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PHANTOM MAPS AND RATIONAL EQUIVALENCES, IT

By C.A. McGIBBON AND JOSEPH ROITBERG

Let X be afinite type domain; that is, a connected CW-complex with finitely
generated homology groups in each degree. A phantom map from X to an-
other space Y is a pointed map whose restriction to the n-skeleton of X is
null homotopic for each integer n. Denote by Ph(X,Y) the set of pointed ho-
motopy classes of phantom maps from X to Y. Call Y a finite type target (or
a countable type target) if 7, Y is finitely generated ( or countable) for each
n > 2.1 In this paper, the source of a phantom map will always be a finite
type domain but its range will sometimes be a finite type target, sometimes
a countable type target and sometimes an arbitrary target.

1. The influence of X on Ph(X|Y)

Amapg: X — X’ obviously induces a function from Ph(X’,Y) to Ph(X,Y),
given by precomposition with g. However, it is not obvious that a map from
X to £X’ should induce a function from Ph(X’,Y) to Ph(X,Y), or that it
should imply any sort of relationship between Ph(X,Y) and Ph(X’,Y). Nev-
ertheless, the following theorem shows that this indeed happens in many
cases.

THEOREM (1). Let X and X' be finite type domains and let Y be a finite type
target. Assume that there exists a map

f

*X =X/

that induces a monomorphism in rational homology. Then
Ph(X')Y) = 0. = Ph(X,Y) = 0.

Moreover, f induces a surjection from Ph(X'Y) to Ph(X,Y) provided its
rationalization induces a homomorphism

fo

=X, Y™, =X, Y™,
for each integer n. This happens, for example, if f becomes a co-H-map when
rationalized or if the universal cover of Y is an Hy-space. I

A few more definitions and remarks are in order; proofs will be given later.
We write Ph(X,Y) = 0 when this set of homotopy classes has just one
element. In Theorem 1 and elsewhere Y (™) denotes the Postnikov approxi-
mation of Y up through dimension n. Notice that since XX is 1-connected,
Y (™ can be replaced by its universal cover in the group of pointed homotopy

It s unnecessary to place any restriction on m;Y.
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classes [XX,Y(®)]. The rationalization of this nilpotent group can be thus
identified with [XX,Z] where Z denotes the rationalization of the universal
cover of Y(™), Finally, by an H,- space we mean a space which has the ratio-
nal homotopy type of an H-space.

COROLLARY (2). Let X and X' be finite type domains and let Y be a finite
type target. Assume that there exist maps between X and X', in both direc-
tions, thatinduce isomorphisms in rational homology. Then the sets Ph(X,Y)
and Ph(X',Y) have the same cardinality; namely either 1 or 280, I

Some special cases of these two results were discovered in [9]. In particular
it was shown there that Theorem 1 was true when the map f is a suspension.
In that paper we also characterized those finite type domains X which have
no essential phantom maps into finite type targets. The result is the follow-
ing:

THEOREM (3). If X is a finite type domain, then the following statements
are equivalent:

(1) Ph(X,Y) =0 for every finite type target Y .
(ii) Ph(X,S™) =0 foreveryn.

(ii1) There exists a map from XX to a bouquet of spheres VS™ that induces
an isomorphism in rational homology. I

Notice that one can always construct a rational equivalence from a bou-
quet of spheres into a suspension. 2 Thus the implication (iii) = (i) can
be regarded as a special case of Corollary 2. Indeed, it was this result that
suggested Corollary 2. The conclusions of Theorem 1 and Corollary 2 fail to
hold if the finite type hypothesis on the target Y is relaxed. Here is a relevant
example:

EXAMPLE (A). Let X = RP®, X' =apoint,andY =\/,5 1 ZRP". Thereis
a rational equivalence from X to X' and Ph(X',Y) = 0. However, Ph(X,Y)
is uncountably large.

Although the target Y in this example seems huge, it is nonetheless a
countable type target. The set Ph(X,Y’) contains the universal phantom
map out of X, which is essential, by [5], and so the cardinality of this set
is uncountable by [8], Theorem 2.

In the next result, the cardinality hypothesis on the target Y is relaxed at
the cost of insisting that the map f: ¥X — XX’ be a homotopy equivalence.
Our goal is to answer the following:

20f course, it is not always possible to get a rational equivalence from a suspension £X to
a bouquet of spheres. Perhaps the simplest example of this occurs when X = CP*.
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QUESTION (4). Suppose that X and X' are two finite type domains which
become homotopy equivalent after one suspension. Does it follow that the sets
Ph(X,Y) and Ph(X'|Y) are isomorphic for all targets Y 2

We have been unable to answer this question in general. However, there
are some special cases of it that we understand.

PROPOSITION (5). Let X and X' be finite type domains which become ho-
motopy equivalent after one suspension. Then

(i) Ph(X,Y) = O forall targets Y if and only if Ph(X',Y) = O forall
targets Y.

(i1) For all countable type targets Y, the sets Ph(X,Y) and Ph(X'Y) have
the same cardinality; namely either 1 or 280,

(iii) Iftheuniversal coverof Y is an H-space, then the abelian groups Ph(X,Y)
and Ph(X' Y) are naturally isomorphic.

(iv) If the universal cover of Y is a finite type Hy-spoce, then the abelian
groups Ph(X,Y) and Ph(X"|Y) are naturally isomorphic.

(v) If there exists a co-H-equivalence f : ©X — XX/, then it induces a bijec-
tion between Ph(X',Y) and Ph(X,Y) for all targets Y.

(vi) If there exists an equivalence f : X — LX' which becomes a co-H-map
when rationalized, then it induces a bijection between Ph(X',Y) and
Ph(X,Y) for all finite type targets Y. ]

As illustrations of statements (ii) and (v), here are two examples:

EXAMPLE (B). Let W be a finite type domain and let X = QLW and X' =
VJ>1( /\J W), where /\J W denotes the j-fold smash product. Then by Propq-
sition 5(ii) _

Ph(X,Y) ~ Ph(X'Y) = [[PRNW,Y)
Jz1
for all countable type targets.

In this example there is a well known homotopy equivalence X —
X'’ (which does not, however, desuspend unless W is contractible). Thus
Ph(QZW,Y) = 0 precisely when each Ph(/N/ W,Y) = 0; in particular, the
latter happens when W is a finite CW-complex. It may be of interest to note
that for any N > 1, there exist a finite type domain W and a finite type tar-
get Y such that Ph(A/ W,Y) = 0 forj < N while P\(AN W,Y) £ 0. For
example, let W = K(Z, 3) and let ¥ = QS3N+2

- EXAMPLE (C). Let A be an acyclic space and let X' = X V A. The canoni-
cal inclusion g: X — X' then suspends to a co-H-equivalence. By Proposition
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5(v), the induced map Yg*: Ph(X'Y) — Ph(X,Y) is a bijection for finite
type domains X and all targets Y.

For explicit examples of acyclic K(,1)’s, see [1]. Some of these K(, 1)’s
are finite CW-complexes while others have 7 not finitely generated. It is
worth pointing out that while the latter are finite type domains in our sense,
they are not finite type domains in the sense used in [5], where it was required
that the domains X have finitely many cells in each dimension.

2. The kernel of g*: Ph(X',Y) — Ph(X,Y)

Letg: X — X'be amap of finite type domains that induces an isomorphism
in rational homology. Theorem 1 says that g*: Ph(X’,Y) — Ph(X,Y) issur-
jective if Y is a finite type target but it tells us nothing about the kernel of
g*. Here is one extreme case:

EXAMPLE (D). Let X = S3, X' = K(Z,3), and Y = S%. There is a ra-
tional equivalence g : X — X' with degree 1 on the bottom cell. However,
Ph(X,Y) = O while Ph(X'Y), and hence the kernel of g*, is uncountably
large.

The key point in this example is that while the rationalized spaces S(30) and
K(Z,3)(o)y are homotopy equivalent, there is a rational equivalence between

the original spaces in only one direction. 3
The next theorem shows that by imposing certain restrictions on the spaces
X, X' and Y, one may infer that g*: Ph(X’)Y) — Ph(X,Y) is a bijection.

THEOREM (6). Assumethat X, X', and Y satisfy the following requirements:

i) X= kP, k> 0, where P is a nilpotent finite type domain with =P finite
and with mp,P = 0 forn > 0.

ii) X' is a nilpotent finite type domain with a finite fundamental group.
Y. group

(iii) Y = QZ, £ > —1, where Z is a finite CW-complex with a finite funda-
mental group.

Then the induced map g* : Ph(X’,Y) — Ph(X,Y) is a bijection for any
rational homotopy equivalenceg : X — X'. i

The proof of this result uses a theorem of Zabrodsky, [12], which asserts
that Ph(X,Y) = [X(¢), Y] in certain cases.* Although the restrictions on the
spaces in our theorem seem severe, there are some examples which show

3The spaces X = $° VK(Z,5) and X' = K(Z,3)V S® provide an example where X(O) ~ X‘(O)
but there are no rational equivalences between X and X', in either direction.

4Za1>rod5ky claims in Theorem D, ibid, that this holds when X = P and Y is merely finite
dimensional. However, when one takes P = K(Z,3) and Y = K(Q,3) , his claim is seen to
be false. If one further requires ¥ to be a finite complex, as we do in Theorem 6, then his
restricted result is valid.
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the result is actually quite sharp. Example (D) showed what happens when
condition (i) on X is removed. The next example shows what happens when
condition (iii) on Y is ignored:

EXAMPLE (E). Given a finite abelian group G, there exists a space X which
satisfies 6(i), a self map g : X — X which is rational equivalence, and a fi-
nite type target Y such that G is isomorphic to the kernel of g* : Ph(X,Y) —
Ph(X.)Y).

In this example the domain X is a certain K(x, 3). However, the target Y,
which is rationally a product of K(Q, 4)’s, does not meet the requirements of
Theorem 6(iii) for some nonempty set of primes.

As an application of Theorem 6, consider the following:

EXAMPLE (F). Let X = Y2K(Z,2n—1), X' = K(Z,2n + 1), wheren > 2,
and let g : X — X' be the double adjoint of the equivalence K(Z,2n — 1) —
Q2K (Z,2n+1). Then g is a rational equivalence and by Theorem 6 it induces
a bijection

Ph(K(Z,2n + 1),82+2) =, Ph(X2K(Z,2n — 1),82*+2)
Let us pursue this example a bit further. Since
Ph(22K(Z,2n — 1),82"2) ~ Ph(K(Z,2n-1),028%t2) ~ R,
as rational vector spaces ([12], [10], [11]), it follows that the functor 92( )
induces a bijection
Ph(K(Z,2n + 1), S2"*2)ZPh(K(Z, 2n — 1), Q28%1+2)

of nontrivial pointed sets. Iterating this process one sees that Q2*—=2( )
induces a bijection

Ph(K(Z,2n + 1), 8%*+2)EPh(K(Z, 3), Q2—2521+2)

of nontrivial pointed sets.’

EXAMPLE (G). Given a proper set of primes S, there exists a finite type do-
main X and a map g : X — CP* which is a p-equivalence for every prime
pin S, such that the kernel of the induced epimorphism g* : Ph(CP>™,S3) —
Ph(X,S3) is isomorphic to the product [1p¢s Zp, where Zp denotes the p-adic
integers.

In this example, each prime at which the domain X fails to meet condi-
tion 6(i) contributes a copy of the p-adic integers to the kernel of g*. These

5Letting X= Vn>1 K(Z,2n + 1) it follows that there exists a phantom map [ out of X
with the property that Q'f is essential for every n.
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examples suggest that if one wishes to relax the conditions on the spaces in
Theorem 6 and still obtain the conclusion that g* is a bijection, then one
must place more restrictions on the map g. To this end, we say that a map
g: X — X' is almost a homology equivalence if it induces an isomorphism in
rational homology (in all degrees) and an isomorphism in integral homology
‘in all but finitely many degrees; equivalently, if the integral homology groups
of Cg, the mapping cone of g, are torsion in all degrees and almost always 0.
The following strikes us as plausible:

CONJECTURE (7). Let X and X' be finite type domains and let Y be a fi-
nite type target. If g: X — X' is almost a homology equivalence, then
g% Ph(X'Y) — Ph(X,Y) is abijection.

There is a small shred of evidence in favor of a positive solution to the
conjecture, which we now present. Let

(e Y] 25 x',v] £ [x,7)

be the usual exact sequence of pointed sets associated with the cofiber se-
quence

x L x'" ¢

Since g is almost a homology equivalence, it follows from obstruction theory
that [Cg,Y] is a finite set. If we were in a situation where g* and ~A* were
homomorphisms and [X’,Y] were a torsion-free group, we would then be
able to conclude that A* has trivial image, hence that ker g* = 0. The follow-
ing result describes two such situations:

PROPOSITION (8). Let X, X', and Y satisfy the following requirements:
(1) X is a nilpotent finite type domain with a finite fundamental group.

(ii) X' = kP’ k > 0, where P' is a nilpotent finite type domain with =P’
finite and with m,P' = 0 forn > 0.

(i) Y = QZ, £ > 0, where Z is a finite CW-complex with a finite fundamen-
tal group.

If g :X — X' is almost a homology equivalence and either (a) Y is an H-
space (e.g. £ > 1 or (b) k > 1and g is a co-H-map of co-H-spaces, then
g% Ph(X'|Y) — Ph(X,Y) is a bijection.

This ends the discussion of the results in this paper. In the next section
we prove the results in the order they were presented. Proofs are also given
for Examples (E) and (G). The first named author thanks his colleague Bob
Bruner for many helpful comments on this paper.
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3. Proofs

Proof of Theorem (1). Recall that the set of pointed homotopy classes of
phantoms maps from one pointed space, X, to another, Y, can be identified
with the lim! term of a certain sequence of nilpotent groups, namely

Ph(X,Y) = liml[zX, Y™
The basic reference here is [3], Chapter IX.
Now assume that f : ©X — XX’ is a map that induces a monomorphism

in rational homology. The proof of the first part of Theorem 1 deals with the
following commutative diagram:

[EX,Y] - EX"Y]

*
X, Y™)] f =X, Y")] .

The vertical maps in this diagram are homomorphisms induced by the inclu-
sion Y — Y™, The horizontal maps are not necessarily homomorphisms
since the map f is not necessarily a co-H map and Y need not be an H-space.

Let G/, denote [EX',Y()]. Since each G/ is a countable group, the hy-
pothesis Ph(X’)Y) = 0 implies that the tower {G},} is Mittag-Leffler, by
Theorem 2 of [8]. Recall that for an inverse tower of groups {H} }, the Mittag-
Leffler property ensures that for each n, the images in Hy, of the terms farther
out in the sequence do not become smaller and smaller without end; instead
they stabilize at some point. That is, for some N sufficiently large,

image{H, «— Hy} = image{H, «— Hy,;},

for all 2 > 0. We need the following lemma from [8].
LEMMA(1.1). Let Hy — Hg — H3 «— --- beatower of countable groups with

the property that for each n, the image of H,, 1 has finite index in H,. Then
the tower {H};} is Mittag-Leffler if and only if the canonical map limH, — Hp

has finite index for each n. ]

When we say a homomorphism 4 : A — B has finite index we mean simply
that the image A(A) has finite index in B. The tower {G,, } has the finite index
property mentioned in Lemma 1.1 since each of the k-invariants of QY has
finite order. Since [XX', Y] maps onto %iﬂlG,’L, it follows that the image of

[EX’,Y] has finite index in each Gy,.
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Let G, denote [TX,Y(™)]. Our goal is to show that the tower {G,} must
also be Mittag-Leffler. To this end it would suffice to show that the left ver-
tical, [XX,Y] — Gp, has finite index, by Lemma 1.1. To establish this, we
will examine the bottom map in more detail.

LEMMA (1.2). Assume that f : ©X — XX’ induces a monomorphism in
rational homology where X and X' are finite type domains. Then for any
space Y and natural number n, the induced map,

=X, y(®) ! =X, y™)]
becomes surjective when rationalized. 1

It is well known that in a finitely generated nilpotent group G, a subgroup
H has finite index if and only if H, = Gy. Therefore when rationalized, the
right side of the square becomes an epimorphism. Assuming the lemma is
true, the left side must likewise rationalize to an epimorphism. The finite-
ness of the index of [EX,Y] — G, then follows.

Proof of Lemma (1.2). First recall that G, is naturally isomorphicto [EX, U]
where U denotes the universal cover of Y (), Hence the rationalization of G,
can be identified with [EX, U(q)). Similar remarks apply to G},. It is then clear
that the map f induces a function between the rationalizations of the groups
G, and GJ,. Of course, this last remark would be obvious if Y were nilpotent
orif f* : G, — G), were a homomorphism, but we have not assumed either
hypothesis.

We would like to replace the map f by some finite skeletal approximation
of it. However, since such an approximation will not, in general, also induce
a monomorphism in rational homology we have to work a little harder. Let
K be a complex of dimension n + 1 with the following properties:

i) K, = Xn.

ii) Hp(K;Z) =~ Hu(X;Z).

i) Hp,1(K;Z) ~ Hy,,1(X,;Z)/torsion.

Both homology isomorphisms are to be induced by a map of K into X, ;.
Such a K, as well as the map, exist by Theorem 2.1 of [2]. Let K’ denote the
n + 1 - skeleton of X’. It follows that there is a map, say fx, from £K to K’
that fits into a commutative diagram,

f

X 9.
sk —TK | sgr

The vertical maps here are inclusions. Notice that they are n + 1 -connected.
Hence when the functor [ ,Y™)] isapplied to this square, the verticals be-
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come group isomorphisms. Notice also that the map fx induces a monomor-
phism in rational homology. Since £K and LK’ are finite suspensions, they
each have the rational homotopy type of a bouquet of spheres. Hence the map
fg when rationalized, has a left inverse. Consequently, fx induces a surjec-
tion of sets between the rationalized groups [EK',Y™)], and [ZK,Y®)],.
The lemma follows, as does the first part of Theorem 1.

Consider now the second conclusion of Theorem 1; that is assume that the
map [ induces a homomorphism between the rationalized groups,

*
(X', Y(n)]o _’:"__.

X, Y™,
Note that this homomorphism is surjective by Lemma 1.2.

For a nilpotent group N, the kernel of the rationalization homomorphism,
r : N — Ny, is the torsion subgroup, TN. Equivalently, the image of N in
N, is isomorphic to the torsion-free quotient FN = N/TN. Hence, from the
commutativity of the diagram

r

G}, (Gh)o
r* fx
Gn A (Gn)o ,

in which all arrows except the one on the left side are assumed to be homo-
morphisms, it follows that f induces a homomorphism of towers, say

f:{FG,} — {FGn}.

The original towers had the finite index property and so their quotients {FG}, }
and {FG,} also have this property. For each n, the image of FG;, has finite
index in FGp, (since f rationalizes to an epimorphism) and so by Lemma 2.2
of [9], the induced map

lim!(f) : lim'FG!, — lim!FG,

is a surjection. Finally note that the quotient map G, — FGp induces a lim!

isomorphism. To see this, apply the six term lim — lim! sequence to the short

exact sequence of towers
{TGr} — {Gn} — {FGa},

and take into account that {T'G,} will have a trivial lim! term since it is a

tower of finite groups. Similar remarks apply to the quotient map G, — FGy,.
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Thus we have shown that f induces a surjection from Ph(X’,Y) to Ph(X,Y)
when the rationalization

fo

[Ex' Y™, X, Y™,

is a homomorphism. We trust it is clear to the reader that this happens when
f rationalizes to a co-H-map or when the universal cover of Y rationalizes to
an H-space.

Proof of Corollary 2. This is an immediate consequence of Theorem 1 and
the following:

LEMMA (2.1). If {Gy,} is a tower of countable® groups then lim'G,, has car-
dinality either 1 or 28 1

Proof. Assume that liﬂlGn is nontrivial. Then by Theorem 2 of [8] it
follows that the cardinality of this term is uncountably large. Thus it suffices
to show that this cardinality is no larger than 2%. Recall that lim!G, is a
quotient of the direct product NG, and so it has cardinality at most &,%°.
Since

NDRO < (2No)No — 2(N0XN0) — 2}“:0,

the lemma follows.

Proof of Proposition 5.

(i). Assume that Ph(X,Y) = O for all targets Y. Then, in particular, the
universal phantom map out of X is trivial and so £.X is a retract of \/, - ; £X,,
by Theorem 2 of [5]. Moreover, the proof of that theorem shows that the
folding map

v: \/ =X, — X,
n>1

which for each n restricts to the inclusion i, : ¥X;, — XX , on then — ¢k
summand, has a right inverse

pEX — \/ Xn .
n>1

Given a homotopy equivalence f: £X — LX’, there is, for each n, an n-
equivalence f: £X,; — XX/ such that the following diagram commutes up

6Count'.a.bility is necessary here. It will be shown elsewhere that without it any finite
abelian group can occur as the liml term of a suitable tower of groups.

—
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to homotopy:

xXn

The wedge sum of these f;,’s is a map

F:\/zx, — \/=zx,
n>1 n>1

which makes the following diagram commute:

Vis1EXn V.. sx

F f

!
Vi1 X, V. vx'.

(We do not claim that F is a homotopy equivalence). Now define

phx — v X
n>1

by
p'=Fopoft,

where f~1: ZX' — YX is a homotopy inverse of f. A simple computation
shows that p’ is a right inverse of V’ and so, again by Theorem 2 of [5], it
follows that Ph(X’,Y) = O for all targets Y. To complete the proof reverse
the roles of X and X’ and repeat the argument just given.

(ii). Consider the bijection of towers
f*

{=x',Y™)) {I=x,Y™]}.

induced by a homotopy equivalence f : ¥X — YX. The Mittag-Leffler prop-
erty is clearly a set theoretic condition and so it follows that one tower has
this property if and only if the other does. But these are towers of countable
groups and so it follows that one tower has a trivial 1311_11 term if and only if

the other does. The result then follows using Lemma 2.1.

(iii). Assume that f : X — XX’ is a homotopy equivalence and let U
denote the universal cover of Y. If U is an H-space, then so is each Postnikov
approximation U™ and the induced map
(=x, vy L

{=x, U™}
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is then an isomorphism between two towers of abelian groups. Clearly it
induces an isomorphism between the lim! terms.

(iv). If U is an Hy-space, then the induced function, just displayed, be-
comes an isomorphism of abelian groups when rationalized. The proof is
then essentially the one given for the second part of Theorem 1.

The proofs for (v) and (vi) are similar to those given for (iii) and (iv), re-
spectively. i

Proof of Theorem 6. If U and V are nilpotent spaces of finite type with
finite fundamental groups, we follow [12] in identifying Ph(U,V) with the

image of -

[U(0)1V] [U7V] ’
where r: U — Uy, is a rationalization map. 7 In the commutative diagram
rl*
[/, ¥] X', ¥]
£(0) g
[X0), Y] X,Y],

.the map gE‘O) is a bijection since g(0y: X0y — X(IO) is a homotopy equivalence.
It therefore suffices to show that r* is injective. But according to Theorem D
of [12], r* is injective (and even bijective if £ > 0). |

Proof of Example (E). We begin with the simplest case where the group G
is cyclic of order, say A. Let A denote the set of all primes that divide )\ and
let A’ be the set of all primes which do not. Let X = K(Z,3) and let Y be
the Zabrodsky mix of K(Z,4) at A and QS5 at A’. In other words, Y is the
homotopy pullback of a diagram

5
@S (ar

K(Zny,4) K(Q,4).

Take the arrows in this diagram to be rational equivalences and loop maps.
Thus Y is a finite type loop space and Ph(X, Y') will be isomorphic to the lim?

term of a tower of finitely generated abelian groups. Now

Ph(X,Y) =~ lim'A,, where 4, = [K(Z,3),QY™).

TThe finite type hypothesis on V cannot be removed, as shown by the example U = RP*®
and V= \/n>1 ZRP" in Example (A).
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By a calculation essentially due to Meier, [7], it follows that

lim'A, ~ Ext(Zn),Z) = R+ Zpe.
PEA

Now take g : X — X to be a map with degree A on the bottom cell. It is easy
to check that g induces multiplication by A on each A, /torsion. It follows
that g also induces multiplication by A on the lim! term. Clearly Z/\ is the
kernel of g* in this case.

Consider next the product group G = (Z/))" wheret > 1. Take the new
domain and target to be the ¢-fold product of the previous choices and note
that in this special case,

Ph(X!,Y') =~ (Ph(X,Y)).
To verify this recall that Y is a loop space and so
Ph(X!, YY) =~ Ph(Z(X}),(Q71Y)).

Now X(X?) splits into a wedge of smash products of the form & /\ X while
Q~1Y has the rational homotopy type of a K(Q,5). It follows easily that
Ph(“ AFX, Q1Y) = 0 when k& > 1 and the claim follows. The map g in this
case should, of course, be the ¢-fold external product of the previous map.
The case of an arbitrary finite abelian group G differs from the case just
considered only in notational complexity; e.g., A1, Ag, ... etc. We leave these
details to the reader.

Probf of Example (G). Let X be the Zabrodsky mix of CP* at S and QS3
at S’. Take the map g : X — CP to have degree 1 on the bottom cell. We .
claim there is a commutative diagram

Ph(CP>, S3) E . Ph(x,s?)

~ ~

Ext(Q,Z)

EXt(Z(Sl), Z)

~ ~
~ ~

112 R R+ Y Zpeo

peS’ peSs’

wherein the middle horizontal is induced by the inclusion Z 5y — Q'and the
bottom line is a short exact sequence.
To obtain the upper square of this diagram, let

A, = [E(CPOO,(S3)(n)] and B, = [EX,(S3)(n)]_
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These are finitely generated abelian groups and so one can use Jensen’s for-
mula, ([6], Chapter 1),

lim!G, =~ Ext(limHom(G,,Z),Z),

with G = A or B, to obtain the vertical isomorphisms in the upper square.
Notice that Hom(A,,Z) ~ Hom(B,,Z) ~ Z forn > 3. In the Hom(A,,Z)
sequence,

oz I g Tk g TR g

each prime must divide infinitely many n;’s because [P, QS(%] =0 for
every prime p. Thus the direct limit of the Hom(A,,, Z) sequence is the ratio-
nal numbers, Q. In the Hom(By,, Z) sequence each prime in S must divide in-
finitely many nj’s for the same reason (X =, (P at these primes). However,
those primes not in S divide none of the n;’s since B, ~, [2S3,(02S3)™)].
Thus the limit of the Hom(Bj, Z) sequence is Zg). Notice that the homo-
morphism from Hom(Bp,Z) to Hom(A,,Z) induced by g : X — (P> is
an isomorphism when n = 3 and is uniquely determined from that point on.
The claim about the middle arrow being induced by the inclusion Zgy — Q
follows.

The properties of the lower square and the exactness of the bottom line

follow from fairly basic Ext calculations. A good reference for the facts used
here is [4], Chapter IX.

Proof of Proposition 8. We refer to the exact sequence of pointed sets

[C.. Y] 25 ' y] £ [x,v],

and the discussion which precedes the statement of Proposition 8. In the
case that Y is an H-space, it is clear that g* and A* are homomorphisms;
and Theorem 2.2 of [10] tells us that [X’, Y] is a rational vector space, hence
torsion-free. In the case that g is a co-H-map of co-H-spaces, Cg admits a
co-H-space structure in such a way that & is a co-H-map. Thus g* and A*
are again homomorphisms; and this time Theorem 3.1 of [11] tells us that
[X’,Y] is a rational vector space. I
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