $\varphi: N \to N$ is an endomorphism such that, localizing at T, φ_T is an automorphism of N_T . We refer to [CH] for the definition of e, since it plays a minor role in our argument, but we will explain how θ acts. If $d = \exp TZN$, then dZN is a free abelian group which is called the *free center* of N. It is shown in [M, HM] that any T-automorphism φ sends FZN to itself, so we may associate with φ the integer det $\varphi | FZN$. Then $\theta(\varphi)$ is the residue class, modulo ± 1 , of this integer. We are now ready for our first lemma, valid for any N in \mathcal{N}_0 .

LEMMA (2.1). Let $\varphi : N \to N$ be an endomorphism. Then φ induces $\psi : FN \to FN$ (see (1.1)). Moreover, if $\varphi(FZN) \subseteq FZN$, then $det(\varphi|FZN) = det \psi$.

Proof. A famous theorem of I. Schur asserts that, if N is a group such that N/ZN is finite, then [N, N] is finite. It is not difficult to prove that the converse holds if N is finitely generated, nilpotent. Thus if $N \in \mathcal{N}_0$ then N/ZN

is finite, and hence N/FZN is finite. It follows that $\pi : N \longrightarrow FN$ maps FZN onto a subgroup $\pi(FZN)$ of FN of maximal rank. Thus

$$\det \left(\varphi | FZN \right) = \det \left(\psi | \pi(FZN) \right) = \det \left(\psi | \pi(FZN) \otimes \mathcal{Q} \right) = \det \left(\psi \otimes \mathcal{Q} \right) = \det \psi.$$

Now (2.1) may be embedded in the commutative diagram

(2.2)
$$\begin{array}{cccc} T - \operatorname{Aut} N & \stackrel{\theta}{\to} & (Z/e)^* / \{\pm 1\} & \longrightarrow & \mathcal{G}(N) \\ \downarrow \sigma & & \parallel & \downarrow \rho \\ T - \operatorname{Aut} N^k & \stackrel{\overline{\theta}}{\to} & (Z/e)^* / \{\pm 1\} & \longrightarrow & \mathcal{G}(N^k) \end{array}$$

(see (4.1) of [CH]), where $\sigma(\varphi) = \varphi \times \text{Id}$, Id being the identity on N^{k-1} . (It is easy to see that T and e remain unchanged when one passes from N to N^k). We claim then that it follows from (2.2) that Theorem 1.3 will be proved when we have established the following proposition.

PROPOSITION (2.2). Let $N \in \mathcal{N}_1$ and let us adopt the notation and data of Section 1. Then, in (2.2), Im $\overline{\theta}$ consists of those residue classes [m], modulo ± 1 , such that

(2.3)
$$m \equiv \epsilon_i \mod p_i^{l_i}, \epsilon_i = \pm 1, i = 1, 2, \dots, \lambda.$$

This was, of course, precisely the approach taken in [CH] to prove Theorem 1.2. In that special case, however, no problem of realizability arose. Once it was shown that any [m] in $\operatorname{Im} \overline{\theta}$ satisfied $m \equiv \pm 1 \mod t$, Theorem 1.2 followed immediately. Here we must also show that all m given by (2.3) can be realized by some T-automorphism of N^k .

We come now to our final set of preliminary observations before proceeding to the proof of Theorem 1.3. Let $M \in \mathcal{N}_0$ satisfy the supplementary conditions (a), (b) defining the subclass \mathcal{N}_1 , but not necessarily (c); we will be applying our forthcoming remarks to the case $M = N^k$. Let T be defined as before. If φ is an endomorphism of M, then φ induces a commutative diagram

LEMMA (2.3). φ is a T-automorphism if, and only if, α is an automorphism and ψ is a T-automorphism.

Proof. It follows from the standard properties of localization that φ is a *T*-automorphism if and only if α and ψ are *T*-automorphisms; but, since *TM* is itself *T*-local, α is a *T*-automorphism if and only if it is an automorphism. \Box

LEMMA (2.4.) (i) $\alpha(\xi . a) = \psi \xi . \alpha a$

265

(ii) Suppose, conversely, that a diagram

is given such that $\alpha(\xi.a) = \psi \xi.\alpha a$. Then we may find $\varphi : M \to M$ making a commutative diagram (2.4).

Proof. This argument was given in [H]; note that conclusion (i) requires that TM be commutative, but conclusion (ii) does not. Of course, it is crucial that M be a semidirect product. \Box

3. Proof of Theorem 1.3

Let $\varphi: N^k \to N^k$ be a *T*-automorphism. Then (see (2.4) and Lemma 2.3) φ gives rise to the commutative diagram

where ψ is a *T*-automorphism, so that det ψ is prime to *T*. Note that, by Lemma 2.1, det $\psi = \overline{\theta}(\varphi)$ in (2.2). Let $n = p_1^{m_1} p_2^{m_2} \cdots p_{\lambda}^{m_{\lambda}}$, $t = p_1^{l_1} p_2^{l_2} \cdots p_{\lambda}^{l_{\lambda}}$ as in (1.2), (1.3). Let *p* be a typical prime occurring in the prime factorization of *t* with exponent¹ *l*, and let $TN_p = \langle a_1, a_2, \ldots, a_r \rangle = \bigoplus_{i=1}^r \mathbb{Z}/p^{d_i}$, with $m = d_1 \ge d_2 \ge \cdots \ge d_r$. Now if $FN = \langle \xi \rangle$, then $\xi . a = ua$, $a \in TN_p$, where *u* is of order $p^l \mod p^m$. Write, in an obvious notation,

(3.2)
$$TN_p^k = \langle a_{i(s)} \rangle, \quad i = 1, 2, \dots, r; s = 1, 2, \dots, k. \\ FN^k = \langle \xi_{(s)} \rangle, \quad s = 1, 2, \dots, k. \end{cases}$$

Let

(3.3)
$$\alpha a_{i(s)} = \sum \alpha_{i(s)j(v)} a_{j(v)}, \ \psi \xi_{(s)} = \sum \beta_{sf} \xi_{(f)}.$$

We now exploit the key relationship (Lemma 2.4(i)),

(3.4)
$$\alpha(\xi_{(w)}.a_{i(s)}) = \psi\xi_{(w)}.\alpha a_{i(s)}$$

First, set w = s. Then $u \sum \alpha_{i(s)j(v)} a_{j(v)} = \prod \xi_{(f)}^{\beta_{sf}} \sum \alpha_{i(s)j(v)} a_{j(v)}$ = $\sum u^{\beta_{sv}} \alpha_{i(s)j(v)} a_{j(v)}$. We conclude that

266

¹ We allow l = 0 as a possibility rendering the argument trivial.

Now let $w \neq s$. Then $\sum \alpha_{i(s)j(v)} a_{j(v)} = \prod \xi_{(f)}^{\beta_{wf}} \sum \alpha_{i(s)j(v)} a_{j(v)}$ = $\sum u^{\beta_{wv}} \alpha_{i(s)j(v)} a_{j(v)}$. We conclude that

(3.6) if
$$p \not| \alpha_{i(s)1(v)}$$
, and $w \neq s$, then $\beta_{wv} \equiv 0 \mod p^l$

Fix v. Then $\exists i(s)$ such that $p / |\alpha_{i(s)1(v)}$, since α is an automorphism. With s chosen from such an i(s), $\beta_{sv} \equiv 1 \mod p^l$, $\beta_{wv} \equiv 0 \mod p^l$, $w \neq s$, by (3.5), (3.6). Thus the matrix of ψ , reduced mod p^l , reads

in each column. Now ψ is a *T*-automorphism, so that $p \not\mid \det \psi$. Thus det $\psi \not\equiv 0 \mod p^l$. This implies that, in the matrix of ψ , reduced mod p^l , the non-zero entries occupy different rows. Thus det $\psi \equiv \pm 1 \mod p^l$. Thus

: 0 1 0 :

$$\overline{\theta}(\varphi) \equiv \pm 1 \bmod p_i^{l_i},$$

for all primes p_i in the factorization of t as $\prod p_i^{l_i}$. This shows that Proposition 2.2 holds in one direction.

We now move to the converse. We consider a residue $m \mod t$ such that

(3.7)
$$m \equiv \varepsilon_i \mod p_i^{l_i}, i = 1, 2, \dots, \lambda, \text{ where } \varepsilon_i = \pm 1$$

and we show the existence of a T-automorphism $\varphi : N^k \to N^k$ inducing $\psi : FN^k \to FN^k$ with det $\psi = m$. Once again we fix a particular p among the prime factors of n and we describe α and ψ explicitly; actually, we determine α completely, but are content to determine the matrix of ψ mod t; once again, any prime p for which the exponent l in (1.3) is 0 plays essentially no role. We write ε_p for ε_i in (3.7), if $p = p_i$. Then if $\varepsilon_p = 1$, $\alpha(a_{i(s)}) = a_{i(s)}$, all i(s); while, if $\varepsilon_p = -1$, $\alpha(a_{i(1)}) = a_{i(2)}, \alpha(a_{i(2)}) = a_{i(1)}, \alpha(a_{i(s)}) = a_{i(s)}, s \geq 3$. Plainly α is an automorphism. We subject the matrix (β_{sf}) of ψ , $1 \leq s, f \leq k$, to the conditions

(3.8)
$$\begin{cases} \beta_{11} = \beta_{22} \equiv 1 \mod p^{t}; \beta_{12} = \beta_{21} \equiv 0 \mod p^{t}; \\ \beta_{ss} = 1, s \geq 3; \beta_{sf} = 0, \text{ otherwise if } \varepsilon_{p} = 1 \\ \beta_{11} = \beta_{22} \equiv 0 \mod p^{l}; \beta_{12} = \beta_{21} \equiv 1 \mod p^{l}; \\ \beta_{ss} = 1, s \geq 3; \beta_{sf} = 0, \text{ otherwise if } \varepsilon_{p} = -1 \end{cases}$$

It is clear from the Chinese Remainder Theorem that these conditions can be satisfied simultaneously for all p entering the factorization of t and that the matrix of ψ is determined mod t. It is also plain from (3.7) and (3.8) that det $\psi \equiv m \mod t$. Of course, m is prime to t, so ψ is a *T*-automorphism of FN^k .

It remains to verify the key relationship (3.4). For then, by Lemma 2.4(ii), we can find $\varphi : N^k \to N^k$ making the diagram (3.1) commutative and, by Lemma 2.3, φ will be a *T*-automorphism; finally, by Lemma 2.1, $\overline{\theta}(\varphi)$ is the residue class of *m*, modulo ± 1 , so that we have realized *m*. Thus Proposition 2.2 will have been proved and, with it, Theorem 1.3.

Thus we must verify that

(3.9)
$$\alpha(\xi_{(w)}.a_{i(s)}) = \psi\xi_{(w)}.\alpha a_{i(s)}.$$

It is plain that we need only concern ourselves with w = 1, 2; s = 1, 2, and that we can look at (3.9) at each prime p appearing in the factorization (1.3) of t.

Assume first that $\varepsilon_p = +1$. Then

$$\begin{aligned} \alpha(\xi_{(1)}.a_{i(1)}) &= \xi_{(1)}.a_{i(1)}, \psi\xi_{(1)}.\alpha a_{i(1)} = \xi_{(1)}^{\beta_{11}}.a_{i(1)} = \xi_{(1)}.a_{i(1)} \\ \text{since } \beta_{11} \equiv 1 \mod p^l; \end{aligned}$$

Now assume that $\varepsilon_p = -1$. Then

$$\begin{aligned} \alpha(\xi_{(1)}.a_{i(1)}) &= \xi_{(2)}.a_{i(2)}, \psi\xi_{(1)}.\alpha a_{i(1)} = \xi_{(2)}^{\beta_{12}}.a_{i(2)} = \xi_{(2)}.a_{i(2)}, \\ &\text{since } \beta_{12} \equiv 1 \mod p^l; \\ \alpha(\xi_{(1)}.a_{i(2)}) &= a_{i(1)}, \psi\xi_{(1)}.\alpha a_{i(2)} = \xi_{(1)}^{\beta_{11}}.a_{i(1)} = a_{i(1)}, \text{ since } \beta_{11} \equiv 0 \mod p^l; \\ \alpha(\xi_{(2)}.a_{i(1)}) &= a_{i(2)}, \psi\xi_{(2)}.\alpha a_{i(1)} = \xi_{(2)}^{\beta_{22}}.a_{i(2)} = a_{i(2)}, \text{ since } \beta_{22} \equiv 0 \mod p^l; \\ \alpha(\xi_{(2)}.a_{i(2)}) &= \xi_{(1)}.a_{i(1)}, \psi\xi_{(2)}.\alpha a_{i(2)} = \xi_{(1)}^{\beta_{21}}.a_{i(1)} = \xi_{(1)}.a_{i(1)}, \\ &\text{ since } \beta_{21} \equiv 1 \mod p^l. \end{aligned}$$

Thus (3.9) (or (3.4)) is verified and the proof of Theorem 1.3 is complete.

4. An example

Let $N = \langle x, y; x^{225} = 1, yxy^{-1} = x^{16} \rangle$. It is then easy to see that $N \in \mathcal{N}_1$; indeed $TN = \mathbb{Z}/225 = \langle a \rangle$, $FN = \mathbb{Z} = \langle \xi \rangle$, and $\xi . a = 16a$. Moreover t = 15 and,

for any *m* prime to *t*, we obtain a group N_m in the genus of *N* corresponding to $[m] \in (\mathbb{Z}/t)^*/\{\pm 1\}$ by replacing 16 by 16^m in the second relation for *N*. Note that $(\mathbb{Z}/t)^*/\{\pm 1\} \cong \mathbb{Z}/4$, generated by the residue class [2]. Thus $\mathcal{G}(N) = \mathbb{Z}/4$, but $\mathcal{G}(N^k) = \mathbb{Z}/2$ if $k \geq 2$. We pass from $\mathcal{G}(N)$ to $\mathcal{G}(N^k)$ by killing the residue class *m*, mod 15, such that $m \equiv +1 \mod 3, m \equiv -1 \mod 5$, that is, by killing m = 4. Thus $\mathcal{G}(N^k)$ is generated by $N_2 \times N^{k-1}$ and we have the non-cancellation phenomenon

$$(4.1) N_4 \times N \cong N \times N, N_4 \not\cong N$$

Note that

(4.2)
$$\begin{cases} N_2 = \langle x, y; x^{225} = 1, yxy^{-1} = x^{31} \rangle \\ N_4 = \langle x, y; x^{225} = 1, yxy^{-1} = x^{61} \rangle \end{cases}$$

Of course, the situation and phenomena described in this example are quite typical.

DEPARTMENT OF MATHEMATICAL SCIENCES STATE UNIVERSITY OF NEW YORK BINGHAMTON, NY 13902-6000 U.S.A.

REFERENCES

- [CH] C. CASACUBERTA AND P. HILTON, Calculating the Mislin genus for a certain family of nilpotent groups, Comm. in Alg. 19(7) (1991), 2051-2069.
- [H] P HILTON, Localization of crossed modules, Springer Lecture Notes in Mathematics 1029 (1984), 311-324.
- [HM] —— AND G. MISLIN, On the genus of a nilpotent group with finite commutator subgroup, Math. Z. 146 (1976), 201-211.
- [HS] AND C. SCHUCK, On the structure of nilpotent groups of a certain type (to appear).
- [M] G. MISLIN, Nilpotent groups with finite commutator subgroups, Springer Lecture Notes in Mathematics 418 (1974), 103-120.