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EQUATIONS FOR_ CURVES IN THEIR JACOBIANS 

BY GEORGE R. KEMPF AND JOSE MUNOZ PORRAS 

In this paper we give equations of curves in their J acobians. Some are 
global and others generalize Fay's trisecant identity. 

1. Abelian varieties 

Let X be an abelian variety with dual abelian variety xv. Let P be a 
Poincare sheaf on X x xv. Let .C be an ample invertible sheaf on X. Then 
W(.C) = 1rxu*( 1r_x.C ® OxxxuP) is a local free coherent sheaf on xv whose 
formation commutes with base extension. 

LEMMA (1). Let <p,e : X --t xv be the honwnwrphism defined by .C. Then 
'Pc W(.C) is naturally isonwrphic to f(X, .C) ®k .c®- 1. 

Proof. (lx x <p,e)*P ~ (1r1 + 1r2)*.C ® 1ri.C®-l 0 1r2.c®-l. Thus 'PcW(.C) is 
naturally isomorphic to 

Now we have a 1r2-isomorphism a : Xx X --t X x X given by (x1,x 2) --t 

(x1 +x2,:X2) which induces an isomorphism 

Hence we get the result. Q.E.D. 
Let H be a finite closed subscheme of X. We have an Oxu-homomorphism 

of locally free coherent sheaves given by evaluation. For all non-negative 
integers we have aclosedsubschemezi(.C,H) of Xv defined by Aia(.C,H) = 0 

Let {3(.C,H) : f(X, .C) ®k Ox --t 1r2• ( 1ri .ClcH,O)+~) be given by restriction. 

LEMMA (2). /3(.C,H) ~ 'Pc (a(.C,H)) ®ox .C. 

Proof. This follows from the proof of Lemma 1 as o-(H x X) = (H, 0) + ~
Q.E.D. 

We have closed subschemes Ui(L,H) ofX defined by Ai{J(.C,H) = 0. Thus 
we get. 

COROLLARY. <p12
1 ( zi(.C,H)) = Ui(.C,H). 
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2. Jacobians 

Let J be the Jacobian of smooth complete curve C of genus g 2 1. Then 
J is principal polarized by the theta divisor 0 which is only determined up to 
translation. Ifan invertible sheaf .C onJ is algebraically equivalent to Ox(n0) 
then deg .C = ng. We will work only with this type of invertible sheaf. 

Let C c J be the usual embedding determined up to translation. 

LEMMA (4). Ifn 2 2, i: f(J,.C)-. r(C,.Cle) is surjective. 

Proof. As the image of i is a closed vector subspace we need to show that 
its image is dense. Now, OJ(0)le has degree g and .Cle has degree gn. Then 
dimkr(C, .Cle) = g(n - 1) + 1. Let c1, ... , cg beg general points of C, then 
D = c1 + ... +cg= (0+j)-C for some pointj E J. Let .c' = .C (-(0 + j)), ifn 2 
2 D+ (effective divisor in I.Cle) is in the image of f(J, .C') -. f(C, .C'le)- As 

Pico(J) - Pico(C) is an isomorphism, C"" OJ (t(e + ji)), then a general 

section a of .Cle has a divisor of the form D1 + ... + Dn (where the Di are as 
above) which is in the image of f(J, .C)-. r(C, .Cle)- Q.E.D. 

Let deg .C = ng with n 2 2. Let V(.C) = 1r2• (1ri .C 0 PlexJ). Then V(.C) is 
a loclaly free coherent sheaf on J ofrank ng - g + 1 . We have 

COROLLARY (5). Restriction p : W(.C) -. V(.C) is surjective. 

Now let H be a closed finite subscheme of C. Then we have a restriction 

Then a(.C,H) factors through the surjection p. Thus zi(.C, H) is the closed 
subscheme Ai a' ( .C, H) = 0 and this subscheme has been studied extensively 
in [1] in dual form. Hence if 

2g - 2 2 ng - degH 2 g - 1 

Ill 
2g - 2- i, 

then zdegH (.C,H) is a translative of -Wi where wi = C + ... + C i times. 

By the methods of the first section n-lzdegH (.C,H) = udegH(.C,H). This 
generalizes Fay identity with n = 2 and deg H = 3. 

3. Global equations 

Let (X, 0) be a principally polarized abelian variety. Assume that the char
acteristic of the base field is not two. We will use the same notations as Jaco
bians. As in the case of Jacobians we will work only with invertible sheaves 
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algebraically equivalent to Ox(n0). Let us observe that the principal polar
ization defines an isomorphism xv ~ X; with this identification, given an 
invertible sheaf S of degree two on X, the morphism <.ps of§ 1 is a morphism 
<.ps : X-+ X such that ¢s(y) = 2y - 2e where S ~ r{Ox(20). 

THEOREM (6). LetR and S be two invertiblesheves onX of degree 'lJl. Then 
W ( S) ®ox R is generated by its sections. . 

Proof. Let x be a point on X. We need to see that r (X, W ( S) ®ox R) -+ 

W(S) ®ox Rix is surjective. Let M = 1riS ®oxxx P ®oxxx 1r2R. Then we 
need to see that 

r(X X X,M)-+ r (x X {x},Mlxx{x}) 

is surjecture. Now rp8 (y) = 2y - 2e . By taking invariants under X2 it is 
enough to see that 

f(X xx, (Idx, 2)* M)-+ r (x x 2-1(x), (Idx, 2)* Mlxx2-l(x)) 

is surjective. 
We may use our change of coordinates which now preserves X x 2- 1 (x). 

Thus we need to see that 

r(x XX, 1riS ®oxxx 1r2 ( 2*R ®ox s®- 1
) )-r(x X r1(x), samelxx2-1(.x)) 

is surjective. 
By Kiinneth formula, we need to prove the surjectivity of 

r (x,2*R®ox s 0 -
1
) ~ f (2-1(x),2*R®ox s®-C112-Icx)) 

Now this follows from [2]. Q.E.D. 
Now if X is the Jacobian of C and H C C satisfied deg H = 3 then taking 

global sections in the homomorphism o:(S,H) ® 1 : W(S) ®oJ R ~ 1r2 * 

(1riS ®0JxJ PIHxJ) ®oJ R we have the homomorphism 

r (J, W(S) ®oJ R) ~ r (J x J, 1riS ®oJxJ P ®oJxJ 1r2RIJxH) 

which satisfies A 3c5 = 0 equals a translate of -C. Thus -C is the zeroes 
of some sections of T where deg T = 6. We will describe these equations 
explicitly. · 

In the general case, given H a finite subscheme of X and S and R as in the 
theorem, the homomorphism o:( S, H) of§ 1 induces a homomorphism 

o:(S,H) ® 1: W(S) ®ox R-+ 1r2• ( 1riS ®oxxx PIHxX) ®ox R 
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and taking global sections: 

COROLLARY. The closed subscheme zi(S,H) of X coincides with the sub
scheme defined by the global equations No(S,R,H) = 0. 

Using the results of§ 1 we can compute explicitly the global equations of 
the subschemes Ui(S,H). 

Let us assume that H = {c1, ... ,cn+2} is a finite subscheme of X oflength 
n + 2 given by n + 2 distinct points of X and e E X is a point such that 
2e = C1 + ... + Cn+2· We will assume that S ~ R ~ r_:eOx(20) = Ox(20e), 
With these notations: 

n+2 
8(8,S,H): f(X xX,1riS@P@1r 2S)--+ E9r (X,rfS) 

i=l i 

(where ci EX is such that 2.ci = ci). Taking inverse images with respect to 
<ps we obtain a homomorphism 

f3(S,H) : 71"2 * (1riS) ®ox ( s®-l 0 2*S) --+ 

n+2 
EB ( 1r2 * ( 1ri Slcci,0)+6) ®ox ( s®-l 0 2* S)) 
i=l 

For each ci the homomorphism: 

71"2 * (1riS) ~ f(X,S) ®k Ox! 71"2 * (1riSl(ci,0)+6) 

~ 1r2 * ( 1rirss) ~ f (x, rss) ®k Ox 

is given by f3(s(z)) = s(z + ci), s(z) being a global section of S. 
Let {0a-(z),a-E (Z/2Z)g} be a basis for the vector space f(X,Ox(20)) (for 

example, { 0a-} could be the classical basis of second order theta functions of 
(X, 0)). A basis for the vector space f(X, S) is given by {0a-(z - e)} and the 

n+2 
homomorphism f3(S,H): 1r2 * (1riS)--+ EB1r2 * ( 1rir~s) is given in this basis 

i=l 
by: 

From this discussion and § 1 we obtain 
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THEOREM (7). un+2(S,H) = <p;-1(zn+2(S,H)) is scheme-theoretically de
fined by the system of global equations: 

Su>.= det (ou,.i(z -e + Cj)) = 0 

for every cf= ( 0">,1' ... , O">,n+2) E [(Z/2Z)B]Cn+2). 

Let us assume now that H = { ( n + 2)c} is a subscheme concentrated at the 
closed point c EX of the form Spec k[t]/tn+2 

L.+ X; that is, His given by a 

ring homomorphism Ox,c !!..!!..,. k[t]/ ~+ 2: 

n+l 
PH (f(z)) = L(~kf)(c)i 

k=O 

~ 1 h1 hk D b . 
where~k= L..J hi! ... hk!D 1 ... Dk, i emgconstantvector 

h I +2h2+ ... +khk=k 
fields on X. (We are assuming now that the base field has characteristic 0). 

THEOREM (8). If H = { ( n+ 2)c} is the subscheme given above, the subscheme 
un+2 ( S, H) is scheme-theoretically defined by the system of global equations: 

det ( ~j0u,_/z + c)) = 0 

for every (c;>.1' ... , O">,n+
2

) E [(Z/2Z)B](n+2). 

Proof. Let us observe that in this case 

1r2• (1riSlcH;O)+a) ~ [r(X, rtS) EB c:f(X, rtS) EB.· .. EB cn+lr(X, r;s)] ®k Ox 

and the homomorphism f3(S,H) is given by: 

/3(0u(z)) = 0(1(z + c) + c~10u(z + c) + ... + c:n+l~n+10(1(z + c) 

Q.E.D. 
In general, if H = H 1 Jl_ ... ll_ Hr and each Hi is a subscheme of X of 

the form Spec k[t]/tni '----+ X, we obtain in the same way a system of global 
equations for un+ 2(S,H). 

The global equations obtained here generalize Fay's trisecant identity and 
Gunning's relations (see [4]). To obtain the classical results of Fay and Gun
ning in the Jacobian case, we can proceed as follows: 

Let C be a smooth complete curve of genus g ~ 1, J = Pic 0( C) its Jacobian 
variety, Po E Ca closed point and i : C '----+ J the immersion defined by PO· 
We fix a half canonical divisor~ on C (that is, Oc(2~) ~ we the canonical 
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sheaO. These data allow us to determine a canonical polarization 0 c:.....+ J 
with the condition: 0lc =~+PO· 

Letp1, ... ,Pn+2 n+2 distinct points ofC andc1, ... , Cn+2 their images inJ, 
we select a point e E J such that 2e = c1 + ... +cn+2 and define S = OJ(20e) 
and H = {c1, ... ,cn+2} C J. Applying the above results to (J,S,H) we 
obtain the Fay trisecant identity for n = l and the Gunning relations for 
arbitrary n. 
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