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THE HOMOTOPY TYPE OF CERTAIN CONFIGURATION SPACES 

BY W. S. MAssEY 

Dedicated to the memory of my friend, Jose Adem 

We determine the homotopy type of the configuration space F3(Rn), which 
is the set of all ordered triples (p1,P2,p3) of distinct points of Rn. For n = 
1, 2, 4, or 8, F3(Rn) is homeomorphic to the product of F2(Rn) and Rn minus 
two points. For other values of n, it is not even of the same homotopy type 
as this product. 

1. Introduction 

LetM be a connected manifold; the configuration space, Fk (M), is the space 
of all ordered k-tuples (x1, x2, ... ,xk) of distinct points of M; it is topologized 
as a subspace of the productspaceM xMx ... xM (k factors). Apparently the 
term "configuration space" originated in classical mechanics. Configuration 
spaces are used in the theory of braids (see the opening chapters of Joan Bir
man's book [2]), the homotopy classification of higher dimensional links, (see 
Massey [5] or Koschorke [4]) and in the description of iterated loop spaces 
(see G. Segal [6], J.P. May [8], and F.R. Cohen [9]). The most important case 
in all these applications of configuration spaces is the case where M = Rn. 

It is easily verified that F2(Rn) has the homotopy type of an (n - 1)
dimensional sphere. This paper is concerned with the next problem, to de
termine the homotopy type of F 3 (Rn). 

2. Some known results 

Let p : Fm(M) -+ Fn(M) be defined form > n by p(x1,x2, ... ,xm) -+ 

(x1,x2, ... ,xn), Fadell and Neuwirth [3] proved that this map defines F m(M) 
as a locally trivial fibre space over Fn(M). They left open the question as to 
whether or not Fm(M) is fibre bundle over Fn(M) (in the sense of Steenrod, 
[7]). 

In this paper we will be concerned with this fibration in case m = 3, n = 2, 
andM =Rn: 

p : F3(Rn)-+ F2(Rn) 

It is readily seen that the fibre is Rn with two points removed, and that the 
fibration admits a cross sections: F2(Rn)-+ F3(Rn), e.g., define s(x1,x2) = 
(x1,x2, ½(x1 + x2)). Since F2(Rn) has the homotopy type of sn-l, and Rn 
with two points removed has the homotopy type of sn- l V sn- l, one can use 
this information to determine the homotopy groups and homology groups of 
F 3(Rn). At this stage, the following question then arises: For what values 
of n, if any, is the fibration p : F3(Rn) -+ F2(Rn) globally trivial, i.e., is 
F 3(Rn) homeomorphic to the product of F 2(Rn) and the fibre? If the answer 
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is negative, we might still hope that F3(Rn) is of the same homotopy type as 
the product space. 

It turns out that we can give rather neat answers to these questions. We 
will also exhibit a rather easily described compact 8pace which has the same 
homotopy type as F3(Rn ), and give an explicit description of a CW-complex 
with a minimum number of cells having this homotopy type. 

3. Statement of results 

Let e be a unit vector in Rn, e.g., we could take e = (1, 0, ... , 0). 

THEOREM (I). The fibre spacep: F3(Rn)-+ F2(Rn) is a fibre bundle (in the 
sense of Steenrod [71) with fibre Rn - { e, -e} and structure group the subgroup 
of GLt, (R) which leaves the vector e fixed. 

ByGL't,(R) we mean thesubgroupofGLn(R) consistingofmatriceshaving 
positive determinant. By a well known theorem, the group of this bundle can 
be reduced to the maximal compact subgroup of the structural group; in this 
case, the maximal compact subgroup is the rotation group SO(n - 1) acting 
in the subspace orthogonal to the vector e. 

In preparation for the statement of the next theorem, define 

Then Sn-1 is an (n - 1)-sphere which is a deformation retract of F2(Rn). A 
retraction r : F2(Rn) -+ Sn-1 is defined by 

Let 
En= p- 1(Sn-1) C F3(Rn). 

Thenp I En : En--+ Sn-1 is a fibre bundle with the same fibre and structure 
group asp : F3(Rn) -+ F2(Rn), and the latter bundle is induced from the 
former by the retraction r : F2(R11,)-+ Sn-1· Also, the spaces F3(Rn) and En 
have the same homotopy type. 

THEOREM (II). The bundle En -+ Sn-1 is associated to the tangent bundle 
of the sphere Sn-1 for n > l. 

COROLLARY For n = l, 2, 4, and 8, the bundle p : F 3(Rn) -+ F2(Rn) is a 
product bundle, and F3(Rn) is homeomorphic to F2(Rn) x [Rn - {e, -e }]. 

Proof of Corollary. The tangent bundle to an (n - 1 )-sphere is a product 
bundle for n = 2,4, or 8. The case n = l has to be treated separately, but it 
is entirely trivial. (This corollary also follows easily from some results ofF.R. 
Cohen; see Propositions 6.4 and 6.5 on p. 257 of [9]) 

It remains to discuss the homotopy type of F3(Rn) in case n f l, 2, 4, or 8. 
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THEOREM (III). F3(Rn) has the same honwtopy type as the following space: 
Take two copies of sn- l x sn- l and identify them along their diagonals. 

By the diagonal of sn-l X sn-l we mean {(x,x) Ix E sn- 1}, as usual. 

THEOREM (IV). Ifn f= I, 2, 4, or 8, then F3(Rn) does not have the same ho
nwtopy type as the product space F2(Rn) x [Rn - { e, -e} ]. 

In the course of proving theorem (IV), we will explicitly construct a CW
complex which is of the same homotopy type as the space described in theo
rem (III) and having a minimum number of cells. 

4. Proof of Theorem I 

In this section we will concern ourselves with the fibrationp : F3 (Rn) --+ 

F2(Rn) for n > I; the case n = I is rather trivial. Let An denote the group 
of all orientation preserving affine transformations of Euclidean n-space. An 
is a connected, non-compact Lie group, and its operation on Rn is "two point 
transitive", in the sense that given two ordered pairs (x1,x2) and CY1,Y2) of 
distinct points of Rn, there exists an element g E An such that g · xi = Yi for 
i = I, 2. The group An also operates on F2(Rn) in a obvious way, and in view 
of the preceding statement, the operation is transitive. 

LEMMA (1). Let x0 E F2(Rn). Then there exists an open neighborhood U of 
xo in F2(Rn) and a differentiable functions : U --+ An such that s(xo) = 1 and 
for any x E U, (sx) · xo = x. 

Proof. Define q : An --+ F2(R'i) by q(g) = g · xo for any g E An, Then q 
is a continuous map of An onto F2(Rn). Let G denote the-isotropy subgroup 

. of the point xo. Then G is a closed subgroup of An, and it is easily proved 
tnarq induces a homeomorphism of the coset spaceAn/G onto F 2 (Rn). Also, 
q : An --+ F2(Rn) is a principal G-bundle (see Steenrod [7], §7). Choose a 
neighborhood U ofxo E F2(Rn) such that there exists a differentiable cross
section s : U -+ An of the map q. Since q( I) = x 0, it is clear that we may 
choose the cross-section s so that s(xo) = 1. 

Using this neighborhood U of the pointxo = (xo1,xo2) E F2(Rn), we will 
now define a diffeomorphism 

by the following formula: 

(1) 

Here (x1,x2) E U,x3 E [Rn - {x10,x20], ands is the function of lemma (1). 
Recall that this function satisfies the condition 
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for any x = (x1,x2) EU. This is equivalent to the following two equations: 

s(x 1,x2)•x10 x1, 

s(x1 ,x2) · x20 x2. 

Hence, ifx3 f=. x10 andx3 f=. x20, it follows that s(x1,x2) •x3 f=. x1 and s(x1,x2) · 
x3 f=. x2, Therefore formula (1) does indeed define a differentiable mapping of 
U x [Rn - { xo 1, xo2}] in to p- 1 ( U) C F 3 (Rn). To see that f is a diffeomorphism, 
observe that it has an inverse defined by 

f- 1(y1,Y2,Y3) = (y1,Y2, [s(y1,Y2)]-l · Ys) 

where (y1,Y2,Ys) Ep- 1(U). Finally, notice that 

Using these formulas, we can now prove theorem (I). We will use the ter
minology, etc. of§ 2 of Steenrod, [7]. 

Given any point xo = (xo1,xo2) E F2(Rn), choose a neighborhood U of xo 
and a functions: U-+ An as in lemma (1). Choose an element t E An such 
that 

t(-e) =xo1,t(e) =xo2, 

where e E Rn is a unit vector. Define a coordinate function 

<pu: U x [Rn - {e, -e}]-+ p- 1(U) 

by the formula 

The coordinate functions thus defined satisfy all the conditions needed to de
fine a coordinate bundle; see Steenrod, loc.cit. The group of the bundle is the 
set of allg E An such thatg • (±e) = ±e. This implies thatg leaves the origin 
fixed, and hence belongs to the subgroup GL;t(R) of An, 

Renwrk. This proof depends essentially on the fact that the Lie group 
An is 2-point transitive on Rn. The author's colleagues G. Margulis and G.D. 
Mostow have orally described proofs that no connected Lie group can operate 
on Rn in a manner which is 3-point transitive. Thus one can not hope to 
generalize this proof to Fk(Rn) fork> 3. 

5. Proof of Theorem II 

As usual let sn- l denote the unit sphere in Rn, and let 

E~ = {(x,y) E sn-l X Rn IY f=. ±x}. 
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Define p' : E~ ~ sn- l by p' (x ,Y) = x. Then we have a commutative diagram, 
as follows, 

E PIEn S r~r 
E~ ~sn-l 

where the vertical arrows are homeomorphisms. To verify this, note that 

Thus to prove theorem (II), it suffices to prove that p' : E~ ~ sn- l is a fibre 
bundle associated to the tangent bundle of sn- l _ We will leave the details of 
the proof to the reader, and will only offer the following suggestion: Consider 
thefollowingsomewhatsimilarproblem. LetTn = {(x,y) E sn-lxRn IY·X = 
O}. Define q : Tn _,. sn-l by q(x,y) = x. Prove that q : Tn ~ sn-l is the 
tangent bundle of sn-l _ 

6. Proof of Theorem III 

In this section, we will assume n > 1. The discussion of the case n = 1 is 
rather trivial. Since the space E~ has the same homotopy type as F 3(Rn), it 
suffices to prove that E~ has the homotopy type of the space described in the 
statement of the theorem. Now E~ is a fibre bundle with fibre Rn - {e, -e} 
and structural group SO(n - 1); and SO(n - 1) acts on the fibre by rotations 
in the subspace of Rn perpend_icular to the unit vector e. Let 

sn-l V sn- l {x E Rn I Ix_;_ el = 1} 

U { x E Rn I Ix + e I = 1} 

Then sn-l V sn-l is the union of two (n - 1)-spheres ofradius 1 whose only 
common point is the origin. It is clear that sn- l v sn- l is a deformation 
retractofRn-{e, -e }, and that the action of SO(n-1) on the fibreRn-{e, -e} 
carries sn-l V sn-l into itself. Hence there is a sub-bundle E~ c E~ with 
fibre sn- l V sn- l which is a deformation retract of E~. In the notation used 
in the proof of theorem (II), 

E~ {(x,y) ESn-l xRn I lY-xl= 1} 

U {(x,y) E sn-l x Rn I lY +xi= 1}. 

If we let 
E;t = {(x,y) E sn-l x Rn I lY-xl = 1}, 

and 
E;; = {(x,y) E sn-l x Rn I lY +xi= 1}, 
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then E~ = E;t uE;; ,E;t nE;; is an (n - 1)-sphere which is a cross-section of 
the bundle, and both E;t and E;; are (n - 1 )-sphere bundles over sn- l which 
are associated to the tangent bundle of sn-l. w., assert that both E;t and 
E;; are product bundles, and hence are homeonwrphic to sn- l x sn- 1. The 
reason for this is the well-known fact that the tangent bundle to sn-l plus a 
trivial line bundle is a product bundle. The bundles E;t and E;; can both be 
regarded as the unit sphere bundle of the tangent bundle plus a trivial line 
bundle to sn-l _ 

Thus E~ is a space obtained by taking two copies sn-l x sn-l and iden
tifying along an (n - 1)-sphere. The problem is to precisely describe how 
the identification is to be made. This requires that we describe precisely the 
trivialization of the bundles E;t and E;;. For this purpose, we define homeo
morphisms 

by the following simple formulas: 

cp(x,y) = (x,y - x), 

'I/J(x,y) = (x,y + x). 

Then cp and 'I/J are inverses of each other, and they leave the first coordinate 
unchanged. In this notation, 

sn-l x sn-l = {(x,y) E sn-l x Rn I lYI = 1} 

is the product bundle over sn-l _ It can be ~uickly verified that cp maps E;t 
onto sn-l X sn-l, and 'Ip maps E;; onto sn- X sn-l _ Thus 'P and 'lj.1 provide 
the needed trivializations of the bundles Ei and E'::_. Also, 'P maps Ei n 
E'::_ onto the "anti-diagonal", {(x, -x) Ix E sn- 1}, while 'I/J maps Ei n E'::_ 

onto the diagonal {(x,x) Ix E sn-l} of sn-l x sn-l_ It follows that E~ is 
homeomorphic to the space obtained by taking two copies of sn-l x sn- l, and 
identifying the diagonal of one copy with the anti-diagonal of the other. But 
there are obvious self-homeomorphisms of sn- l x sn- l which interchange 
the diagonal and the anti-diagonal: apply the antipodal map on one of the 
factors. This leads immediately to the statement of theorem (III). 

7. Proof of Theorem IV 

We will describe an explicit construction of a CW-complex having the ho
motopy type of the space E~. The (n-1 )-skeleton will be sn-l V sn-l V sn- 1, 

a wedge of three spheres, and there will be two cells of dimension 2n - 2. The 
homotopy classes of the attaching maps of these two cells will be described 
explicitly. 

As a preliminary step in this construction, we will describe a CW-complex 
having the same homotopy type as sn-l x sn- l but which is different from 
the usual description of sn-l x sn-l as a CW-complex. 
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First, let L denote the usual CW-complex on sn-l x sn- 1: the (n - 1)
skeleton is 

Ln-1 = s~-1 V S2-1, 

the wedge of two (n - 1)-spheres, and there is a single (2n - 2)-cell. The 
homotopy class of the attaching map is the Whitehead product /3 = [t1, t2], 
where lk : s;- 1 -+ s7i-1 V s2-l is the (homotopy class of) the inclusion map 
fork= 1, 2. We may as well assume that the attaching map is chosen in its 
homotopy class so that L is actually homeomorphic to s~-l x s~-1. Similarly, 
letK denote a CW-complex which has the same (n - 1)-skeleton, 

Kn-1 = s~-1 V S2-1, 

but now the attaching map for the single (2n - 2)-cell is 

fr = [q 1 l2] - [q, £I] = [q, l2 - £I]. 

(It is assumed that all spheres are appropriately oriented). Next, define a 
map 

f . Kn-1 L _ sn-1 sn-1 
. -+ - 1 X 2 

such that the sphere s1- 1 is mapped onto the sphere s1- 1 with degree + 1, 

and the sphere s2- 1 is mapped onto the diagonal. In terms of the induced 
homomorphism 

we are requiring that 

We now homotopically deform the map f so that Kn- l is mapped into Ln-1; 
we will denote the deformed map by the same symbol f. Consider the induced 
homomorphism 

Then 

f*(a) f*[q, l2 - q] = [f*q, (f*l2) - (f*q)] 
[q, (ll + l2) - q] = [q, l2] = (3. 

Since f* (a) = (3, the map f can be extended to a map F : K -+ L such 
that the (2n - 2)-cell of K is mapped onto the (2n - 2)-cell of L with de
gree +l. Obviously, F must be a homotopy equivalence. Also, the map F can 
be deformed homotopically so that the sphere s~-l c K is mapped onto the 

sphere s~-l c L with degree + 1, and s2-1 is mapped onto the diagonal of 
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L = sn-l x sn-l with degree +l. Thus we have achieved our goal: K is of 
the same homotopy type as sn-l x sn-l, and the "diagonal" is part of the 
(n - !)-skeleton of K, at least up to homotopy. 

Remark. It may be possible to construct K so that it is homeomorphic to 
sn-l x sn-l; however, we have no need for this stronger condition. 

It is now clear how to construct a CW-complex of the same homotopy type 
as Ei: take two copies of K, and identify them along the sphere s;r 1. 

Changing notation, we have proved that Ei is of the same homotopy type 
as a CW-complex Kn defined as follows: 

Kn= (S1-l V s2- 1 V s3- 1) U ei'7'-2 U er-2 

where the top dimensional cells are adjoined by maps representing 

cq [q, l2] - [q, ti]= [q, l2 - q], 

0'.2 [t3, l2] - [t3, t3] = [£3, l2 - l3]. 

For sake of comparison, (sn-l V sn-l) x sn-l is a CW-complex 

Ln = (Sl-l V S2-l V S3- 1) U ei'7'-2 U er-2 

where the attaching maps are 

!31 [t1, t2] 

!32 [t3, t2] 

NotethatKn andLn havethesame(n-l)-skeletons,K:- 1 = L~-l = sr-lv 
s2-1 v s;-1. 

We will now prove that Kn and Ln do not have the same homotopy type, 
provided n-:/-1, 2, 4, or 8 (in particular, n 2_:: 3). The proof is by contradiction; 
assume there exists a homotopy equivalence f : Kn -+ Ln with homotopy 
inverse g : Ln -+ Kn, We may assume that f and g are cellular maps; it fol
lows that they define a homotopy equivalence between the pairs (Kn, K:- 1) 
and (Ln, L~- l). These maps induce isomorphisms of the corresponding long 
exact sequences of homotopy groups. We are particularly interested in the 
following part of these long exact sequences: 

( v Kn-1) 0 1 (Kn-1) 7r2n-2 .n..n, n ----+ 1l"2n-3 n 

1~ 1~ 
(L Ln-1) 02 (Ln-1) 1l"2n-2 n, n ----+ 1l"2n-3 n 

This diagram is commutative, and the arrows labelled f* are isomorphisms. 
The relative homotopy groups in the left hand column of this diagram are free 
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abelian ofrank 2. The image of the homomorphism 81 is the subgroup gener
ated by a1 and a2, and the image of 82 is generated by /Ji and /32- The group 
7rn_1(Kf;- 1) = 1rn-1(L~-l) is free abelian of rank 3 with basis {q,t2,t3}. 

The structure of the group 1r2n_3(Kf;- 1) = 1r2n_3(L~-l) is described by a 
well known theorem of Hilton: it is the direct sum of a free group of rank 3 
(with basis the Whitehead products [t1, tk] for 1 :S j < k :S 3) and the sub-

groups 1r2n_3(S~-l) fork= 1, 2, 3. 

Now let 1r2,i_3 denote the subgroup of 1r2n_3(KJ:-1) = 1r2n_3(L~-l) which 

is generated by all Whitehead products [u, v] for u, v E 7rn_1(KJ:- 1). Note the 
following facts about this subgroup: 

1) 1r2,i_3 is free abelian of rank 6 if n is_ odd, with basis the Whitehead 
products [t1, tk] for 1 :S j :S k :S 3. If n is even, then 1r2,i_3 is the direct sum 
of a free abelian group of rank 3 and three cyclic groups of order two. In 
this case, the Whitehead products (0, tk] still generate 1r2,i_3, and [t1, lj] is an 
element of order two. This last assertion depends on the solution of the Hopf 
invariant one problem by Frank Adams [1]. 

2) 1r2,i_3 contains the images of the homomorphisms 81 and 82. This is a 
consequence of the way the attaching maps a 1, a2, (Ji, and /32 were chosen. 

3) Let <p : K!;- 1 -+ L~- l be any continuous map. Then the induced homo
morphism cp*: 1r2n_3(Kf;- 1)-+ 1r2n_3(L~-l) maps 1r2n_ 3 into itself; if <pis a 
homotopy equivalence, then cp* induces an automorphism of 1r2,i_3. 

Now consider the following commutative diagram: 

(K n-1) rv1 (Kn-1)· , 
'lrn-1 n 1CJ 7rn-1 n - 7r21_3 

lf•®f. f• 1 
(Ln-1) rv1 (L·n-1) , 

7rn-1 . n 1CJ 7rn-1 n - 7r2n-3· 

The horizontal arrows denote Whitehead products and the vertical arrows 
are isomorphisms. 

First, we will consider the case where n is odd, n 2: 3. Then n - 1 is even, 
hence the Whitehead products in the above diagram are commutative i.e. 
[u, v] = [v, u]. We wish to prove that the automorphism f* : 1r2,i_3 -+ 1r2,i_3 
can not map the image of 8 1 onto the image of 82. In order to better under
stand this situation, consider the following algebraically isomorphic situa
tion: Let P* = E Pn denote the polynomial algebra in three variables, x1,x2, 
andx 3 over the ring of integers; it is to be considered as a graded algebra, with 
the grading defined by the usual notion of the degree of a homogeneous poly
nomial. Define an isomorphism P1 ~ 1rn-1(KJ:- 1) by letting xk correspond 
to tk fork = 1, 2, 3; also, P2 ~ 1r2,i_3, where the monomial XjXk corresponds 
to the Whitehead product [tJ, tk]. With this correspondence, the Whitehead 
product 

(Kn-1) (Kn-1) , 'lrn-1 n 0 7rn-1 n -, 7r2n-3 
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corresponds to the multiplication 

in the polynomial algebra. We will use this correspondence to complete the 
proof of the theorem. The isomorphism 

f*: 7rn-1(KJ:- 1)--+ 7rn-1(L~-l) 

has the form 
3 

f*(lj) = L njklj, j = I, 2, 3 
k=l 

where (njk) is a 3 x 3 integer matrix with determinant ±1. Using this matrix, 
define an automorphism 

by the formula 
3 

<p(Xj) = L njkxk, j = I, 2, 3. 
k=l 

Then t.p extends to a degree preserving automorphism of the polynomial al
gebra P * in a unique way; we will denote this extended automorphism by the 
same symbol, t.p. Now consider the effect of this extended automorphism in 
degree 2: 

Since f* maps the subgroup generated by cq and a2 onto the subgroup gen
erated by /Ji and /32, it follows that <p must map the subgroup of P2 generated 
by the polynomials x1x2 - xy and x2x3 - xi onto the subgroup generated by 
x1x2 andx2x3. As a consequence of this fact, the algebra isomorphism <p must 
map the ideal 

onto the ideal 
12 = (x1x2,x2x3). 

But this is clearly impossible: all polynomials in the ideal 12 havex 2 as a fac
tor, while the two generators of the ideal/ 1 are relatively prime. Clearly these 
properties are invariant under any automorphism of P *. This contradiction 
completes the proof in case n is odd. 

It remains to consider the case where n is even, n f:. 2, 4, or 8. In this case 
the Whitehead products involved are anti-commutative rather than commu
tative: [u, v] = -[v, u], and [Lk, Lk] is of order two. However, the preceding 
proof can be adapted to this case by reducing the groups 7rn_1(KJ:- 1) and 
1r2,i_3 modulo two, and letting P * denote the graded polynomial algebra in 
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the variables x 1, x2, and x3 over the ring of integers nwdulo two . With these 
modifications, the previous proof goes through. 

This completes the proof of theorem (IV). 

Remark. It can be shown that for n odd, the integral cohomology rings of the 
spaces F3(Rn) and F2(Rn) x [Rn - {e, -e }] are non-isomorphic. This fact also 
proves theorem (IV) in the case where n is odd. For n even, the cohomology 
rings of these two spaces are isomorphic. 
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