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EHP SPECTRAL SEQUENCE IN THE LAMBDA ALGEBRA
By WEN-HSIUNG LIN*

1. Introduction

The lambda algebra A of Kan et al. ([2]) is a bigraded differential algebra
over Zg (for each prime p there is a similar algebra, but here we will only
consider p = 2) generated by \; € Al# for i > 0 subject to the relations

m-v-—1
(a) AiAgip14m = E < y ) Amyi-pA2ip14, for m>0.
v2>0

The differential § is given by

®) 6<Ak)=2(k::11)xk s 1ho

v2>0

The relations in (a) can be viewed as the “dual” of the Adem relations

[a/2) o _
Sq*S¢® =y ( ba_f 2—; ) Sq*tvSq/, a<2b
j=0

in the mod 2 Steenrod algebra via the correspondence Sq’Sq/ « - 121
(see [12]).

From (a) one sees that {A\; = A;; ... 2 |2{; > i;1} (A = LifI =[])isa
Zg-base for A. Such monomials are called admissible monomials. Forn > 1
let A(n) be the Zg-submodule of A having the set of admissible monomials
)\l-l ... A, withi; < n — 1 as a Zg-base. It is easy to show, from (b) and (a),
that each A(n) is a subcomplex of A. The homology H**(A(n)) is the E9-term
of an unstable Adams spectral sequence for computing the 2-adic homotopy
of the sphere S”, and the homology H**(A) is the Eg-term of the classical
Adams spectral sequence for the 2-adic stable homotopy of spheres [2], [3],
[10]. Since A is filtered by the subcomplexes A(n), the spectral sequence

{Eg’s't} obtained by applying H**() to ---A(n) C A(n + 1) C - - - with
(c) E} = H (A(n)/A(n — 1))

converges to H**(A). For each r > 1 the differential d; of the spectral se-
quence goes from E;."s’t to Ey “rstli=1 mhis spectral sequence is called “the
algebraic” EHP spectral sequence for A. It corresponds, in a suitable sense,
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to the geometric EHP spectral sequence obtained by applying the homotopy
functor to the sequence of iterated loop spaces

. C QnSn C Qn+lsn+1 cC---C Qoosoo

where at each stage we have the James fibration Q*S* — Qr+lgn+l _,
Qrtlg2tl ([9], [13)).

Our purpose here is not to make calculations with this spectral sequence.
We refer to [4], [13] for some of these calculations. Rather, we propose an-
other viewpoint toward this spectral sequence. In [8], we constructed, for
each ¢t > 1, a finite dimensional subcomplex A[t] of A such that A[¢] C Az + 1]

and UA[t] = A. These subcomplexes will be described later. We want to show

t
here that the spectral sequence obtained by applying H**() to the fibration
-+ C A[f] C A[t + 1] C - -- is isomorphic to the EHP spectral sequence. The
subcomplexes A[t] arise in a very natural way, and so do the subcomplexes
A(n), in the homological algebra about the unstable modules over the Steen-
rod algebra A. We proceed to describe this homological algebra.

Recall that an unstable module M over A is a graded A-module with M,, =
0forn < 0and Sq’x = 0 for i > |x|. Let U be the category of unstable
left A-modules with degree zero A-maps as morphisms. This category is an
abelian category and has enough projectives and injectives ([6], [10], [11],

[14]). For N € U, its rth suspension £%N, defined by (£EN), = N,,_;, also
liesin# if £ > 0. The sth left derived functor of Homy, (-, £!N) is denoted by
Extz{’t(M ,N)fors >0, > 0and M € i{. In particular we have the groups
Ext})! (M, Zg).

Usually, to compute Extif (M, Z), take any projective resolution

d d
C:O«—MLCO«—‘CV—‘—CT——W

of M in U from which we get, for each ¢ > 1, a complex

*

C(M)™" : Homy(Co, X*Zg) — Homy,(Cy, 2 Zg) — - -

where C(M)** = Homy(Cg, ©'Zy). Then Ext;;'(M,Zy) = kerd},  /kerd;.
For M = X"Zs, one can construct, as in [3], a particular resolution C

such that C(X"Zg)** is identified with A(n); more precisely, C(X"Z3)%* =
A(n)$*=57". So H**(A(n)) is just Ext;;"(S"Zg, Zg). Furthermore, this reso-
lution is geometrically realizable so that H**(A(n)) can be identified as the
Eg-term of an unstable Adams spectral sequence for 27 * (S™) ([3], [9], [10]).

The stP left derived functor of Homy,(- , £Zg), when applied to M, is canon-
ically isomorphic to the sth right derived functor of Homy,(M,-) when ap-
plied to $¢Zgy. Thus Extzf (M, Z2) can also be computed as follows. Take any
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injective resolution

d d
IZO——)Et22—E>Io—1>II—2>I2—>--~

of X!Zg in Y from which we get a complex

*,0 dl- d2-
I(M)*" : Homy(M,Iy) — Homy (M ,I{) — ...

where I(M)** = Homy (M, I5). Then Ext;;' (M, Zg) = kerds, 1, ker dox.

For aninteger 2 > 1, let & = [k/2], the greatest integer less than or equal to
k/2. For a sequence of integersJ = (jy,...,js)let|J| =ji1+...+js. Fort > 1,
let A[t] be the Zg-submodule of A generated by monomials A7 = A;, ... A; (not
necessarily admissible) such that
(d)either (1) X =1

or () ig+1<t¢ andfor1<j<s
ij+1<t—|l;|-(s—j) wherel; =(ij,1,...,is).
Clearly A[t] is finite dimensional over Zg. The followmg are prove in [8].

(i) Each A[¢t] is a subcomples of A.
(ii) The set of admissible monomials A; that satisfy (d) is a Zg-base for A[f].

(iii) There is a particular injective resolution I of X©{Zg in & such that T
(E"’Zg)s’t o A[t]s,t—-n—s_

So Ext;;" (2" Zg, Zg) can also be computed from these A[t]. To give some ideas
about these subcomplexes we tabulate below Aft] for 1 < ¢ < 6 with their
admissible basis elements

All]: 1
AlZl: 1 X
ABl: 1 Ao Aoro
AM]: 1 Ao Aodo  Aodroho
A
AB]: 1 Ay Aodo Aororo Aororolo

Al Ao

A[B]: 1 Xp Apdo  Aororo Aorororo  Aororororo
A1 Ade Moo
A2 A1

Note that A[t] C Az + 1] and —* Alt] = A. Thus A is filtered by the
subcomplexes A[t]. This filtration glves rise to a spectral sequence {E,"""}
with

(e) EY™T = HS7(A[f)/Alt - 1))
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and it converges to H**(A) too. For each r > 1, the differential d, goes from

=tsT , —=t-rstlr—1
ErSTtOEr rs+1,7

THEOREM (1.1). The spectral sequence {E,"""} defined by (e) is isomor-

phic to the EHP spectral sequence {E."""} defined in (c). More precisely ,

E—t,s,r ~ Et-—r—s,s,r
r — r :

. In this note we prove the following result.

In other words, the filtration --- C A(n) C A(n + 1) C --- of A, each A(n)
being obtained by a “projective resolution”, and the filtration --- C A[f] C
Aft + 1] C --- of A, each Aft] being obtained by an “injective resolution”, give
rise to the same spectral sequence for computing H*"*(A).

(1.1)is proved in §2. In §3 we also consider an “injective” type EHP spectral
sequence for RP* and discuss its relations with the two spectral sequences
in Theorem (1.1). The additional writing of §3 to the original version of this
note is owing to referee’s suggestion to say more about the Aft]’s.

2. Proof

Before proving (1.1) we first make a few simple calculations, only to illus-
trate the comparison between these spectral sequences, particulary in the
filtration degree changes of the differentials. The “projective” EHP spectral
sequence and the “injective” EHP spectral sequence will be abreviated as
EHP S.S and EPH S.S respectively.

The basis for Al* is {)\;|k > 0}. Recall that in A we have

() s =Y ( k;i; 1 )Ak_u_l,\y.

v>0

It is easy to see that §(Ay;_;) = O for alli > 0. Thus foreachi > 0, ; =
{Xgi_,} persists to E; inboth the EHP S.S. and the EPH 8.S A; has filtration
2 in the EHP S.S and has filtration 2*! in the EPH S.S. More precisely,
i 190 —oi+l 1 9i_
h; € EZY% =1 (from (¢)) and h; € B2 %! (from (e)).
Fork #2'-1letk = 220 +1)—1;s0l > 1,j > 0. Note that ) is
a basis element in A(k + 1)/A(k). We observe that the smallest v such that

k—v+11)\ _ o
( vt ):1(mod2)1su_21—1.So,by(b)

6(Ax) = Agjr1;_1Agj_; mod A(2j+ll._ 1).
This means that, in the EHP S.8, d,(\},) = 0 for r < 2/ and

k+1,1k doj
)‘k € EQJ

k+1-2/ 2k—1
——*/\2j+11_1hjEE2j .

We also note, from (d), that Aj, is a basis element in A[2k + 2]/A[2k + 1] and
that Ap_,_1A, is a basis element in A2k — v + 1]/A[2k — v]. So

§(Ak) = Agjis1y_ 1 Agj_ mod A[2k — 2 4 2].
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This means that, in the EPH S.S, d,(;) = 0 for r < 2/ and

=2k+2,L,k doj ol =2%—2/ 42,2k 1

AkEEZI 2]+11 lh EE

Thus 6(A;) decreases filtration degree by 2/ and projects to A 9j+1;_1hjinboth

spectral sequences.

The result obtained above is that {h;[i > 0} is a Zg-base for H1*(A) which
is well known.

We proceed to the proof of (1.1).

It follows from the definition of A(rn) that we have the following.

2.1 {An—12i; -+ Agl(n = 1,iy, ..., is) admissible}
is a Zg-base for A(n)/A(n — 1).

To determine basis elements in A[t]/A[t — 1] we first note that condition
(d) (i) in §1 for monomials A;, ...A;, € A[t] (we stress that A; ...}; is not
necessarily admissible) can be s1mp1y stated as

@ ik+1_<_t——ik+1—---—is—(8-—~k) for ].Skss
where, fork =s,ip, 1+ - +is+(s—k)=0.

t—ig—-—ig—(s—1)
)

This condition fork = lisi{+1 <t—ig—---—ig— (s —1) <
which is equivalent to 2i; +ig+ ---+is+s+ 1< ¢.

LEMMA (2.2) An admissible monomial A;, ... A;, lies in A[t] if and only if
21 +je+--+ja+s+1< ¢t
- In other words, to see whether an admissible monomial Ajl ... Aj, lies in
Alt], it suffices to show if it satisfies condition (d) for £ = 1. This is not true
for inadmissible monomials. For example, this is not true for Ap; _;Agi2_;.

COROLLARY (2.3). The set of admissible monomials A;, ... Aj, with 2j; +ja+

< +Jjs +8+ 1 =tisaZy-base for A[t]/Aft — 1].

This is straightforward from (2.2).

ProofofLemma (2.2). We need only show that if 2j; +jo+---+js+s+1 < ¢
then A;, . € A[t]. As already noted above, 2j; +jo2+ - -+js+s+ 1< ¢

1mp11es condltlon (d) for £ = 1. Since ); ...);, is admissible, Zj; > jj, 1.
Then, for 2 < k < s,

20+ D41t His+s—k

=2, +jpp1+ - +is+s+2-—k
<p1+jp+tipg1+ - His+s+2-k
<Zjp_g+jp—1tjptipg1+ - +is+s+2-k
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<2y +jot-tis+s+2—k

Sitje+-+is+s (k2 2)

<t-1<t (by assumption)
that is,

~Jhp1 = —Js— (s —k)
2
Jgrt+1l < t——jk+1—--~—js—-(3—-k).
So Aj, ... Aj, also satisfies condition (d) for 2 <k < s. Thus );, ... );, € A[t].
QE.D.

Given an admissible monomial A; = ;,, we have

6()‘j1 '/\js) = /\Jlé(/\/Z S ’\js) + 6(/\j1))‘j2 - ’\js

Jpt+l < which implies

in A. From (a), (b) in §1 and, by induction on s, it is easy to verify the follow-
ing.

(2.4) Suppose 6(Ay) # 0in A, and let
§AT) =8N, A = D A+ 3 A,
v “
be its admissible expansion where the first entry of I,

is i1 for all v and the first entry J, is strictly less than
iy forall . Theni; <j;.

To prove (1.1) we first note that we may start the two spectral sequences
with Ey and E given respectively by

Eo= P A(r)/A(n — 1) and Eq = (P Alt]/Alt - 1].

n>1 t>1
Define a Zg-map fO Ey — Egby fo(Aj ) = Aj; - - - Aj, for any admissible
monomial ;, ... Aj,. By (2.1) the domam g 1s a basis element in A(j;+
1)/A(j1), and by (2.3), the range A, 1s a basis element in A[t]/Aft — 1]

where ¢ = 2j; +j2+---+js+s+1 ItlsclearthatEo—EO
For a basis element A; = }; ... A; in A(j; + 1)/A(71), let 6()) ZAI +

Z/\I and i; be asin (2.4). So 6(Ay) = Z’\I is a basis element in A(zl+

1) /A(i1). Thus 6(A) decreases filtration deg‘ree by ji —i; in the EHP spec-
tral sequence, and it projects to Z vAr, in A(ip + 1)/A@E1). By (2.3), Ay =
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Aj, - -+ Aj, isabasis element in A[£]/A[¢ — 1] where £ = 2j; +jo+---+js+s+1.
It is not difficult to see that to prove f induces isomorphisms E, = E, it

suffices to show the following.

(2.5)  Each ), is a basis element in A[t']/A[t'—1] and Z/\j“ €AY —1]
‘ w
where £/ = ¢ — (j;1—i1); so §(\s) = Y _ Az, in A[¢']/A['—1]. Thus
14

§(\g) also decreases filtration degree by j; — i1 in the EHP
spectral sequence, and it projects to Z Az, in A[t"]/A[' — 1] too.
v

Let I, = (iy, ig(v),...,is41(v))- Theniy +ig(v) + - +is1(v) =j1+ -+
Js — 1. We have
2i1+ig(w) +- - +igp1(v)+5+2
:il +i1+i2(l/)+"'+is+1(ll)+s+2
=i +jitje+ - +is—1+s+2
=({1—j1)+2Z1+je+ - +js+s+1

= (i1 —j1) +¢
=t~-(j1—1i1)
=¢.

Since I, is admissible, it follows that ); is a basis element in A[¢']/A[t' — 1]
by (2.8). LetJ, = (j1(1), ja(p), - . . .Jjss+1(p)). By making a similar calculation
we see 2j1(p) +j2(p) + - +Hispr(p) + 5+ 2 =t — (1 —j1(p)) asji1(p) +
Jo(p)+---+Jjs41(p) is also equal tojy +- - - +js — L. Sinceji(u) < iy (by (2.4)),
t—(i1—j1(p)) < t—(j1—i1) = ¢'. Again, since J, is admissible, \; € A[t'—1]
by (2.2). This proves (2.5) and therefore Theorem (1.1).

3. An injective type spectral sequence for the infinite real
projective space RP*

Corresponding to the “projective” EHP spectral sequence for H**(A) is a
similar spectral sequence for Exty"(RP*) = Exty"(H*(RP>),Zy), the Ep-

term of the mod 2 Adams spectral sequence for computing 277 This spectral
sequence is considered in [4], and will be recalled in a moment. This spectral
sequence may be referred to as the “projective” EHP spectral sequence for
RP°. Corresponding to the “injective” EHP spectral sequence for H**(A) is
also an “injective” type EHP spectral sequence for Extj{*(RP""). While there
are no natural maps from the projective EHP spectral sequence for RP*° to
the projective EHP spectral sequence for A (as will be seen), there is a natural
map from the injective EHP spectral sequence for RP* to the injective EHP
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spectral squence for A, and so via Theorem (1.1), to the usual EHP spectral
sequence for A. Because of this it is perhaps worthwhile to record here this
new spectral sequence for RP*° also. We will propose a problem concerning
this spectral sequence. 5

We simply write P for RP*°. Consider the complex H.(P) ® A which is

bigraded by (H,(P) ® A)> = S Hj(P) ® AS*~* . H,(P) ® A is a differential
k>1

right A-module with differential § given by

() 5(€k)=2(k;:zl )ek——u—1®’\‘/

v2>0
where ¢, is the generator of I~{k (P) = Zg(k > 1). Then
~ s,k
H*~5(H.(P)® A, 6) = Egt(P) ([31).
Define a map

¢ :H (P)® A — A by p(ep ® Ar) = \pAs

for any monomial A; = ’\il ... Aj, € A, It is easy to see from (b) (in §1) and (f)
that ¢ is a chain map. The induced map in Ext groups

~ ‘ st s+1t+1 0
pu t HY'“5(H.(P) ® A, 6) :Ejt(P) — Eict (H(S%) = H5+11=5(A)

is the induced map of the transfer map P 1,80 ([5]) in Eg terms of the Adams
spectral sequences. The algebraic Kahn-Priddy Theorem ([7]) asserts that o,
is onto which corresponds to the topological result—Kahn-Priddy Theorem
([5)) asserting t, :9 75(P) —9 75(S?) is onto in positive stems.

Define a filtration F(1) = 0 C F(2) C ... C F(i) C F(i+ 1) C ... of the
complex H,(P)® Aby F(i) = Y e, ® A. Clearly F(i)/F(i — 1) = £ 1A,

E<i—1 _

This filtration gives rise to a spectral sequence {E->* (P)},>1 converging to
Exty*(P) with -

EY*(P) = HY(F (i) /F (i - 1)) = H =14,

For each r > 1 the differential d, goes from E-**(P) to EL-"5*14~1(p). This
spectral sequence is considered and used in [4] to compute Exti’*(P) for small
s. We should remark that F(i) in [4] is F'( + 1) here, and that A(Z) there is
A(i + 1) here. Note that the filtration {F (i)} of ﬁ*(P) @ A above is defined
in a fashion similar to the filtration ... C A(i) CA({+ 1) C ... of Ain §1. We
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may thus refer to {E***(P)},>; as the “projective” EHP spectral sequence
for P. The chain map ¢ : H,(P) ® A — A in (g), however, is not a filtration-
preserving map, that is, (F(i)) ¢ A(i). For example, e; ® Ay € F(2), but
w(e1 ® Ag) = A1A4 = AoAg is a basis element in A(3)/A(2). Thus ¢ does not
induce a map between the projective EHP spectral sequences for P and A.
Corresponding to the filtration - - - C A[t] C A[t+ 1] C --- of A is a filtration
. C[]C Ft+1] C - of H.(P) ® A defined, similar to (d), as follows.
F[t]=0fort < 3. Fort > 4,F[t]is the Zg—submodule of H, (P)® A generated

by elements of the form e, ® A; ... A;,(A;, -- . A;, is no necessarily admissible)
such that the corresponding monormal A kA . A, in A satisfies the condition
(d), that is,
is+1 < ¢
j+1 < E=fpi- k- (5-))
and
k+1<t—ij—ig—---—is—s.

The proof of [8] showing that A[t] is a subcomplex of A also shows that

each F[t] is a subcomplex of H,(P) ® A, owing to the fact that the differ-
ential formulae (b) and (f) are similar and the fact that neither ApA;, ... A,
nor A;, ...A;, is required to be admissible. So we have a spectral sequence

{E’i'”( P)}r»1 for Ext}"(P) with

-—ty ' T T
Ey""(P) = H*"(F[¢]/F[t - 1)).
For each r > 1, the differential d, goes from E,>"" (P) to E;‘-r’s“’T_l. We

will call this s spectral sequence the “injective” EHP spectral sequence for P.

The remarkable thing is that the filtration {F[¢]} of H.(P) ® A and the
filtration {A[f]} of A are preserved by the chain map ¢ : H,(P)® A — A
in (g), that is, (F[t]) C A[t] for all ¢, and this is straightforward from the
definitions. So ¢ induces a map

pu :EST(P) — B
of the injective EHP spectral sequences. Now Theorem (1.1) says that one

can identify the injective EHP S.S with the projective EHP S.S for H**(A)

—t,s+1, —r—§— .
ST o gtom-s=1s+L7 mhys 4 induces a map

via E,’
_t! 1 - —o=
Ox :Ers T(P) —‘E,t- T7—s—-1s+1,7

from the injective EHP S.S for Ext";'*(P) to the usual EHP S.S for H**(A).
In particualr, we have a map

~ tS‘r =ts+1,7 G
SD*' > (P) Eoo ZEEOT s 1,s+l,‘r-
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Because of the algebraic Kahn-Priddy Theorem, it is tempting to make the
following conjecture.

CONJECTURE. gy isontoallt > 4,5 > 0and 7 > 1.
PROPOSITION (3.1). The conjecture is true for 0 < s < 2.

Before proving (3.1) we note the following lemma which follows from (2.3)
and the definitions of A[t] and F[¢].

LEMMA (3.2). (1) If A\p = Aj Aiy - - Ai, (s > 2) is an inadmissible monomial
in A such that (ig,...,is) is admissible then A\ # 0in A[t]JA[t — 1] where
t =2ig+ig+---+is+s. N

(2) Let e, ® A ... A, (s > 0) be and element in H.(P) ® A such that
(1, -..,is) is admissible.

(@) If (k,iq,...,1is) is admissible then e, ® ’\il C A
F[t]/F[t - 1] wheret =2k + i1+ - +is+ 5+ 2.

(ii) If (k,iy,...,is) is inadmissible then ey ® X, ... N, # 0in F[']/F[¢' — 1]
wheret' = 2i; +ig+ - +is+s+ 1.

Now we prove (3.1). Recall ([1], [15]) that H1*(A), H2*(A) and H3*(A)
for x > 0 are generated respectively by the following sets of classes:

3.1)  {h;li > 1}, {hih;l0<j<i—1lor 0<j=1},
{hphih;l0<k<j—1<i-3 or 0<k=j<i—2 or 3<k+3<j=1}
U{c;li > 0}.

is a basis element in

These classes are represented respectively by the following cycles in A where

in the first set of variables i, /, k are positive except for Ay, +2im 1/\; 121 and

the restrictions on these numbers are as in (3.3):

(3.4)
) 1,201 ) ] 2,20 492
(1) A21-__]_ e A bl A2]_1A21_1 e A ’
. . 3,2+ 4+2%-3
Agk_1Agi_1Hoi_1 €A ,
2 3,2i+30i+1, 90 3
A2i+l+2i_1/\2i+2_1 (= A + + ,
(2) Mo € AZEL (i>2), A2y e a3 (i>9),

X% € ABEHI=2 (1> 3),

Modg_qhgi g €ABZHT-2 (2 < i)
To prove (3.1) we will first prove it for the classes in (3.3) represented by the
cycles in (3.4)(1).
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Consider the following elements in H,(P) ® A corresponding to the ele-
ments in (3.4)(1):

(3.5) e, € (Ho(P)® A)¥Z- 1,
€y_1® /\2il € (H.(P)® A)LZ+¥ -2,

H,(P i 91 2k_3
egh_1 ® Mgi_1Agi_; € (Hu(P) ® A)2Z+T+2-3
-~ 8 ois s oi
62i+1+2i_1®/\§i+2_1 c (H*(P)®A)2’2'+ 42414903

It is easy to see that these are also cycles in H, (P) ® A representing classes
in Ext}"(P) which we will denote by:

- 021
(3.6) h; € Ef)lct (P),

- 1,249 -1

hihi € " Ext (P,

~ 2,219 42k 1
hkhjhi € Eitt (P),

2,243 i+l 0l
Ei (S E‘i(t (P)

Applying (2.3) and (3.2) to the elements in (3.4)(1) and (3.5) we have the
following :
ey, # 0in F[f]/F[t — 1] and Ay;_, # Oin A[t]/A[t — 1] where t = 2°+1,
eg_1®Agi_; #0inF[t]/F[t — 1] and Agj_;Agi_; # Oin A[£]/A[t — 1]
2+l if j<i-1
o+l of if j=1,
egr_1 ® Agi_1hei_; # 0in F[t]/F[t — 1]
and Ags_ Agi_Agi_; # 0in A[]/A[t — 1]
241420 ifk+8<j=1
2i+1 otherwise,

where ¢ = {

where ¢t = {
Coir1,gi1 ® A2, # OIn F[f]/F[t — 1] and Agiy1, gi_1A5;,5_; # Oin
A[fJ/A[t — 1], where t = 2+3 4 9042 4 gi+1

This implies that in the injective EHP spectral sequences for Ext:g’* (P) and
H**(A) the classes in (3.6) and the classes in (3.3) represented by cycles in
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(8.4)(1) project to the following classes in E o, (P) and E, respectively:
—oi+l g 9i_1 —9i+1,1,201
e €E0 MPTNR), Ay, €EL ,
_9i+l i 9f
o o e EX MY -2py forjci1
951 2_1 _9oi+1 9 i+1_
EEHELET-2 by forj=1,

i+l . . '
s EX 224292 forj<i—1
2-172-1€ 9 gl _
E +25,2,241 2 forj=1,
(o o]
T2+ 2 22491253

(P) fork+3<j=1
eor_1®Agj_1A2i1 € { 2+ o0 92k 3
EC()

(P) otherwise,
E2i+1+2i,3,2i+2i+2k—3

. . 'x)
Agk_1®Agj_129i 1€\ _oitl 3oi g ok 3 .
E_ otherwise,

fork+3<j=1

9 —9i+8 9i+2  gi+1 9i+8 oi+l gi_3
eoitlyi1®Agisa_y € Eoo P),
9 _‘2i+3+2i+2+2i+l,3,2i+3+2i+1+2i_3
’\2i+1+2i._1®)‘2i+2__1 eEoo .
This proves (3.1) for the classes in (3.3) corresponding to the elements in
(3.4)(1).
To prove (3.1) for the remaining classes represented by the cycles in (3.4)(2),
we first note that these classes are also represented respectively by the fol-
lowing cycles:

Aoi_1X0r Agi_1A5, A% Ao and Ay A

2 Xo.

‘-1

The following lemma is not difficult to verify from (a), (b) in §1, and from
(2.3) and (3.2)(1).

LEMMA (3.7).
i-1
(1) 6(Agi)+Agi_120 = XA gi_y = Agi_gA1+ D Agi_sidg_q where dgi o) # 0
i~1 =2
in A2 /A% — 1 and Y Xy phy ;€ AR 1],
=2

@) 690 + Aodgi) + A1 A8 = ABhgi_| = Ay gAT + > )7, where each

14
1, = (i1(v), ia(v), i3(v)) is admissible with i,(v) > 1, Agi_g)3 # O in
ARHY/ARH —1]and Y Ap, € AR 1.
v
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2 . 2 — . .
(3) 6(Agidgi_1 + Agi_1Agi) + A% Ao = AoAZ_| = Agi_ghidgi_j+ D Ay,

I
where each J, = (j1(n), jo(n), ja(u)) is admissible with ji(p) > 1,
Agi_gAihgi_y # 0in A1+ 2 /A2 + 2 —1]and D )y, € A2+

. H
2i _1).

(@) 6(Agidgi_1 + Agi_1Agi + Agiigi_120) + Agi_1Agi_120 = Aorgi_1Agi_ g =

Agi_gi_oMAgis1_1 + D Ak, where each K, = (ki(n), ka(k), ka(w)) is
n
admissiblewith k(i) > 1, Agi_gi_gA1Agis1_1 # Oin A[2H+1)/A[24+1 - 1)
and » Mg, € A[2H1-1].
In

It follows that in the injective EHP S.S for H**(A) we have the following:

] w2+12,21-1

©) hoh; projects to Ay_,)1 € Eo, ,
: _oi+1 2;,_

h(z)hi projects to ’\2i..3/\% € ‘Ego 3 1,

_oi+l 9l g oi+l_
hoh,-2 projects to Agi_gA1dgi_; GEEO +2¢ 3,2i+1_9

H

. =2+13,20497 2
hOhjhi pro_]ects to /\2i_w'_2A1/\2j+1_1 €EE ’

[0 o]
Now consider the following corresponding elements in H.(P) ® A:
i-1 5 ,
(**) €i_o® A+ Zezi;gl ® /\2l__1 € (H«(P)® A)l’z _l;
=2 -
~ 5 _ 1
ey ® N+ Y i) ® Ny dige) € (Hu(P) ® 4)>% 71,

~ i+1_
€i_9® Atdgi g+ Zejl(“) ® ’\jz(#)’\ja(n) € (H«(P)® A)2,2 2’

m

r7 249 —
e2i—2f—2®A1A2f+1—1+Eekl(#)(g’\kl(u)’\ka(#)E(H*(P)@’A)z’ -2
m

LEMMA (3.8). These are cycles in H, (P)® A.
Proof. Let Ag)g = Z’\h(w)’\kz(w) be the admissible expansion. Clearly

w
k1(w) > 1. Then from (a), (b) in §1 and (f), we have the following identities
in Ho(P)® A:

i—1
6(812) = € 1 ® Ao+ €yi_9® A1+ Zef)_i_zl ® /\22_1,
=2
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6egi ® Mo+ ek () ® Meyw)
w

= e 1®Aj+eu_3®A] + D i) ® Mgy Aig)s
v

= ey 1®Agi_jAotey 9@ Ay + Zejl(u) ® () Aig(u)-
n
b(eg @ Agi_q +egi_1® Agi +e9i 9 1 Ao)

= ey 1®Ay_ 120+ _gi_g®© AMAgii_1+ D k() © Meg(u)Meg(u)-
j73

The conclusion of the lemma follows since e _; ® Ag, €gi_; ® /\%, e 1 ®
Agi_1Apand ey ;@ Agi_;Aq are cycles in I~L(P) ® A. QE.D.
From (3.2)(2) and (3.7) we see the classes in Eth*(P) represented by the

cycles in (%) project respectively to the following classes in E,(P) in the
injective EHP 8.8 for Ext},™(P):

—2'+l 1,201
=2i+1 2911
i3 ® Mek, (P),
_._2i+l+2i,2,2i+1_2
ei_g ® )\1/\2i_1 eE_ (P),

=2+l 99l 99
gi_g_p © Mg €E

(P).
Comparing these with those classes in (*) we see (3.1) is also true for the
classes hgh;, h%hi and hoh? and hohjh;.

This completes the proof of Proposition (3.1).
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