THE HOMOTOPY TYPE OF CERTAIN CONFIGURATION SPACES

By W. S. Massey

Dedicated to the memory of my friend, José Adem

We determine the homotopy type of the configuration space $F_{3}\left(R^{n}\right)$, which is the set of all ordered triples (p_{1}, p_{2}, p_{3}) of distinct points of R^{n}. For $n=$ $1,2,4$, or $8, F_{3}\left(R^{n}\right)$ is homeomorphic to the product of $F_{2}\left(R^{n}\right)$ and R^{n} minus two points. For other values of n, it is not even of the same homotopy type as this product.

1. Introduction

Let M be a connected manifold; the configuration space, $F_{k}(M)$, is the space of all ordered k-tuples ($x_{1}, x_{2}, \ldots, x_{k}$) of distinct points of M; it is topologized as a subspace of the product space $M \times M \times \ldots \times M$ (k factors). Apparently the term "configuration space" originated in classical mechanics. Configuration spaces are used in the theory of braids (see the opening chapters of Joan Birman's book [2]), the homotopy classification of higher dimensional links, (see Massey [5] or Koschorke [4]) and in the description of iterated loop spaces (see G. Segal [6], J.P. May [8], and F.R. Cohen [9]). The most important case in all these applications of configuration spaces is the case where $M=R^{n}$.

It is easily verified that $F_{2}\left(R^{n}\right)$ has the homotopy type of an $(n-1)$ dimensional sphere. This paper is concerned with the next problem, to determine the homotopy type of $F_{3}\left(R^{n}\right)$.

2. Some known results

Let $p: F_{m}(M) \rightarrow F_{n}(M)$ be defined for $m>n$ by $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \rightarrow$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Fadell and Neuwirth [3] proved that this map defines $F_{m}(M)$ as a locally trivial fibre space over $F_{n}(M)$. They left open the question as to whether or not $F_{m}(M)$ is fibre bundle over $F_{n}(M)$ (in the sense of Steenrod, [7]).

In this paper we will be concerned with this fibration in case $m=3, n=2$, and $M=R^{n}$:

$$
p: F_{3}\left(R^{n}\right) \rightarrow F_{2}\left(R^{n}\right)
$$

It is readily seen that the fibre is R^{n} with two points removed, and that the fibration admits a cross section $s: F_{2}\left(R^{n}\right) \rightarrow F_{3}\left(R^{n}\right)$, e.g., define $s\left(x_{1}, x_{2}\right)=$ $\left(x_{1}, x_{2}, \frac{1}{2}\left(x_{1}+x_{2}\right)\right)$. Since $F_{2}\left(R^{n}\right)$ has the homotopy type of S^{n-1}, and R^{n} with two points removed has the homotopy type of $S^{n-1} \vee S^{n-1}$, one can use this information to determine the homotopy groups and homology groups of $F_{3}\left(R^{n}\right)$. At this stage, the following question then arises: For what values of n, if any, is the fibration $p: F_{3}\left(R^{n}\right) \rightarrow F_{2}\left(R^{n}\right)$ globally trivial, i.e., is $F_{3}\left(R^{n}\right)$ homeomorphic to the product of $F_{2}\left(R^{n}\right)$ and the fibre? If the answer
is negative, we might still hope that $F_{3}\left(R^{n}\right)$ is of the same homotopy type as the product space.

It turns out that we can give rather neat answers to these questions. We will also exhibit a rather easily described compact space which has the same homotopy type as $F_{3}\left(R^{n}\right)$, and give an explicit description of a CW-complex with a minimum number of cells having this homotopy type.

3. Statement of results

Let e be a unit vector in R^{n}, e.g., we could take $e=(1,0, \ldots, 0)$.
THEOREM (I). The fibre space $p: F_{3}\left(R^{n}\right) \rightarrow F_{2}\left(R^{n}\right)$ is a fibre bundle (in the sense of Steenrod [7]) with fibre $R^{n}-\{e,-e\}$ and structure group the subgroup of $G L_{n}^{+}(R)$ which leaves the vector e fixed.

By $G L_{n}^{+}(R)$ we mean the subgroup of $G L_{n}(R)$ consisting of matrices having positive determinant. By a well known theorem, the group of this bundle can be reduced to the maximal compact subgroup of the structural group; in this case, the maximal compact subgroup is the rotation group $S O(n-1)$ acting in the subspace orthogonal to the vector e.

In preparation for the statement of the next theorem, define

$$
\mathcal{S}_{n-1}=\left\{\left(x_{1}, x_{2}\right) \in F_{2}\left(R^{n}\right)| | x_{1} \mid=1 \text { and } x_{2}=-x_{1}\right\} .
$$

Then \mathcal{S}_{n-1} is an $(n-1)$-sphere which is a deformation retract of $F_{2}\left(R^{n}\right)$. A retraction $r: F_{2}\left(R^{n}\right) \rightarrow \mathcal{S}_{n-1}$ is defined by

$$
r\left(x_{1}, x_{2}\right)=\left(\frac{x_{1}-x_{2}}{\left|x_{1}-x_{2}\right|}, \frac{x_{2}-x_{1}}{\left|x_{1}-x_{2}\right|}\right)
$$

Let

$$
E_{n}=p^{-1}\left(\mathcal{S}_{n-1}\right) \subset F_{3}\left(R^{n}\right)
$$

Then $p \mid E_{n}: E_{n} \rightarrow \mathcal{S}_{n-1}$ is a fibre bundle with the same fibre and structure group as $p: F_{3}\left(R^{n}\right) \rightarrow F_{2}\left(R^{n}\right)$, and the latter bundle is induced from the former by the retraction $r: F_{2}\left(R^{n}\right) \rightarrow \mathcal{S}_{n-1}$. Also, the spaces $F_{3}\left(R^{n}\right)$ and E_{n} have the same homotopy type.

THEOREM (II). The bundle $E_{n} \rightarrow S_{n-1}$ is associated to the tangent bundle of the sphere \mathcal{S}_{n-1} for $n>1$.

COROLLARY For $n=1,2,4$, and 8 , the bundle $p: F_{3}\left(R^{n}\right) \rightarrow F_{2}\left(R^{n}\right)$ is a product bundle, and $F_{3}\left(R^{n}\right)$ is homeomorphic to $F_{2}\left(R^{n}\right) \times\left[R^{n}-\{e,-e\}\right]$.

Proof of Corollary. The tangent bundle to an $(n-1)$-sphere is a product bundle for $n=2,4$, or 8 . The case $n=1$ has to be treated separately, but it is entirely trivial. (This corollary also follows easily from some results of F.R. Cohen; see Propositions 6.4 and 6.5 on p. 257 of [9])

It remains to discuss the homotopy type of $F_{3}\left(R^{n}\right)$ in case $n \neq 1,2,4$, or 8 .

THEOREM (III). $F_{3}\left(R^{n}\right)$ has the same homotopy type as the following space: Take two copies of $S^{n-1} \times S^{n-1}$ and identify them along their diagonals.

By the diagonal of $S^{n-1} \times S^{n-1}$ we mean $\left\{(x, x) \mid x \in S^{n-1}\right\}$, as usual.
THEOREM (IV). If $n \neq 1,2,4$, or 8 , then $F_{3}\left(R^{n}\right)$ does not have the same homotopy type as the product space $F_{2}\left(R^{n}\right) \times\left[R^{n}-\{e,-e\}\right]$.

In the course of proving theorem (IV), we will explicitly construct a CWcomplex which is of the same homotopy type as the space described in theorem (III) and having a minimum number of cells.

4. Proof of Theorem I

In this section we will concern ourselves with the fibration $p: F_{3}\left(R^{n}\right) \rightarrow$ $F_{2}\left(R^{n}\right)$ for $n>1$; the case $n=1$ is rather trivial. Let A_{n} denote the group of all orientation preserving affine transformations of Euclidean n-space. A_{n} is a connected, non-compact Lie group, and its operation on R^{n} is "two point transitive", in the sense that given two ordered pairs (x_{1}, x_{2}) and (y_{1}, y_{2}) of distinct points of R^{n}, there exists an element $g \in A_{n}$ such that $g \cdot x_{i}=y_{i}$ for $i=1,2$. The group A_{n} also operates on $F_{2}\left(R^{n}\right)$ in a obvious way, and in view of the preceding statement, the operation is transitive.

LEMMA (1). Let $x_{0} \in F_{2}\left(R^{n}\right)$. Then there exists an open neighborhood U of x_{0} in $F_{2}\left(R^{n}\right)$ and a differentiable function $s: U \rightarrow A_{n}$ such that $s\left(x_{0}\right)=1$ and for any $x \in U,(s x) \cdot x_{0}=x$.

Proof. Define $q: A_{n} \rightarrow F_{2}\left(R^{n}\right)$ by $q(g)=g \cdot x_{0}$ for any $g \in A_{n}$. Then q is a continuous map of A_{n} onto $F_{2}\left(R^{n}\right)$. Let G denote the isotropy subgroup of the point x_{0}. Then G is a closed subgroup of A_{n}, and it is easily proved that q induces a homeomorphism of the coset space A_{n} / G onto $F_{2}\left(R^{n}\right)$. Also, $q: A_{n} \rightarrow F_{2}\left(R^{n}\right)$ is a principal G-bundle (see Steenrod [7], §7). Choose a neighborhood U of $x_{0} \in F_{2}\left(R^{n}\right)$ such that there exists a differentiable crosssection $s: U \rightarrow A_{n}$ of the map q. Since $q(1)=x_{0}$, it is clear that we may choose the cross-section s so that $s\left(x_{0}\right)=1$.

Using this neighborhood U of the point $x_{0}=\left(x_{01}, x_{02}\right) \in F_{2}\left(R^{n}\right)$, we will now define a diffeomorphism

$$
f: U \times\left[R^{n}-\left\{x_{01}, x_{02}\right] \rightarrow p^{-1}(U)\right.
$$

by the following formula:

$$
\begin{equation*}
f\left[\left(x_{1}, x_{2}\right), x_{3}\right]=\left(x_{1}, x_{2}, s\left(x_{1}, x_{2}\right) \cdot x_{3}\right) \tag{1}
\end{equation*}
$$

Here $\left(x_{1}, x_{2}\right) \in U, x_{3} \in\left[R^{n}-\left\{x_{10}, x_{20}\right]\right.$, and s is the function of lemma (1). Recall that this function satisfies the condition

$$
s\left(x_{1}, x_{2}\right) \cdot\left(x_{10}, x_{20}\right)=\left(x_{1}, x_{2}\right)
$$

for any $x=\left(x_{1}, x_{2}\right) \in U$. This is equivalent to the following two equations:

$$
\begin{aligned}
s\left(x_{1}, x_{2}\right) \cdot x_{10} & =x_{1} \\
s\left(x_{1}, x_{2}\right) \cdot x_{20} & =x_{2}
\end{aligned}
$$

Hence, if $x_{3} \neq x_{10}$ and $x_{3} \neq x_{20}$, it follows that $s\left(x_{1}, x_{2}\right) \cdot x_{3} \neq x_{1}$ and $s\left(x_{1}, x_{2}\right)$. $x_{3} \neq x_{2}$. Therefore formula (1) does indeed define a differentiable mapping of $U \times\left[R^{n}-\left\{x_{01}, x_{02}\right\}\right]$ into $p^{-1}(U) \subset F_{3}\left(R^{n}\right)$. To see that f is a diffeomorphism, observe that it has an inverse defined by

$$
f^{-1}\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{1}, y_{2},\left[s\left(y_{1}, y_{2}\right)\right]^{-1} \cdot y_{3}\right)
$$

where $\left(y_{1}, y_{2}, y_{3}\right) \in p^{-1}(U)$. Finally, notice that

$$
p f\left[\left(x_{1}, x_{2}\right), x_{3}\right]=\left(x_{1}, x_{2}\right)
$$

Using these formulas, we can now prove theorem (I). We will use the terminology, etc. of $\S 2$ of Steenrod, [7].

Given any point $x_{0}=\left(x_{01}, x_{02}\right) \in F_{2}\left(R^{n}\right)$, choose a neighborhood U of x_{0} and a function $s: U \rightarrow A_{n}$ as in lemma (1). Choose an element $t \in A_{n}$ such that

$$
t(-e)=x_{01}, t(e)=x_{02}
$$

where $e \in R^{n}$ is a unit vector. Define a coordinate function

$$
\varphi_{U}: U \times\left[R^{n}-\{e,-e\}\right] \rightarrow p^{-1}(U)
$$

by the formula

$$
\varphi_{U}\left[\left(x_{1}, x_{2}\right), x_{3}\right]=\left(x_{1}, x_{2}, s\left(x_{1}, x_{2}\right) \cdot t \cdot x_{3}\right)
$$

The coordinate functions thus defined satisfy all the conditions needed to define a coordinate bundle; see Steenrod, loc.cit. The group of the bundle is the set of all $g \in A_{n}$ such that $g \cdot(\pm e)= \pm e$. This implies that g leaves the origin fixed, and hence belongs to the subgroup $G L_{n}^{+}(R)$ of A_{n}.

Remark. This proof depends essentially on the fact that the Lie group A_{n} is 2-point transitive on R^{n}. The author's colleagues G. Margulis and G.D. Mostow have orally described proofs that no connected Lie group can operate on R^{n} in a manner which is 3-point transitive. Thus one can not hope to generalize this proof to $F_{k}\left(R^{n}\right)$ for $k>3$.

5. Proof of Theorem II

As usual let S^{n-1} denote the unit sphere in R^{n}, and let

$$
E_{n}^{\prime}=\left\{(x, y) \in S^{n-1} \times R^{n} \mid y \neq \pm x\right\}
$$

Define $p^{\prime}: E_{n}^{\prime} \rightarrow S^{n-1}$ by $p^{\prime}(x, y)=x$. Then we have a commutative diagram, as follows,

where the vertical arrows are homeomorphisms. To verify this, note that

$$
E_{n}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F_{3}\left(R^{n}\right)| | x_{1} \mid=1 \text { and } x_{2}=-x_{1}\right\}
$$

Thus to prove theorem (II), it suffices to prove that $p^{\prime}: E_{n}^{\prime} \rightarrow S^{n-1}$ is a fibre bundle associated to the tangent bundle of S^{n-1}. We will leave the details of the proof to the reader, and will only offer the following suggestion: Consider the following somewhat similar problem. Let $T_{n}=\left\{(x, y) \in S^{n-1} \times R^{n} \mid y \cdot x=\right.$ $0\}$. Define $q: T_{n} \rightarrow S^{n-1}$ by $q(x, y)=x$. Prove that $q: T_{n} \rightarrow S^{n-1}$ is the tangent bundle of S^{n-1}.

6. Proof of Theorem III

In this section, we will assume $n>1$. The discussion of the case $n=1$ is rather trivial. Since the space E_{n}^{\prime} has the same homotopy type as $F_{3}\left(R^{n}\right)$, it suffices to prove that E_{n}^{\prime} has the homotopy type of the space described in the statement of the theorem. Now E_{n}^{\prime} is a fibre bundle with fibre $R^{n}-\{e,-e\}$ and structural group $S O(n-1)$; and $S O(n-1)$ acts on the fibre by rotations in the subspace of R^{n} perpendicular to the unit vector e. Let

$$
\begin{aligned}
S^{n-1} \vee S^{n-1} & =\left\{x \in R^{n}| | x-e \mid=1\right\} \\
& \cup\left\{x \in R^{n}| | x+e \mid=1\right\}
\end{aligned}
$$

Then $S^{n-1} \vee S^{n-1}$ is the union of two ($n-1$)-spheres of radius 1 whose only common point is the origin. It is clear that $S^{n-1} \vee S^{n-1}$ is a deformation retract of $R^{n}-\{e,-e\}$, and that the action of $S O(n-1)$ on the fibre $R^{n}-\{e,-e\}$ carries $S^{n-1} \vee S^{n-1}$ into itself. Hence there is a sub-bundle $E_{n}^{\prime \prime} \subset E_{n}^{\prime}$ with fibre $S^{n-1} \vee S^{n-1}$ which is a deformation retract of E_{n}^{\prime}. In the notation used in the proof of theorem (II),

$$
\begin{aligned}
E_{n}^{\prime \prime}= & \left\{(x, y) \in S^{n-1} \times R^{n}| | y-x \mid=1\right\} \\
& \cup\left\{(x, y) \in S^{n-1} \times R^{n}| | y+x \mid=1\right\}
\end{aligned}
$$

If we let

$$
E_{n}^{+}=\left\{(x, y) \in S^{n-1} \times R^{n}| | y-x \mid=1\right\}
$$

and

$$
E_{n}^{-}=\left\{(x, y) \in S^{n-1} \times R^{n}| | y+x \mid=1\right\}
$$

then $E_{n}^{\prime \prime}=E_{n}^{+} \cup E_{n}^{-}, E_{n}^{+} \cap E_{n}^{-}$is an (n-1)-sphere which is a cross-section of the bundle, and both E_{n}^{+}and E_{n}^{-}are ($n-1$)-sphere bundles over S^{n-1} which are associated to the tangent bundle of S^{n-1}. W (assert that both E_{n}^{+}and E_{n}^{-}are product bundles, and hence are homeomorphic to $S^{n-1} \times S^{n-1}$. The reason for this is the well-known fact that the tangent bundle to S^{n-1} plus a trivial line bundle is a product bundle. The bundles E_{n}^{+}and E_{n}^{-}can both be regarded as the unit sphere bundle of the tangent bundle plus a trivial line bundle to S^{n-1}.

Thus $E_{n}^{\prime \prime}$ is a space obtained by taking two copies $S^{n-1} \times S^{n-1}$ and identifying along an $(n-1)$-sphere. The problem is to precisely describe how the identification is to be made. This requires that we describe precisely the trivialization of the bundles E_{n}^{+}and E_{n}^{-}. For this purpose, we define homeomorphisms

$$
\varphi, \psi: S^{n-1} \times R^{n} \rightarrow S^{n-1} \times R^{n}
$$

by the following simple formulas:

$$
\begin{aligned}
& \varphi(x, y)=(x, y-x) \\
& \psi(x, y)=(x, y+x)
\end{aligned}
$$

Then φ and ψ are inverses of each other, and they leave the first coordinate unchanged. In this notation,

$$
S^{n-1} \times S^{n-1}=\left\{(x, y) \in S^{n-1} \times R^{n}| | y \mid=1\right\}
$$

is the product bundle over S^{n-1}. It can be quickly verified that φ maps E_{n}^{+} onto $S^{n-1} \times S^{n-1}$, and ψ maps E_{n}^{-}onto $S^{n-1} \times S^{n-1}$. Thus φ and ψ provide the needed trivializations of the bundles E_{+}^{n} and E_{-}^{n}. Also, φ maps $E_{+}^{n} \cap$ E_{-}^{n} onto the "anti-diagonal", $\left\{(x,-x) \mid x \in S^{n-1}\right\}$, while ψ maps $E_{+}^{n} \cap E_{-}^{n}$ onto the diagonal $\left\{(x, x) \mid x \in S^{n-1}\right\}$ of $S^{n-1} \times S^{n-1}$. It follows that $E_{n}^{\prime \prime}$ is homeomorphic to the space obtained by taking two copies of $S^{n-1} \times S^{n-1}$, and identifying the diagonal of one copy with the anti-diagonal of the other. But there are obvious self-homeomorphisms of $S^{n-1} \times S^{n-1}$ which interchange the diagonal and the anti-diagonal: apply the antipodal map on one of the factors. This leads immediately to the statement of theorem (III).

7. Proof of Theorem IV

We will describe an explicit construction of a CW-complex having the homotopy type of the space $E_{n}^{\prime \prime}$. The ($n-1$)-skeleton will be $S^{n-1} \vee S^{n-1} \vee S^{n-1}$, a wedge of three spheres, and there will be two cells of dimension $2 n-2$. The homotopy classes of the attaching maps of these two cells will be described explicitly.

As a preliminary step in this construction, we will describe a CW-complex having the same homotopy type as $S^{n-1} \times S^{n-1}$ but which is different from the usual description of $S^{n-1} \times S^{n-1}$ as a CW-complex.

First, let L denote the usual CW-complex on $S^{n-1} \times S^{n-1}$: the $(n-1)$ skeleton is

$$
L^{n-1}=S_{1}^{n-1} \vee S_{2}^{n-1}
$$

the wedge of two $(n-1)$-spheres, and there is a single $(2 n-2)$-cell. The homotopy class of the attaching map is the Whitehead product $\beta=\left[\iota_{1}, \iota_{2}\right]$, where $\iota_{k}: S_{k}^{n-1} \rightarrow S_{1}^{n-1} \vee S_{2}^{n-1}$ is the (homotopy class of) the inclusion map for $k=1,2$. We may as well assume that the attaching map is chosen in its homotopy class so that L is actually homeomorphic to $S_{1}^{n-1} \times S_{2}^{n-1}$. Similarly, let K denote a CW-complex which has the same $(n-1)$-skeleton,

$$
K^{n-1}=S_{1}^{n-1} \vee S_{2}^{n-1}
$$

but now the attaching map for the single $(2 n-2)$-cell is

$$
\alpha=\left[\iota_{1}, \iota_{2}\right]-\left[\iota_{1}, \iota_{1}\right]=\left[\iota_{1}, \iota_{2}-\iota_{1}\right] .
$$

(It is assumed that all spheres are appropriately oriented). Next, define a map

$$
f: K^{n-1} \rightarrow L=S_{1}^{n-1} \times S_{2}^{n-1}
$$

such that the sphere S_{1}^{n-1} is mapped onto the sphere S_{1}^{n-1} with degree +1 , and the sphere S_{2}^{n-1} is mapped onto the diagonal. In terms of the induced homomorphism

$$
f_{*}: \pi_{n-1}\left(K^{n-1}\right) \rightarrow \pi_{n-1}(L)
$$

we are requiring that

$$
\begin{aligned}
& f_{*}\left(\iota_{1}\right)=\iota_{1} \\
& f_{*}\left(\iota_{2}\right)=\iota_{1}+\iota_{2}
\end{aligned}
$$

We now homotopically deform the map f so that K^{n-1} is mapped into L^{n-1}; we will denote the deformed map by the same symbol f. Consider the induced homomorphism

$$
f_{*}: \pi_{2 n-3}\left(K^{n-1}\right) \rightarrow \pi_{2 n-3}\left(L^{n-1}\right)
$$

Then

$$
\begin{aligned}
f_{*}(\alpha) & =f_{*}\left[\iota_{1}, \iota_{2}-\iota_{1}\right]=\left[f_{*} \iota_{1},\left(f_{*} \iota_{2}\right)-\left(f_{*} \iota_{1}\right)\right] \\
& =\left[\iota_{1},\left(\iota_{1}+\iota_{2}\right)-\iota_{1}\right]=\left[\iota_{1}, \iota_{2}\right]=\beta
\end{aligned}
$$

Since $f_{*}(\alpha)=\beta$, the map f can be extended to a map $F: K \rightarrow L$ such that the $(2 n-2)$-cell of K is mapped onto the $(2 n-2)$-cell of L with degree +1 . Obviously, F must be a homotopy equivalence. Also, the map F can be deformed homotopically so that the sphere $S_{2}^{n-1} \subset K$ is mapped onto the sphere $S_{1}^{n-1} \subset L$ with degree +1 , and S_{2}^{n-1} is mapped onto the diagonal of
$L=S^{n-1} \times S^{n-1}$ with degree +1 . Thus we have achieved our goal: K is of the same homotopy type as $S^{n-1} \times S^{n-1}$, and the "diagonal" is part of the ($n-1$)-skeleton of K, at least up to homotopy.

Remark. It may be possible to construct K so that it is homeomorphic to $S^{n-1} \times S^{n-1}$; however, we have no need for this stronger condition.

It is now clear how to construct a CW-complex of the same homotopy type as $E_{n}^{\prime \prime}$: take two copies of K, and identify them along the sphere S_{2}^{n-1}.

Changing notation, we have proved that $E_{n}^{\prime \prime}$ is of the same homotopy type as a CW-complex K_{n} defined as follows:

$$
K_{n}=\left(S_{1}^{n-1} \vee S_{2}^{n-1} \vee S_{3}^{n-1}\right) \cup e_{1}^{2 n-2} \cup e_{2}^{2 n-2}
$$

where the top dimensional cells are adjoined by maps representing

$$
\begin{aligned}
& \alpha_{1}=\left[\iota_{1}, \iota_{2}\right]-\left[\iota_{1}, \iota_{1}\right]=\left[\iota_{1}, \iota_{2}-\iota_{1}\right], \\
& \alpha_{2}=\left[\iota_{3}, \iota_{2}\right]-\left[\iota_{3}, \iota_{3}\right]=\left[\iota_{3}, \iota_{2}-\iota_{3}\right] .
\end{aligned}
$$

For sake of comparison, $\left(S^{n-1} \vee S^{n-1}\right) \times S^{n-1}$ is a CW-complex

$$
L_{n}=\left(S_{1}^{n-1} \vee S_{2}^{n-1} \vee S_{3}^{n-1}\right) \cup e_{1}^{2 n-2} \cup e_{2}^{2 n-2}
$$

where the attaching maps are

$$
\begin{aligned}
& \beta_{1}=\left[\iota_{1}, \iota_{2}\right] \\
& \beta_{2}=\left[\iota_{3}, \iota_{2}\right]
\end{aligned}
$$

Note that K_{n} and L_{n} have the same ($n-1$)-skeletons, $K_{n}^{n-1}=L_{n}^{n-1}=S_{1}^{n-1} \vee$ $S_{2}^{n-1} \vee S_{3}^{n-1}$.

We will now prove that K_{n} and L_{n} do not have the same homotopy type, provided $n \neq 1,2,4$, or 8 (in particular, $n \geq 3$). The proof is by contradiction; assume there exists a homotopy equivalence $f: K_{n} \rightarrow L_{n}$ with homotopy inverse $g: L_{n} \rightarrow K_{n}$. We may assume that f and g are cellular maps; it follows that they define a homotopy equivalence between the pairs (K_{n}, K_{n}^{n-1}) and (L_{n}, L_{n}^{n-1}). These maps induce isomorphisms of the corresponding long exact sequences of homotopy groups. We are particularly interested in the following part of these long exact sequences:

This diagram is commutative, and the arrows labelled f_{*} are isomorphisms. The relative homotopy groups in the left hand column of this diagram are free
abelian of rank 2. The image of the homomorphism ∂_{1} is the subgroup generated by α_{1} and α_{2}, and the image of ∂_{2} is generated by β_{1} and β_{2}. The group $\pi_{n-1}\left(K_{n}^{n-1}\right)=\pi_{n-1}\left(L_{n}^{n-1}\right)$ is free abelian of rank 3 with basis $\left\{\iota_{1}, \iota_{2}, \iota_{3}\right\}$. The structure of the group $\pi_{2 n-3}\left(K_{n}^{n-1}\right)=\pi_{2 n-3}\left(L_{n}^{n-1}\right)$ is described by a well known theorem of Hilton: it is the direct sum of a free group of rank 3 (with basis the Whitehead products $\left[\iota_{j}, \iota_{k}\right]$ for $1 \leq j<k \leq 3$) and the subgroups $\pi_{2 n-3}\left(S_{k}^{n-1}\right)$ for $k=1,2,3$.

Now let $\pi_{2 n-3}^{\prime}$ denote the subgroup of $\pi_{2 n-3}\left(K_{n}^{n-1}\right)=\pi_{2 n-3}\left(L_{n}^{n-1}\right)$ which is generated by all Whitehead products $[u, v]$ for $u, v \in \pi_{n-1}\left(K_{n}^{n-1}\right)$. Note the following facts about this subgroup:

1) $\pi_{2 n-3}^{\prime}$ is free abelian of rank 6 if n is odd, with basis the Whitehead products $\left[\iota_{j}, \iota_{k}\right]$ for $1 \leq j \leq k \leq 3$. If n is even, then $\pi_{2 n-3}^{\prime}$ is the direct sum of a free abelian group of rank 3 and three cyclic groups of order two. In this case, the Whitehead products $\left[\iota_{j}, \iota_{k}\right]$ still generate $\pi_{2 n-3}^{\prime}$, and $\left[\iota_{j}, \iota_{j}\right]$ is an element of order two. This last assertion depends on the solution of the Hopf invariant one problem by Frank Adams [1].
2) $\pi_{2 n-3}^{\prime}$ contains the images of the homomorphisms ∂_{1} and ∂_{2}. This is a consequence of the way the attaching maps $\alpha_{1}, \alpha_{2}, \beta_{1}$, and β_{2} were chosen.
3) Let $\varphi: K_{n}^{n-1} \rightarrow L_{n}^{n-1}$ be any continuous map. Then the induced homomorphism $\varphi_{*}: \pi_{2 n-3}\left(K_{n}^{n-1}\right) \rightarrow \pi_{2 n-3}\left(L_{n}^{n-1}\right)$ maps $\pi_{2 n-3}^{\prime}$ into itself; if φ is a homotopy equivalence, then φ_{*} induces an automorphism of $\pi_{2 n-3}^{\prime}$.

Now consider the following commutative diagram:

$$
\begin{aligned}
\pi_{n-1}\left(K_{n}^{n-1}\right) \otimes \pi_{n-1}\left(K_{n}^{n-1}\right) & \left\lvert\, \begin{array}{c}
\pi_{2 \eta-3}^{\prime} \\
f_{*} \otimes f_{*}
\end{array}\right. \\
\pi_{n-1}\left(L_{n}^{n-1}\right) \otimes \pi_{n-1}\left(L_{n}^{n-1}\right) & f_{*}^{\prime}
\end{aligned} \pi_{2 n-3}^{\prime} .
$$

The horizontal arrows denote Whitehead products and the vertical arrows are isomorphisms.

First, we will consider the case where n is odd, $n \geq 3$. Then $n-1$ is even, hence the Whitehead products in the above diagram are commutative i.e. $[u, v]=[v, u]$. We wish to prove that the automorphism $f_{*}: \pi_{2 n-3}^{\prime} \rightarrow \pi_{2 n-3}^{\prime}$ can not map the image of ∂_{1} onto the image of ∂_{2}. In order to better understand this situation, consider the following algebraically isomorphic situation: Let $P_{*}=\Sigma P_{n}$ denote the polynomial algebra in three variables, x_{1}, x_{2}, and x_{3} over the ring of integers; it is to be considered as a graded algebra, with the grading defined by the usual notion of the degree of a homogeneous polynomial. Define an isomorphism $P_{1} \approx \pi_{n-1}\left(K_{n}^{n-1}\right)$ by letting x_{k} correspond to ι_{k} for $k=1,2,3$; also, $P_{2} \approx \pi_{2 n-3}^{\prime}$, where the monomial $x_{j} x_{k}$ corresponds to the Whitehead product $\left[\iota_{j}, \iota_{k}\right]$. With this correspondence, the Whitehead product

$$
\pi_{n-1}\left(K_{n}^{n-1}\right) \otimes \pi_{n-1}\left(K_{n}^{n-1}\right) \rightarrow \pi_{2 n-3}^{\prime}
$$

corresponds to the multiplication

$$
P_{1} \otimes P_{1} \rightarrow P_{2}
$$

in the polynomial algebra. We will use this correspondence to complete the proof of the theorem. The isomorphism

$$
f_{*}: \pi_{n-1}\left(K_{n}^{n-1}\right) \rightarrow \pi_{n-1}\left(L_{n}^{n-1}\right)
$$

has the form

$$
f_{*}\left(\iota_{j}\right)=\sum_{k=1}^{3} n_{j k} \iota_{j}, \quad j=1,2,3
$$

where $\left(n_{j k}\right)$ is a 3×3 integer matrix with determinant ± 1. Using this matrix, define an automorphism

$$
\varphi: P_{1} \rightarrow P_{1}
$$

by the formula

$$
\varphi\left(x_{j}\right)=\sum_{k=1}^{3} n_{j k} x_{k}, \quad j=1,2,3 .
$$

Then φ extends to a degree preserving automorphism of the polynomial algebra P_{*} in a unique way; we will denote this extended automorphism by the same symbol, φ. Now consider the effect of this extended automorphism in degree 2:

$$
\varphi: P_{2} \rightarrow P_{2}
$$

Since f_{*} maps the subgroup generated by α_{1} and α_{2} onto the subgroup generated by β_{1} and β_{2}, it follows that φ must map the subgroup of P_{2} generated by the polynomials $x_{1} x_{2}-x_{1}^{2}$ and $x_{2} x_{3}-x_{3}^{2}$ onto the subgroup generated by $x_{1} x_{2}$ and $x_{2} x_{3}$. As a consequence of this fact, the algebra isomorphism φ must map the ideal

$$
I_{1}=\left(x_{1} x_{2}-x_{1}^{2}, x_{2} x_{3}-x_{3}^{2}\right)
$$

onto the ideal

$$
I_{2}=\left(x_{1} x_{2}, x_{2} x_{3}\right)
$$

But this is clearly impossible: all polynomials in the ideal I_{2} have x_{2} as a factor, while the two generators of the ideal I_{1} are relatively prime. Clearly these properties are invariant under any automorphism of P_{*}. This contradiction completes the proof in case n is odd.

It remains to consider the case where n is even, $n \neq 2,4$, or 8 . In this case the Whitehead products involved are anti-commutative rather than commutative: $[u, v]=-[v, u]$, and $\left[\iota_{k}, \iota_{k}\right]$ is of order two. However, the preceding proof can be adapted to this case by reducing the groups $\pi_{n-1}\left(K_{n}^{n-1}\right)$ and $\pi_{2 n-3}^{\prime}$ modulo two, and letting P_{*} denote the graded polynomial algebra in
the variables x_{1}, x_{2}, and x_{3} over the ring of integers modulo two. With these modifications, the previous proof goes through.

This completes the proof of theorem (IV).
Remark. It can be shown that for n odd, the integral cohomology rings of the spaces $F_{3}\left(R^{n}\right)$ and $F_{2}\left(R^{n}\right) \times\left[R^{n}-\{e,-e\}\right]$ are non-isomorphic. This fact also proves theorem (IV) in the case where n is odd. For n even, the cohomology rings of these two spaces are isomorphic.

Yale University
New Haven, CT. 06520
U.S.A.

References

[1] J.F. Adams, On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960), 20-104.
[2] J. Birman, Braids, Links, and Mapping Class Groups, Ann. Math. Studies 82 (1974).
[3] E. Fadell and L. Neuwirth, Configuration Spaces, Math. Scand. 10 (1962), 111-118.
[4] U. Koschorke, Higher order homotopy invariants for higher dimensional link maps, Springer Lecture Notes in Math. 1172 (1985), 116-129.
[5] W.S. Massey, Homotopy classification of 3-Component links of codimension greater then 2, Top. and Its Appl. 34 (1990), 169-300.
[6] G. Segal, Configuration spaces and iterated loop spaces, Inv. Math. 21 (1973), 213-221.
[7] N.E. Steenrod, The Topology of Fibre Bundles, Princeton University Press (1951).
[8] J.P. MAY, The Geometry of Iterated Loop Spaces, Springer Lecture Notes in Mathematics 27 (1972).
[9] F.R. Cohen, T.J. Lada, and J.P. May, The homology of Iterated Loop Spaces, Springer Lecture Notes in Mathematics 533 (1976).

