THE HOMOTOPY TYPE OF CERTAIN CONFIGURATION SPACES

BY W. S. MASSEY

Dedicated to the memory of my friend, José Adem

We determine the homotopy type of the configuration space $F_3(\mathbb{R}^n)$, which is the set of all ordered triples (p_1, p_2, p_3) of distinct points of \mathbb{R}^n . For n = $1, 2, 4, \text{ or } 8, F_3(\mathbb{R}^n)$ is homeomorphic to the product of $F_2(\mathbb{R}^n)$ and \mathbb{R}^n minus two points. For other values of n, it is not even of the same homotopy type as this product.

1. Introduction

Let M be a connected manifold; the configuration space, $F_k(M)$, is the space of all ordered k-tuples (x_1, x_2, \ldots, x_k) of distinct points of M; it is topologized as a subspace of the product space $M \times M \times \ldots \times M$ (k factors). Apparently the term "configuration space" originated in classical mechanics. Configuration spaces are used in the theory of braids (see the opening chapters of Joan Birman's book [2]), the homotopy classification of higher dimensional links, (see Massey [5] or Koschorke [4]) and in the description of iterated loop spaces (see G. Segal [6], J.P. May [8], and F.R. Cohen [9]). The most important case in all these applications of configuration spaces is the case where $M = R^n$.

It is easily verified that $F_2(\mathbb{R}^n)$ has the homotopy type of an (n-1)dimensional sphere. This paper is concerned with the next problem, to determine the homotopy type of $F_3(\mathbb{R}^n)$.

2. Some known results

Let $p: \overline{F_m}(M) \to F_n(M)$ be defined for m > n by $p(x_1, x_2, \ldots, x_m) \to (x_1, x_2, \ldots, x_n)$. Fadell and Neuwirth [3] proved that this map defines $F_m(M)$ as a locally trivial fibre space over $F_n(M)$. They left open the question as to whether or not $F_m(M)$ is fibre bundle over $F_n(M)$ (in the sense of Steenrod, [7]).

In this paper we will be concerned with this fibration in case m = 3, n = 2, and $M = R^n$:

$$p: F_3(\mathbb{R}^n) \to F_2(\mathbb{R}^n)$$

It is readily seen that the fibre is \mathbb{R}^n with two points removed, and that the fibration admits a cross section $s: F_2(\mathbb{R}^n) \to F_3(\mathbb{R}^n)$, e.g., define $s(x_1, x_2) = (x_1, x_2, \frac{1}{2}(x_1 + x_2))$. Since $F_2(\mathbb{R}^n)$ has the homotopy type of \mathbb{S}^{n-1} , and \mathbb{R}^n with two points removed has the homotopy type of $\mathbb{S}^{n-1} \vee \mathbb{S}^{n-1}$, one can use this information to determine the homotopy groups and homology groups of $F_3(\mathbb{R}^n)$. At this stage, the following question then arises: For what values of n, if any, is the fibration $p: F_3(\mathbb{R}^n) \to F_2(\mathbb{R}^n)$ globally trivial, i.e., is $F_3(\mathbb{R}^n)$ homeomorphic to the product of $F_2(\mathbb{R}^n)$ and the fibre? If the answer

is negative, we might still hope that $F_3(\mathbb{R}^n)$ is of the same homotopy type as the product space.

It turns out that we can give rather neat answers to these questions. We will also exhibit a rather easily described compact space which has the same homotopy type as $F_3(\mathbb{R}^n)$, and give an explicit description of a CW-complex with a minimum number of cells having this homotopy type.

3. Statement of results

Let e be a unit vector in \mathbb{R}^n , e.g., we could take $e = (1, 0, \dots, 0)$.

THEOREM (I). The fibre space $p: F_3(\mathbb{R}^n) \to F_2(\mathbb{R}^n)$ is a fibre bundle (in the sense of Steenrod [7]) with fibre $\mathbb{R}^n - \{e, -e\}$ and structure group the subgroup of $GL_n^+(\mathbb{R})$ which leaves the vector e fixed.

By $GL_n^+(R)$ we mean the subgroup of $GL_n(R)$ consisting of matrices having positive determinant. By a well known theorem, the group of this bundle can be reduced to the maximal compact subgroup of the structural group; in this case, the maximal compact subgroup is the rotation group SO(n-1) acting in the subspace orthogonal to the vector e.

In preparation for the statement of the next theorem, define

$$S_{n-1} = \{(x_1, x_2) \in F_2(\mathbb{R}^n) \mid |x_1| = 1 \text{ and } x_2 = -x_1\}.$$

Then S_{n-1} is an (n-1)-sphere which is a deformation retract of $F_2(\mathbb{R}^n)$. A retraction $r: F_2(\mathbb{R}^n) \to S_{n-1}$ is defined by

$$r(x_1, x_2) = \left(\frac{x_1 - x_2}{|x_1 - x_2|}, \frac{x_2 - x_1}{|x_1 - x_2|}\right).$$

Let

$$E_n = p^{-1}(\mathcal{S}_{n-1}) \subset F_3(\mathbb{R}^n).$$

Then $p | E_n : E_n \to S_{n-1}$ is a fibre bundle with the same fibre and structure group as $p : F_3(\mathbb{R}^n) \to F_2(\mathbb{R}^n)$, and the latter bundle is induced from the former by the retraction $r : F_2(\mathbb{R}^n) \to S_{n-1}$. Also, the spaces $F_3(\mathbb{R}^n)$ and E_n have the same homotopy type.

THEOREM (II). The bundle $E_n \to S_{n-1}$ is associated to the tangent bundle of the sphere S_{n-1} for n > 1.

COROLLARY For n = 1, 2, 4, and 8, the bundle $p : F_3(\mathbb{R}^n) \to F_2(\mathbb{R}^n)$ is a product bundle, and $F_3(\mathbb{R}^n)$ is homeomorphic to $F_2(\mathbb{R}^n) \times [\mathbb{R}^n - \{e, -e\}]$.

Proof of Corollary. The tangent bundle to an (n-1)-sphere is a product bundle for n = 2, 4, or 8. The case n = 1 has to be treated separately, but it is entirely trivial. (This corollary also follows easily from some results of F.R. Cohen; see Propositions 6.4 and 6.5 on p. 257 of [9])

It remains to discuss the homotopy type of $F_3(\mathbb{R}^n)$ in case $n \neq 1, 2, 4$, or 8.

THEOREM (III). $F_3(\mathbb{R}^n)$ has the same homotopy type as the following space: Take two copies of $S^{n-1} \times S^{n-1}$ and identify them along their diagonals.

By the diagonal of $S^{n-1} \times S^{n-1}$ we mean $\{(x, x) \mid x \in S^{n-1}\}$, as usual.

THEOREM (IV). If $n \neq 1, 2, 4$, or 8, then $F_3(\mathbb{R}^n)$ does not have the same homotopy type as the product space $F_2(\mathbb{R}^n) \times [\mathbb{R}^n - \{e, -e\}]$.

In the course of proving theorem (IV), we will explicitly construct a CWcomplex which is of the same homotopy type as the space described in theorem (III) and having a minimum number of cells.

4. Proof of Theorem I

In this section we will concern ourselves with the fibration $p: F_3(\mathbb{R}^n) \to F_2(\mathbb{R}^n)$ for n > 1; the case n = 1 is rather trivial. Let A_n denote the group of all orientation preserving affine transformations of Euclidean *n*-space. A_n is a connected, non-compact Lie group, and its operation on \mathbb{R}^n is "two point transitive", in the sense that given two ordered pairs (x_1, x_2) and (y_1, y_2) of *distinct* points of \mathbb{R}^n , there exists an element $g \in A_n$ such that $g \cdot x_i = y_i$ for i = 1, 2. The group A_n also operates on $F_2(\mathbb{R}^n)$ in a obvious way, and in view of the preceding statement, the operation is transitive.

LEMMA (1). Let $x_0 \in F_2(\mathbb{R}^n)$. Then there exists an open neighborhood U of x_0 in $F_2(\mathbb{R}^n)$ and a differentiable function $s : U \to A_n$ such that $s(x_0) = 1$ and for any $x \in U$, $(sx) \cdot x_0 = x$.

Proof. Define $q: A_n \to F_2(\mathbb{R}^n)$ by $q(g) = g \cdot x_0$ for any $g \in A_n$. Then q is a continuous map of A_n onto $F_2(\mathbb{R}^n)$. Let G denote the isotropy subgroup of the point x_0 . Then G is a closed subgroup of A_n , and it is easily proved that q induces a homeomorphism of the coset space A_n/G onto $F_2(\mathbb{R}^n)$. Also, $q: A_n \to F_2(\mathbb{R}^n)$ is a principal G-bundle (see Steenrod [7], §7). Choose a neighborhood U of $x_0 \in F_2(\mathbb{R}^n)$ such that there exists a differentiable crosssection $s: U \to A_n$ of the map q. Since $q(1) = x_0$, it is clear that we may choose the cross-section s so that $s(x_0) = 1$.

Using this neighborhood U of the point $x_0 = (x_{01}, x_{02}) \in F_2(\mathbb{R}^n)$, we will now define a diffeomorphism

$$f: U \times [R^n - \{x_{01}, x_{02}] \rightarrow p^{-1}(U)$$

by the following formula:

(1)
$$f[(x_1, x_2), x_3] = (x_1, x_2, s(x_1, x_2) \cdot x_3).$$

Here $(x_1, x_2) \in U, x_3 \in [\mathbb{R}^n - \{x_{10}, x_{20}]$, and s is the function of lemma (1). Recall that this function satisfies the condition

$$s(x_1, x_2) \cdot (x_{10}, x_{20}) = (x_1, x_2)$$

for any $x = (x_1, x_2) \in U$. This is equivalent to the following two equations:

$$\begin{array}{rcl} s(x_1,x_2) \cdot x_{10} &=& x_1, \\ s(x_1,x_2) \cdot x_{20} &=& x_2. \end{array}$$

Hence, if $x_3 \neq x_{10}$ and $x_3 \neq x_{20}$, it follows that $s(x_1, x_2) \cdot x_3 \neq x_1$ and $s(x_1, x_2) \cdot x_3 \neq x_2$. Therefore formula (1) does indeed define a differentiable mapping of $U \times [R^n - \{x_{01}, x_{02}\}]$ into $p^{-1}(U) \subset F_3(R^n)$. To see that f is a diffeomorphism, observe that it has an inverse defined by

$$f^{-1}(y_1, y_2, y_3) = (y_1, y_2, [s(y_1, y_2)]^{-1} \cdot y_3)$$

where $(y_1, y_2, y_3) \in p^{-1}(U)$. Finally, notice that

$$p f[(x_1, x_2), x_3] = (x_1, x_2).$$

Using these formulas, we can now prove theorem (I). We will use the terminology, etc. of $\S2$ of Steenrod, [7].

Given any point $x_0 = (x_{01}, x_{02}) \in F_2(\mathbb{R}^n)$, choose a neighborhood U of x_0 and a function $s : U \to A_n$ as in lemma (1). Choose an element $t \in A_n$ such that

$$t(-e) = x_{01}, t(e) = x_{02},$$

where $e \in \mathbb{R}^n$ is a unit vector. Define a coordinate function

$$\varphi_U: U \times [R^n - \{e, -e\}] \to p^{-1}(U)$$

by the formula

$$\varphi_U[(x_1, x_2), x_3] = (x_1, x_2, s(x_1, x_2) \cdot t \cdot x_3).$$

The coordinate functions thus defined satisfy all the conditions needed to define a coordinate bundle; see Steenrod, loc.cit. The group of the bundle is the set of all $g \in A_n$ such that $g \cdot (\pm e) = \pm e$. This implies that g leaves the origin fixed, and hence belongs to the subgroup $GL_n^+(R)$ of A_n .

Remark. This proof depends essentially on the fact that the Lie group A_n is 2-point transitive on \mathbb{R}^n . The author's colleagues G. Margulis and G.D. Mostow have orally described proofs that no connected Lie group can operate on \mathbb{R}^n in a manner which is 3-point transitive. Thus one can not hope to generalize this proof to $F_k(\mathbb{R}^n)$ for k > 3.

5. Proof of Theorem II

As usual let S^{n-1} denote the unit sphere in \mathbb{R}^n , and let

$$E'_n = \{(x, y) \in S^{n-1} \times R^n \mid y \neq \pm x\}.$$

358

Define $p': E'_n \to S^{n-1}$ by p'(x,y) = x. Then we have a commutative diagram, as follows,

where the vertical arrows are homeomorphisms. To verify this, note that

$$E_n = \{(x_1, x_2, x_3) \in F_3(\mathbb{R}^n) \mid |x_1| = 1 \text{ and } x_2 = -x_1\}.$$

Thus to prove theorem (II), it suffices to prove that $p': E'_n \to S^{n-1}$ is a fibre bundle associated to the tangent bundle of S^{n-1} . We will leave the details of the proof to the reader, and will only offer the following suggestion: Consider the following somewhat similar problem. Let $T_n = \{(x,y) \in S^{n-1} \times \mathbb{R}^n \mid y \cdot x = 0\}$. Define $q: T_n \to S^{n-1}$ by q(x,y) = x. Prove that $q: T_n \to S^{n-1}$ is the tangent bundle of S^{n-1} .

6. Proof of Theorem III

In this section, we will assume n > 1. The discussion of the case n = 1 is rather trivial. Since the space E'_n has the same homotopy type as $F_3(\mathbb{R}^n)$, it suffices to prove that E'_n has the homotopy type of the space described in the statement of the theorem. Now E'_n is a fibre bundle with fibre $\mathbb{R}^n - \{e, -e\}$ and structural group SO(n-1); and SO(n-1) acts on the fibre by rotations in the subspace of \mathbb{R}^n perpendicular to the unit vector e. Let

$$S^{n-1} \vee S^{n-1} = \{x \in R^n \mid |x-e| = 1\}$$

$$\cup \{x \in R^n \mid |x+e| = 1\}$$

Then $S^{n-1} \vee S^{n-1}$ is the union of two (n-1)-spheres of radius 1 whose only common point is the origin. It is clear that $S^{n-1} \vee S^{n-1}$ is a deformation retract of $R^n - \{e, -e\}$, and that the action of SO(n-1) on the fibre $R^n - \{e, -e\}$ carries $S^{n-1} \vee S^{n-1}$ into itself. Hence there is a sub-bundle $E''_n \subset E'_n$ with fibre $S^{n-1} \vee S^{n-1}$ which is a deformation retract of E'_n . In the notation used in the proof of theorem (II),

$$\begin{array}{rcl} E_n'' &=& \{(x,y) \in S^{n-1} \times R^n \mid |y-x|=1\} \\ & \cup & \{(x,y) \in S^{n-1} \times R^n \mid |y+x|=1\}. \end{array}$$

If we let

$$E_n^+ = \{(x, y) \in S^{n-1} \times R^n \mid |y - x| = 1\},\$$

and

$$E_n^- = \{(x,y) \in S^{n-1} \times R^n \mid |y+x| = 1\},\$$

then $E''_n = E^+_n \cup E^-_n$, $E^+_n \cap E^-_n$ is an (n-1)-sphere which is a cross-section of the bundle, and both E^+_n and E^-_n are (n-1)-sphere bundles over S^{n-1} which are associated to the tangent bundle of S^{n-1} . We assert that both E^+_n and E^-_n are product bundles, and hence are homeomorphic to $S^{n-1} \times S^{n-1}$. The reason for this is the well-known fact that the tangent bundle to S^{n-1} plus a trivial line bundle is a product bundle. The bundles E^+_n and E^-_n can both be regarded as the unit sphere bundle of the tangent bundle plus a trivial line bundle to S^{n-1} .

Thus E_n'' is a space obtained by taking two copies $S^{n-1} \times S^{n-1}$ and identifying along an (n-1)-sphere. The problem is to precisely describe how the identification is to be made. This requires that we describe precisely the trivialization of the bundles E_n^+ and E_n^- . For this purpose, we define homeomorphisms

$$\varphi, \psi: S^{n-1} \times R^n \to S^{n-1} \times R^n$$

by the following simple formulas:

$$\varphi(\mathbf{x},\mathbf{y}) = (\mathbf{x},\mathbf{y}-\mathbf{x}),$$

$$\psi(\mathbf{x},\mathbf{y}) = (\mathbf{x},\mathbf{y}+\mathbf{x}).$$

Then φ and ψ are inverses of each other, and they leave the first coordinate unchanged. In this notation,

$$S^{n-1} \times S^{n-1} = \{(x, y) \in S^{n-1} \times R^n \mid |y| = 1\}$$

is the product bundle over S^{n-1} . It can be quickly verified that φ maps E_n^+ onto $S^{n-1} \times S^{n-1}$, and ψ maps E_n^- onto $S^{n-1} \times S^{n-1}$. Thus φ and ψ provide the needed trivializations of the bundles E_+^n and E_-^n . Also, φ maps $E_+^n \cap E_-^n$ onto the "anti-diagonal", $\{(x, -x) \mid x \in S^{n-1}\}$, while ψ maps $E_+^n \cap E_-^n$ onto the diagonal $\{(x,x) \mid x \in S^{n-1}\}$ of $S^{n-1} \times S^{n-1}$. It follows that E_n'' is homeomorphic to the space obtained by taking two copies of $S^{n-1} \times S^{n-1}$, and identifying the diagonal of one copy with the anti-diagonal of the other. But there are obvious self-homeomorphisms of $S^{n-1} \times S^{n-1}$ which interchange the diagonal and the anti-diagonal: apply the antipodal map on one of the factors. This leads immediately to the statement of theorem (III).

7. Proof of Theorem IV

We will describe an explicit construction of a CW-complex having the homotopy type of the space E_n'' . The (n-1)-skeleton will be $S^{n-1} \vee S^{n-1} \vee S^{n-1}$, a wedge of three spheres, and there will be two cells of dimension 2n-2. The homotopy classes of the attaching maps of these two cells will be described explicitly.

As a preliminary step in this construction, we will describe a CW-complex having the same homotopy type as $S^{n-1} \times S^{n-1}$ but which is different from the usual description of $S^{n-1} \times S^{n-1}$ as a CW-complex.

First, let L denote the usual CW-complex on $S^{n-1} \times S^{n-1}$: the (n-1)-skeleton is

$$L^{n-1} = S_1^{n-1} \vee S_2^{n-1},$$

the wedge of two (n-1)-spheres, and there is a single (2n-2)-cell. The homotopy class of the attaching map is the Whitehead product $\beta = [\iota_1, \iota_2]$, where $\iota_k : S_k^{n-1} \to S_1^{n-1} \lor S_2^{n-1}$ is the (homotopy class of) the inclusion map for k = 1, 2. We may as well assume that the attaching map is chosen in its homotopy class so that L is actually homeomorphic to $S_1^{n-1} \times S_2^{n-1}$. Similarly, let K denote a CW-complex which has the same (n-1)-skeleton,

$$K^{n-1} = S_1^{n-1} \vee S_2^{n-1}$$

but now the attaching map for the single (2n-2)-cell is

$$\alpha = [\iota_1, \iota_2] - [\iota_1, \iota_1] = [\iota_1, \iota_2 - \iota_1].$$

(It is assumed that all spheres are appropriately oriented). Next, define a map

$$f:K^{n-1}
ightarrow L=S_1^{n-1} imes S_2^{n-1}$$

such that the sphere S_1^{n-1} is mapped onto the sphere S_1^{n-1} with degree +1, and the sphere S_2^{n-1} is mapped onto the diagonal. In terms of the induced homomorphism

$$f_*: \pi_{n-1}(K^{n-1}) \to \pi_{n-1}(L)$$

we are requiring that

$$f_*(\iota_1) = \iota_1, f_*(\iota_2) = \iota_1 + \iota_2.$$

We now homotopically deform the map f so that K^{n-1} is mapped into L^{n-1} ; we will denote the deformed map by the same symbol f. Consider the induced homomorphism

$$f_*: \pi_{2n-3}(K^{n-1}) \to \pi_{2n-3}(L^{n-1})$$

Then

$$f_*(\alpha) = f_*[\iota_1, \iota_2 - \iota_1] = [f_*\iota_1, (f_*\iota_2) - (f_*\iota_1)] \\ = [\iota_1, (\iota_1 + \iota_2) - \iota_1] = [\iota_1, \iota_2] = \beta.$$

Since $f_*(\alpha) = \beta$, the map f can be extended to a map $F : K \to L$ such that the (2n-2)-cell of K is mapped onto the (2n-2)-cell of L with degree +1. Obviously, F must be a homotopy equivalence. Also, the map F can be deformed homotopically so that the sphere $S_2^{n-1} \subset K$ is mapped onto the sphere $S_1^{n-1} \subset L$ with degree +1, and S_2^{n-1} is mapped onto the diagonal of

 $L = S^{n-1} \times S^{n-1}$ with degree +1. Thus we have achieved our goal: K is of the same homotopy type as $S^{n-1} \times S^{n-1}$, and the "diagonal" is part of the (n-1)-skeleton of K, at least up to homotopy.

Remark. It may be possible to construct K so that it is *homeomorphic* to $S^{n-1} \times S^{n-1}$; however, we have no need for this stronger condition.

It is now clear how to construct a CW-complex of the same homotopy type as E_n'' : take two copies of K, and identify them along the sphere S_2^{n-1} . Changing notation, we have proved that E_n'' is of the same homotopy type

as a CW-complex K_n defined as follows:

$$K_n = (S_1^{n-1} \vee S_2^{n-1} \vee S_3^{n-1}) \cup e_1^{2n-2} \cup e_2^{2n-2}$$

where the top dimensional cells are adjoined by maps representing

$$\begin{aligned} \alpha_1 &= [\iota_1, \iota_2] - [\iota_1, \iota_1] = [\iota_1, \iota_2 - \iota_1], \\ \alpha_2 &= [\iota_3, \iota_2] - [\iota_3, \iota_3] = [\iota_3, \iota_2 - \iota_3]. \end{aligned}$$

For sake of comparison, $(S^{n-1} \vee S^{n-1}) \times S^{n-1}$ is a CW-complex

$$L_n = (S_1^{n-1} \lor S_2^{n-1} \lor S_3^{n-1}) \cup e_1^{2n-2} \cup e_2^{2n-2}$$

where the attaching maps are

$$\begin{array}{rcl} \beta_1 & = & [\iota_1, \iota_2] \\ \beta_2 & = & [\iota_3, \iota_2] \end{array}$$

Note that K_n and L_n have the same (n-1)-skeletons, $K_n^{n-1} = L_n^{n-1} = S_1^{n-1} \vee$ $S_{2}^{n-1} \vee S_{2}^{n-1}$

We will now prove that K_n and L_n do not have the same homotopy type, provided $n \neq 1, 2, 4$, or 8 (in particular, $n \geq 3$). The proof is by contradiction; assume there exists a homotopy equivalence $f : K_n \to L_n$ with homotopy inverse $g: L_n \to K_n$. We may assume that f and g are cellular maps; it follows that they define a homotopy equivalence between the pairs (K_n, K_n^{n-1}) and (L_n, L_n^{n-1}) . These maps induce isomorphisms of the corresponding long exact sequences of homotopy groups. We are particularly interested in the following part of these long exact sequences:

$$\begin{array}{c} \pi_{2n-2}(K_n, K_n^{n-1}) \xrightarrow{\partial_1} \pi_{2n-3}(K_n^{n-1}) \\ \downarrow f_{\star} & \downarrow f_{\star} \\ \pi_{2n-2}(L_n, L_n^{n-1}) \xrightarrow{\partial_2} \pi_{2n-3}(L_n^{n-1}) \end{array}$$

This diagram is commutative, and the arrows labelled f_* are isomorphisms. The relative homotopy groups in the left hand column of this diagram are free abelian of rank 2. The image of the homomorphism ∂_1 is the subgroup generated by α_1 and α_2 , and the image of ∂_2 is generated by β_1 and β_2 . The group $\pi_{n-1}(K_n^{n-1}) = \pi_{n-1}(L_n^{n-1})$ is free abelian of rank 3 with basis $\{\iota_1, \iota_2, \iota_3\}$. The structure of the group $\pi_{2n-3}(K_n^{n-1}) = \pi_{2n-3}(L_n^{n-1})$ is described by a well known theorem of Hilton: it is the direct sum of a free group of rank 3 (with basis the Whitehead products $[\iota_j, \iota_k]$ for $1 \le j < k \le 3$) and the subgroups $\pi_{2n-3}(S_k^{n-1})$ for k = 1, 2, 3.

Now let π'_{2n-3} denote the subgroup of $\pi_{2n-3}(K_n^{n-1}) = \pi_{2n-3}(L_n^{n-1})$ which is generated by all Whitehead products [u, v] for $u, v \in \pi_{n-1}(K_n^{n-1})$. Note the following facts about this subgroup:

1) π'_{2n-3} is free abelian of rank 6 if *n* is odd, with basis the Whitehead products $[\iota_j, \iota_k]$ for $1 \le j \le k \le 3$. If *n* is even, then π'_{2n-3} is the direct sum of a free abelian group of rank 3 and three cyclic groups of order two. In this case, the Whitehead products $[\iota_j, \iota_k]$ still generate π'_{2n-3} , and $[\iota_j, \iota_j]$ is an element of order two. This last assertion depends on the solution of the Hopf invariant one problem by Frank Adams [1].

2) π'_{2n-3} contains the images of the homomorphisms ∂_1 and ∂_2 . This is a consequence of the way the attaching maps $\alpha_1, \alpha_2, \beta_1$, and β_2 were chosen.

3) Let $\varphi: K_n^{n-1} \to L_n^{n-1}$ be any continuous map. Then the induced homomorphism $\varphi_*: \pi_{2n-3}(K_n^{n-1}) \to \pi_{2n-3}(L_n^{n-1})$ maps π'_{2n-3} into itself; if φ is a homotopy equivalence, then φ_* induces an automorphism of π'_{2n-3} .

Now consider the following commutative diagram:

$$\begin{aligned} \pi_{n-1}(K_n^{n-1}) \otimes \pi_{n-1}(K_n^{n-1}) & \longrightarrow \pi'_{2n-3} \\ & \downarrow f_* \otimes f_* & f_* \downarrow \\ \pi_{n-1}(L_n^{n-1}) \otimes \pi_{n-1}(L_n^{n-1}) & \longrightarrow \pi'_{2n-3}. \end{aligned}$$

The horizontal arrows denote Whitehead products and the vertical arrows are isomorphisms.

First, we will consider the case where n is odd, $n \geq 3$. Then n-1 is even, hence the Whitehead products in the above diagram are commutative i.e. [u, v] = [v, u]. We wish to prove that the automorphism $f_* : \pi'_{2n-3} \to \pi'_{2n-3}$ can not map the image of ∂_1 onto the image of ∂_2 . In order to better understand this situation, consider the following algebraically isomorphic situation: Let $P_* = \sum P_n$ denote the polynomial algebra in three variables, x_1, x_2 , and x_3 over the ring of integers; it is to be considered as a graded algebra, with the grading defined by the usual notion of the degree of a homogeneous polynomial. Define an isomorphism $P_1 \approx \pi_{n-1}(K_n^{n-1})$ by letting x_k corresponds to ι_k for k = 1, 2, 3; also, $P_2 \approx \pi'_{2n-3}$, where the monomial $x_j x_k$ corresponds to the Whitehead product $[\iota_j, \iota_k]$. With this correspondence, the Whitehead product $[\iota_j, \iota_k]$.

$$\pi_{n-1}(K_n^{n-1}) \otimes \pi_{n-1}(K_n^{n-1}) \to \pi'_{2n-3}$$

corresponds to the multiplication

$$P_1 \otimes P_1 \rightarrow P_2$$

in the polynomial algebra. We will use this correspondence to complete the proof of the theorem. The isomorphism

$$f_*: \pi_{n-1}(K_n^{n-1}) \to \pi_{n-1}(L_n^{n-1})$$

has the form

$$f_*(\iota_j) = \sum_{k=1}^3 n_{jk}\iota_j, \quad j = 1, 2, 3$$

where (n_{jk}) is a 3×3 integer matrix with determinant ± 1 . Using this matrix, define an automorphism

$$\varphi: P_1 \to P_1$$

by the formula

$$\varphi(x_j) = \sum_{k=1}^{3} n_{jk} x_k, \quad j = 1, 2, 3.$$

Then φ extends to a degree preserving automorphism of the polynomial algebra P_* in a unique way; we will denote this extended automorphism by the same symbol, φ . Now consider the effect of this extended automorphism in degree 2:

$$\varphi: P_2 \to P_2.$$

Since f_* maps the subgroup generated by α_1 and α_2 onto the subgroup generated by β_1 and β_2 , it follows that φ must map the subgroup of P_2 generated by the polynomials $x_1x_2 - x_1^2$ and $x_2x_3 - x_3^2$ onto the subgroup generated by x_1x_2 and x_2x_3 . As a consequence of this fact, the algebra isomorphism φ must map the ideal

$$I_1 = (x_1 x_2 - x_1^2, x_2 x_3 - x_3^2)$$

onto the ideal

$$I_2 = (x_1 x_2, x_2 x_3).$$

But this is clearly impossible: all polynomials in the ideal I_2 have x_2 as a factor, while the two generators of the ideal I_1 are relatively prime. Clearly these properties are invariant under any automorphism of P_* . This contradiction completes the proof in case n is odd.

It remains to consider the case where n is even, $n \neq 2, 4$, or 8. In this case the Whitehead products involved are anti-commutative rather than commutative: [u, v] = -[v, u], and $[\iota_k, \iota_k]$ is of order two. However, the preceding proof can be adapted to this case by reducing the groups $\pi_{n-1}(K_n^{n-1})$ and π'_{2n-3} modulo two, and letting P_* denote the graded polynomial algebra in the variables x_1, x_2 , and x_3 over the ring of integers modulo two. With these modifications, the previous proof goes through.

This completes the proof of theorem (IV).

Remark. It can be shown that for n odd, the integral cohomology rings of the spaces $F_3(\mathbb{R}^n)$ and $F_2(\mathbb{R}^n) \times [\mathbb{R}^n - \{e, -e\}]$ are non-isomorphic. This fact also proves theorem (IV) in the case where n is odd. For n even, the cohomology rings of these two spaces are isomorphic.

YALE UNIVERSITY NEW HAVEN, CT. 06520 U.S.A.

REFERENCES

- J.F. ADAMS, On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960), 20–104.
- [2] J. BIRMAN, Braids, Links, and Mapping Class Groups, Ann. Math. Studies 82 (1974).
- [3] E. FADELL AND L. NEUWIRTH, Configuration Spaces, Math. Scand. 10 (1962), 111-118.
- [4] U. KOSCHORKE, Higher order homotopy invariants for higher dimensional link maps, Springer Lecture Notes in Math. 1172 (1985), 116-129.
- [5] W.S. MASSEY, Homotopy classification of 3-Component links of codimension greater then 2, Top. and Its Appl. 34 (1990), 169–300.
- [6] G. SEGAL, Configuration spaces and iterated loop spaces, Inv. Math. 21 (1973), 213-221.
- [7] N.E. STEENROD, The Topology of Fibre Bundles, Princeton University Press (1951).
- [8] J.P. MAY, The Geometry of Iterated Loop Spaces, Springer Lecture Notes in Mathematics 27 (1972).
- [9] F.R. Cohen, T.J. LADA, AND J.P. MAY, *The homology of Iterated Loop Spaces*, Springer Lecture Notes in Mathematics **533** (1976).