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PHANTOM MAPS AND RATIONAL EQUIVALENCES, II 

BY C.A. MCGIBBON AND JOSEPH ROITBERG 

LetX be a finite type domain; that is, a connected CW-complex with finitely 
generated homology groups in each degree. A phantom map from X to an
other space Y is a pointed map whose restriction to the n-skeleton of X is 
null homotopic for each integer n. Denote by Ph(X, Y) the set of pointed ho
motopy classes of phantom maps from X to Y. Call Y a finite type target (or 
a countable type target) if 1rnY is finitely generated ( or countable) for each 
n 2:: 2. 1 In this paper, the source of a phantom map will always be a finite 
type domain but its range will sometimes be a finite type target, sometimes 
a countable type target and sometimes an arbitrary target. 

1. The influence of :EX on Ph(X, Y) 

Amapg: X -+X' obviouslyinducesafunctionfromPh(X', Y)toPh(X, Y), 
given by precomposition with g. However, it is not obvious that a map from 
:EX to :EX' should induce a function from Ph(X', Y) to Ph(X, Y), or that it 
should imply any sort ofrelationship between Ph(X, Y) and Ph(X', Y). Nev
ertheless, the following theorem shows that this indeed happens in many 
cases. 

THEOREM (1). Let X and X' be finite type domains and let Y be a finite type 
target. Assume that there exists a map 

:EX _f __ :EX' 

that induces a monomorphism in rational homology. Then 

Ph(X', Y) = 0. Ph(X,Y) = 0. 
I 

Moreover, f induces a surjection from Ph(X', Y) to Ph(X, Y) provided its 
rationalization induces a homomorphism 

fo* 
[:EX', y(n)]o --- [:EX, y(n)]o, 

for each integer n. This happens, for example, if{ becomes a co-H-map when 
rationalized or if the universal cover of Y is an H 0 -space. I 

A few more definitions and remarks are in order; proofs will be given later. 
We write Ph(X, Y) = 0 when this set of homotopy classes has just one 
element. In Theorem 1 and elsewhere y(n) denotes the Postnikov approxi
mation of Yup through dimension n. Notice that since :EX is 1-connected, 
y(n) can be replaced by its universal cover in the group of pointed homotopy 

l It is mmecessary to place any restriction on 1r1 Y. 

367 
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classes [:EX, y(n)]. The rationalization of this nilpotent group can be thus 
identified with [EX, Z] where Z denotes the rationalization of the universal 
cover of y(n). Finally, by an H 0 - space we mean a space which has the ratio
nal homotopy type of an H-space. 

COROLLARY (2). Let X and X' be finif;e type domains and let Y be a finite 
type target. Assume that there exist maps between EX and EX', in both direc
tions, that induce isomorphisms in rational homology. Then the sets Ph(X, Y) 
and Ph(X', Y) have the same cardinality; namely either 1 or 2~0. I 

Some special cases of these two results were discovered in [9]. In particular 
it was shown there that Theorem 1 was true when the map f is a suspension. 
In that paper we also characterized those finite type domains X which have 
no essential phantom maps into finite type targets. The result is the follow
ing: 

THEOREM (3). If X is a finite type domain, then the following staf;ements 
are equivalent: 

(i) Ph(X, Y) = 0 for every finite type target Y. 

(ii) Ph(X, sn) = 0 for every n. 

(iii) There exists a map from EX to a bouquet of spheres vsno, that induces 
an isomorphism in rational homology. I 

Notice that one can always construct a rational equivalence from a bou
quet of spheres into a suspension. 2 Thus the implication (iii) => (i) can 
be regarded as a special case of Corollary 2. Indeed, it was this result that 
suggested Corollary 2. The conclusions of Theorem 1 and Corollary 2 fail to 
hold if the finite type hypothesis on the target Y is relaxed. Here is a relevant 
example: 

EXAMPLE (A). LetX = Iltl>00
, X' = a point, and Y = Vn>l Elltl>n. There is 

a rational equivalence from X to X' and Ph(X', Y) = 0. However, Ph(X, Y) 
is uncountably large. 

Although the target Y in this example seems huge, it is nonetheless a 
countable type target. The set Ph(X, Y) contains the universal phantom 
map out of X, which is essential, by [5], and so the cardinality of this set 
is uncountable by [8], Theorem 2. 

In the next result, the cardinality hypothesis on the target Y is relaxed at 
the cost of insisting that the map f: EX -+ EX' be a homotopy equivalence. 
Our goal is to answer the following: 

2or course, it is not always possible to get a rational equivalence from a suspension EX to 
a bouquet of spheres. Perhaps the simplest example of this occurs when X = CP 00

• 
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QUESTION (4). Suppose that X and X' are two finite type domains which 
become homotopy equivalent after one suspension. Does it follow that the sets 
Ph(X, Y) and Ph(X', Y) are isomorphic for all targets Y ? 

We have been unable to answer this question in general. However, there 
are some special cases ofit that we understand. 

PROPOSITION (5). Let X and X' be finite type domains which become ho
motopy equivalent after one suspension. Then 

(i) Ph(X, Y) = 0 for all targets Y if and only if Ph(X', Y) = 0 for all 
targets Y. 

(ii) For all countable type targets Y, the sets Ph(X, Y) and Ph(X', Y) have 
the same cardinality; namely either 1 or 2No. 

(iii) If the universal coverofY is anH-space, then theabeliangroups Ph(X, Y) 
and Ph(X', Y) are naturally isomorphic. 

(iv) If the universal cover of Y is a finite type H0 -spa.ce, then the abelian 
groups Ph(X, Y) and Ph(X', Y) are naturally isomorphic. 

(v) If there exists a co-H-equivalence f : EX-+ EX', then it induces a bijec
tion between Ph(X', Y) and Ph(X, Y) for all targets Y. 

(vi) If there exists an equivalence f : EX-+ I:X' which becomes a co-H-map 
when rationalized, then it induces a bijection between· Ph(X', Y) and 
Ph(X, Y) for all finite type targets Y. 1 

AB illustrations of statements (ii) and (v), here are two examples: 

EXAMPLE (B). Let W be a finite type domain and let X = OEW and X' = 
vf?:.luv W), where N w denotes thej-fold smash product. Then by Propo
sition 5(ii) 

Ph(X, Y) ~ Ph(X', Y) = II Ph(N W, Y) 
">1 j_ 

for all countable type targets. 

In this example there is a well known homotopy equivalence ~X -+ 

EX' (which does not, however, desuspend unless W is contractible). Thus 
Ph(OEW, Y) = 0 precisely when each Ph(N W, Y) = O; in particular, the 
latter happens when W is a finite CW-complex. It may be of interest to note 
that for any N 2: 1, there exist a finite type domain W and a finite type tar
get Y such that Ph(N W, Y) = 0 for j < N while Ph(/\ N W, Y) # 0 . For 
example, let W = K(::l, 3) and let Y = ns3N+2. 

EXAMPLE (C). Let A be an acyclic space and let X' =XV A. The canoni
cal inclusion g: X -+ X' then suspends to a co-H-equivalence. By Proposition 
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5(v), the induced map ~*: Ph(X', Y) --+ Ph(X, Y) is a bijection for finite 
type domains X and all targets Y. 

For explicit examples ofacyclicK('7r, l)'s, see [1]. Some of these K(1r, l)'s 
are finite CW-complexes while others have 1r not finitely generated. It is 
worth pointing out that while the latter are finite type domains in our sense, 
they are not finite type domains in the sense used in [5], where it was required 
that the domains X have finitely many cells in each dimension. 

2. The kernel of g*: Ph(X', Y) --+ Ph(X, Y) 

Letg: X--+ X' be a map of finite type domains that induces an isomorphism 
in rational homology. Theorem 1 says that g*: Ph(X', Y)--+ Ph(X, Y) is sur
jective if Y is a finite type target but it tells us nothing about the kernel of 
g*. Here is one extreme case: 

EXAMPLE (D). Let X = S3 , X' = K(Z, 3), and Y = S4. There is a ra
tional equivalence g : X --+ X' with degree 1 on the bottom cell. However, 
Ph(X, Y) = 0 while Ph(X', Y), and hence the kernel of g*, is uncountably 
large. 

The key point in this example is that while the rationalized spaces Sf O) and 
K(Z, 3)(0) are homotopy equivalent, there is a rational equivalence between 
the original spaces in only one direction. 3 

The next theorem shows that by imposing certain restrictions on the spaces 
X, X' and Y, one may infer thatg*: Ph(X', Y)--+ Ph(X, Y) is a bijection. 

THEOREM (6). Assume thatX, X', and Y satisfy the following requirements: 

(i) X = 2:-kP, k ~ 0, where Pis a nilpotent finite -type domain with 1r1P finite 
and with 1rnP = 0 for n ~ 0. 

• (ii) X' is a nilpotent finite type domain with a finite fundamental group. 

(iii) Y = nez, £ ~ -1, where Z is a finite CW-complex with a finite funda
mental group. 

Then the induced map g* : Ph(X', Y) --+ Ph(X, Y) is a bijection for any 
rational homotopy equivalence g : X--+ X'. 1 

The proof of this result uses a theorem of Zabrodsky, [12], which asserts 
that Ph(X, Y) ~ [Xco), Y] in certain cases. 4 Although the restrictions on the 
spaces in our theorem seem severe, there are some examples which show 

3The spaces X = S 3 
V K(Z, 5} and X' = K(Z, 3} V S 5 provide an example where X(o) :: X(O) 

but there are no rational equivalences between X and X', in either direction. 
4 zahrodsky claims in Theorem D, ibid, that this holds when X = P and Y is merely finite 

dimensional. However, when one takes P = K(Z, 3) and Y = K(Q, 3) , his claim is seen to 
he false. If one further requires Y to be a fuute complex, as we do in Theorem 6, then lus 
restricted result is valid. 
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the result is actually quite sharp. Example (D) showed what happens when 
condition (i) on X is removed. The next example shows what happens when 
condition (iii) on Y is ignored: 

EXAMPLE (E). Given a finit:e ahelian group G, there exists a space X which 
satisfies 6(i), a self map g : X -+ X which is rational equivalence, an.d a fi
nite type target Y such that G is isomorphic to the kernel of g* : Ph(X, Y) -+ 

Ph(X, Y). 

In this example the domain X is a certain K ( 1r, 3). However, the target Y, 
which is rationally a product of K(Q, 4)'s, does not meet the requirements of 
Theorem 6(iii) for some nonempty set of primes. 

As an application of Theorem 6, consider the following: 

EXAMPLE (F). Let X = E2K(Z,2n-1), X' = K(IZ,2n + 1), where n 2:'.: 2, 
and let g : X -+ X' be the double adjoint of the equivalence K(IZ, 2n - 1) -+ 

n2 K (IZ, 2n + 1 ). Then g is a rational equivalence and by Theorem 6 it induces 
a bijection 

Ph(K(IZ,2n + 1),s2n+ 2) ~ Ph(E 2K(Z,2n - 1),s2n+ 2). 

Let us pursue this example a bit further. Since 

Ph(E 2 K(IZ, 2n - 1), S2n+2) ~ Ph(K(Z, 2n - 1), n2s2n+ 2 ) ~ JR , 

as rational vector spaces ([12], [10], [11]), it follows that the functor n2( ) 

induces a bijection 

of nontrivial pointed sets. Iterating this process one sees that n2n--:2( ) 
induces a bijection 

of nontrivial pointed sets. 5 

EXAMPLE (G). Given a proper set of primes S, there exists a finite type do
main X and a map g : X -+ 0' 00 which is a p-equivalence for every prime 
p in S, such that the kernel of the induced epimorphism g* : Ph( 0' 00

, S 3) -+ 

Ph(X, S3) is isomorphic to the product Ilp~S Zp, where Zp denotes the p-adic 
integers. 

In this example, each prime at which the domain X fails to meet condi
tion 6(i) contributes a copy of the p-adic integers to the kernel of g*. These 

5Letting X = V n>l K(Z, 2n + 1) it follows that there exists a phantom map f out of X 
with the property th~t o,nf is essential for every n. 
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examples suggest that if one wishes to relax the conditions on the spaces in 
Theorem 6 and still obtain the conclusion that g* is a bijection, then one 
must place more restrictions on the map g. To this end, we say that a map 
g: X--+ X' is almost a homology equivalence if it induces an isomorphism in 
rational homology (in all degrees) and an isomorphism in integral homology 
in all but finitely many degrees; equivalently, if the integral homology groups 
of Cg, the mapping cone of g, are torsion in all degrees and almost always 0. 
The following strikes us as plausible: 

CONJECTURE (7). Let X and X' be finite type domains and let Y be a fi
nite type target. If g: X --+ X' is almost a homology equivalence, then 
g*: Ph(X', Y) --+ Ph(X, Y) is a bijection. 

There is a small shred of evidence in favor of a positive solution to the 
conjecture, which we now present. Let 

h* g* 
[Cg, Y] -+ [X', Y] -+ [X, Y] 

be the usual exact sequence of pointed sets associated with the cofiber se
quence 

X g I h C 
-+X-+ g-

Since g is almost a homology equivalence, it follows from obstruction theory 
that [Cg, Y] is a finite set. If we were in a situation where g* and h* were 
homomorphisms and [X', Y] were a torsion-free group, we would then be 
able to conclude that h* has trivial image, hence that ker g* = 0. The follow
ing result describes two such situations: 

PROPOSITION (8). Let X, X', and Y satisfy the following requirements: 

(i) Xis a nilpotent finite type domain with a finite fundamental group. 

(ii) X' = 2} P', k 2: 0, where P' is a nilpotent finite type domain with 1r1P' 
finite and with 1rnP' = 0 for n ~ 0. 

(iii) Y = ntz, £ 2: 0, where Z is a finite CW-complex with a finite fundamen-
tal group. 

If g : X --+ X' is almost a homology equivalence and either ( a) Y is an H
space (e.g. e 2: 1) or (b) k 2: 1 and g is a co-H-map of co-H-spaces, then 
g*: Ph(X', Y) -+ Ph(X, Y) is a bijection. 

This ends the discussion of the results in this paper. In the next section 
we prove the results in the order they were presented. Proofs are also given 
for Examples (E) and (G). The first named author thanks his colleague Bob 
Bruner for many helpful comments on this paper. 
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3. Proofs 

Proof of Theorem (1). Recall that the set of pointed homotopy classes of 
phantoms maps from one pointed space, X, to another, Y, can be identified 
with the lim1 term of a certain sequence of nilpotent groups, namely -

Ph(X, Y) ~ lim1[EX, y(n)]. --
The basic reference here is [3], Chapter IX. 

Now assume that f : EX --+ EX' is a map that induces a monomorphism 
in rational homology. The proof of the first part of Theorem 1 deals with the 
following commutative diagram: 

[EX, Y] f* [EX', Y] 

I 
[EX, y(n)] f* 

I 
The vertical maps in this diagram are homomorphisms induced by the inclu
sion Y--+ y(n). The horizontal maps are not necessarily homomorphisms 
since the map f is not necessarily a co-H map and Y need not be an H -space. 

Let G~ denote [EX', y(n)]. Since each G~ is a countable group, the hy
pothesis Ph(X', Y) = 0 implies that the tower {G~} is Mittag-Leffler, by 
Theorem 2 of [8]. Recall that for an inverse tower of groups { Hk}, the Mittag
Leffler property ensures that for each n, the images inHn of the terms farther 
out in the sequence do not become smaller.and smaller without end·; instead 
they stabilize at some point. That is, for some N sufficiently large, 

image{Hn +--- HN} = image{Hn +--- HN+k}, 

for all k 2: 0. We need the following lemma from [8]. 

LEMMA(l.1). LetH1 +--- H2 +--- H3 +--- • • • beatowerofcountahlegroups with 
the property that for each n, the image of Hn+l has finite index in Hn. Then 
the tower {Hk} is Mittag-Leffler if and only if the canonical map IimHk ---+ Hn -has finite index for each n. I 

When we say a homomorphism h : A --+ B has finite index we mean simply 
that the image h(A) has finite index in B. The tower { G~} has the finite index 
property mentioned in Lemma 1.1 since each of the k-invariants of QY has 
finite order. Since [EX', Y] maps onto limG~, it follows that the image of -[EX', Y] has finite index in each G~. 
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Let Gn denote [:EX, y(n)]. Our goal is to show that the tower {Gn} must 
also be Mittag-Leffler. To this end it would suffice to show that the left ver
tical, [EX, Y] -+ Gn, has finite index, by Lemma 1.1. To establish this, we 
will examine the bottom map in more detail. 

LEMMA (1.2). Assume that f : :EX --+ EX' induces a monomo,phism in 
rational homology where X and X' are finite type domains. Then for any 
space Y and natural number n, the induced map, 

f * 
--- [EX', y(n)] 

becomes surjective when rationalized. I 

It is well known that in a finitely generated nilpotent group G, a subgroup 
H has finite index if and only if H 0 = G0 • Therefore when rationalized, the 
right side of the square becomes an epimorphism. Assuming the lemma is 
true, the left side must likewise rationalize to an epimorphism. The finite
ness of the index of [EX, Y] ---+ Gn then follows. 

Proof of Lemma ( 1.2). First recall that Gn is naturally isomorphic to [EX, U] 
where U denotes the universal cover ofy(n). Hence the rationalization of Gn 
can be identified with [EX, Uco)]. Similar remarks apply to G~. It is then clear 
that the map f induces a function between the rationalizations of the groups 
Gn and G~. Of course, this last remark would be obvious if Y were nilpotent 
or if f* : Gn ---+ G~ were a homomorphism, but we have not assumed either 
hypothesis. 

We would like to replace the map f by some finite skeletal approximation 
of it. However, since such an approximation will not, in general, also induce 
a monomorphism in rational homology we have to work a little harder. Let 
K be a complex of dimension n + l with the following properties: 

i) Kn = Xn, 
ii) Hn(K; 7l) ~ Hn(X; 7l). 
iii) Hn+1(K; 7l) ~ Hn+1(X; 7l)/torsion. 

Both homology isomorphisms are to be induced by a map of K into Xn+l· 
Such a K, as well as the map, exist by Theorem 2.1 of [2]. Let K' denote the 
n + l - skeleton of X'. It follows that there is a map, say fK, from EK to EK' 
that fits into a commutative diagram, 

f 

1 

The vertical maps here are inclusions. Notice that they are n + l -connected. 
Hence when the functor [ , y(n )] is applied to this square, the verticals be-
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come group isomorphisms. Notice also that the map fK induces a monomor
phism in rational homology. Since EK and EK' are finite suspensions, they 
each have the rational homotopy type of a bouquet of spheres. Hence the map 
fK when rationalized, has a left inverse. Consequently, fK induces a surjec
tion of sets between the rationalized groups [EK', y(n)]0 and [EK, y(n)] 0 • 

The lemma follows, as does the first part of Theorem 1. 
Consider now the second conclusion of Theorem 1; that is assume that the 

map f induces a homomorphism between the rationalized groups, 

fo* 
[EX', y(n)]o --- [EX, y(n)]o, 

Note that this homomorphism is surjective by Lemma 1.2. 
For a nilpotent groupN, the kernel of the rationalization homomorphism, 

r : N -+No, is the torsion subgroup, TN. Equivalently, the image of Nin 
N 0 is isomorphic to the torsion-free quotient .FN = N /TN. Hence, from the 
commutativity of the diagram 

G' n 
r' 

r 

(G~)o 

(Gn)o , 

in which all arrows except the one on the left side are assumed to be homo
morphisms, it follows that f induces a homomorphism of towers, say 

l: {FG~} --+ {FGn}, 

The original towers had the finite index property and so their quotients {FG~} 
and {FGn} also have this property. For each n, the image of FG~ has finite 
index in FGn (since f rationalizes to an epimorphism) and so by Lemma 2.2 
of [9], the induced map 

lim 1(f) : lim1FG~ --+ lim 1FGn 
+-- +-- -

is a surjection. Finally note that the quotient map Gn-+ FGn induces a lim 1 
+--

isomorphism. To see this, apply the six term lim - lim 1 sequence to the short - -exact sequence of towers 

{TGn} --+ {Gn} --+ {FGn}, 

and take into account that {TGn} will have a trivial lim1 term since it is a 
+--

tower offinite groups. Similar remarks apply to the quotient map G~ -+ FG~. 
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Thus we have shown that f induces a surjection from Ph(X', Y) to Ph(X, Y) 
when the rationalization 

fio* 
[EX', y(n)]o --- [EX, y(n)]o, 

is a homomorphism. We trust it is clear to the r~ader that this happens when 
f rationalizes to a co-H-map or when the universal cover ofY rationalizes to 
anH-space. 

Proof of Corollary 2. This is an immediate consequence of Theorem 1 and 
the following: 

LEMMA (2.1). If {Gn} is a tower of countahle 6 groups then lim 1Gn has car--dinality either 1 or 2~0 • I 

Proof. Assume that lim 1Gn is nontrivial. Then by Theorem 2 of [8] it -follows that the cardinality of this term is uncountably large. Thus it suffices 
to show that this cardinality is no larger than 2~0

• Recall that lim 1Gn is a -quotient of the direct product IIGn and so it has cardinality at most N0 ~ 0 • 

Since 

the lemma follows. 

Proof of Proposition 5. 
(i). Assume that Ph(X, Y) = 0 for all targets Y. Then, in particular, the 

universal phantom map out of Xis trivial and so EX is a retract of V n> 1 EXn 
by Theorem 2 of [5]. Moreover, the proof of that theorem shows tnat the 
folding map 

which for each n restricts to the inclusion in : EXn --+ EX , on the n - th 
summand, has a right inverse 

Given a homotopy equivalence f: EX --+ EX', there is, for each n, an n
equivalence fn: EXn --+ EX~ such that the following diagram commutes up 

6 Countability is necessary here. It will be shown elsewhere that without it any finite 

abelian group can occur as the lim l term of a suitable tower of groups. 
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to homotopy: 
f 

EX' 

fn 
1
., 
in 

The wedge sum of these fn's is a map 

F: V EXn ---+ V EX~ 
n?: 1 n?: 1 

which makes the following diagram commute: 

"v' 

jr 
EX'. 

(We do not claim that Fis a homotopy equivalence). Now define 

p': EX' ---+ V EX~ 
n?:1 

by 
, F r-1 p = opo , 

377 

where r- 1: EX' --+ EX is a homotopy inverse off. A simple computation 
shows that p1 is a right inverse of "v' and so, again by Theorem 2 of [5], it 
follows that Ph(X', Y) = 0 for all targets Y. To complete the proof reverse 
the roles of X and X' and repeat the argument just given. 

(ii). Consider the bijection of towers 

{[EX', y(n)]} 
f* 

--- {[EX, y(n)]}. 

induced by a homotopy equivalence f : EX --+ EX. The Mittag-Leffler prop
erty is clearly a set theoretic condition and so it follows that one tower has 
this property if and only if the other does. But these are towers of countable 
groups and so it follows that one tower has a trivial lim 1 term if and only if -the other does. The result then follows using Lemma 2.1. 

(iii). Assume that f : EX --+ EX' is a homotopy equivalence and let U 
denote the universal cover of Y. If U is an H-space, then so is each Postnikov 
approximation u(n) and the induced map 

{[EX', u(n )]} f* 
--- {[EX, u(n)]} 
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is then an isomorphism between two towers of abelian groups. Clearly it 
induces an isomorphism between the lim 1 terms. 

+--

(iv). If U is an H 0 -space, then the induced function, just displayed, be-
comes an isomorphism of abelian groups when rationalized. The proof is 
then essentially the one given for the second part of Theorem 1. 

The proofs for (v) and (vi) are similar to those given for (iii) and (iv), re-
~~~~ I 

Proof of Theorem 6. If U and V are nilpotent spaces of finite type with 
finite fundamental groups, we follow [12] in identifying Ph(U, V) with the 
image of 

r* 
[U(O), V] ---+- [U ,V] , 

where r: U -r Uco) is a rationalization map. 7 In the commutative diagram 

[X(O)' Y] 
r'* [X', Y] 

g(O) j 
[Xco), Y] 

r* k 
[X, Y], 

the map g(O) is a bijection since g(O) :X(O) -r X(O) is a homotopy equivalence. 
It therefore suffices to show that r* is injective. But according to Theorem D 
of [12], r* is injective (and even bijective if I!,~ 0). I 

Proof of Example (E). We begin with the simplest case where the group G 
is cyclic of order, say A. Let A denote the set of all primes that divide A and 
let A' be the set of all primes which do not. Let X = K(7L., 3) and let Y be 
the Zabrodsky mix of K(7l., 4) at A and ns5 at A'. In other words, Y is the 
homotopy pullback of a diagram 

K(Q,4). 

Take the arrows in this diagram to be rational equivalences and loop maps. 
Thus Y is a finite type loop space and Ph(X, Y) will be isomorphic to the lim 1 

+--

term of a tower of finitely generated abelian groups. Now 

Ph(X, Y) ~ lim1An, 
+--

where An [K(7l., 3), ny(n)]. 

7 The finite type hypothesis on V cannot be removed, as shown by the example U = JRP00 

and V = V n~l :EJR.Pn in Example (A). 
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By a calculation essentially due to Meier, [7], it follows that 

~
1An ~ Ext(Z(A), Z) ~ fill.+ L Zpoo • 

pEA 

379 

Now take g: X--+ X to be a map with degree,\ on the bottom cell. It is easy 
to check that g induces multiplication by,\ on each An/torsion. It follows 
that g also induces multiplication by ,\ on the lim 1 term. Clearly Z/ ,\ is the 

+--
kernel of g* in this case. 

Consider next the product group G = (Z/-Xf where t;::: 1. Take the new 
domain and target to be the t-fold product of the previous choices and note 
that in this special case, 

Ph(Xt, yt) ~ (Ph(X, Y) )t. 

To verify this recall that Y is a loop space and so 

Ph(Xt, yt) ~ Ph(E(Xt), (n- 1Y)t). 

Now E(Xt) splits into a wedge of smash products of the form E Ak X while 
n- 1y has the rational homotopy type of a K(Q,5). It follows easily that 
Ph(E Ak X, n- 1 Y) = 0 when k > 1 and the claim follows. The map g in this 
case should, of course, be the t-fold external product of the previous map. 

The case of an arbitrary finite abelian group G differs from the case just 
considered only in notational complexity; e.g., -\1, -\2, ... etc. We leave these 
details to the reader. 

Proof of Example (G). Let X be the Zabrodsky mix of CP00 at S and ns3 

at S'. Take the map g : X --+ CP00 to have degree 1 on the bottom cell. We . 
claim there is a commutative diagram 

Ph(a> 00
, s3) 

g* 
Ph(X,S 3) 

lss 1 ss 
Ext(Q,Z) Ext(Z(S'), Z) 

1 ss 1 ss 
ITZp ml. fill.+ LZpoo 

PeS' pES' 

wherein the middle horizontal is induced by the inclusion Z(S') --+ Q. and the 
bottom line is a short exact sequence. 

To obtain the upper square of this diagram, let 

An = [ECP00
, (S 3)(n)] and Bn = [EX, (S 3)(n)]. 
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These are finitely generated abelian groups and so one can use Jensen's for
mula, ([6], Chapter 1), 

lim 1Gn ~ Ext(lim Hom( Gn, Z), Z), 
+-- --+ 

with G = A or B, to obtain the vertical isomorphisms in the upper square. 
Notice that Hom(An, Z) ~ Hom(Bn, Z) ~ Z for n 2:: 3. In the Hom(An, Z) 
sequence, 

... z z ···, 
each prime must divide infinitely many nk 's because [a>00

, OS~)] = 0 for 
every prime p. Thus the direct limit of the Hom(An, Z) sequence is the ratio
nal numbers, Q. In the Hom(Bn, Z) sequence each prime in S must divide in
finitely many nk 's for the same reason (X ':::::.p U, 00 at these primes). However, 
those primes not in S divide none of the nk's since Bn ~P [0S 3 , (OS3)(n)]. 
Thus the limit of the Hom(Bn, Z) sequence is Z(S')· Notice that the homo
morphism from Hom(Bn, Z) to Hom(An, Z) induced by g : X --+ U' 00 is 
an isomorphism when n = 3 and is uniquely determined from that point on. 
The claim about the middle arrow being induced by the inclusion Z(S') --+ Q 
follows. 

The properties of the lower square and the exactness of the bottom line 
follow from fairly basic Ext calculations. A good reference for the facts used 
here is [4], Chapter IX. 

Proof of Proposition 8. We refer to the exact sequence of pointed sets 

h* g* 
[Cg, Y] -r [X', Y] -r [X, Y], 

and the discussion ~hich precedes the statement of Proposition 8. In the 
case that Y is an H-space, it is clear that g* and h* are homomorphisms; 
and Theorem 2.2 of [10] tells us that [X', Y] is a rational vector space, hence 
torsion-free. In the case that g is a co-H-map of co-H-spaces, Cg admits ·a 
co-H-space structure in such a way that his a co-H-map. Thus g* and h* 
are again homomorphisms; and this time Theorem 3.1 of [11] tells us that 
[X', Y] is a rational vector space. I 
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