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ON THE UNSTABLE ADAMS SPECTRAL SEQUENCE FOR SO 
and U, AND SPLIITINGS OF UNSTABLE EXT GROUPS* 

BY A. K. BOUSFIELD AND DONALD M. DAvrst 

This paper is dedicated to the ·memory of Jose Adem 

1. Introduction 

Let U denote the category of unstable modules over the mod 2 Steenrod 
algebra A, and let Ext 81t(-) = ExtiJ (-, r;t Z2). Let M 00 = H*(:EGP.f) denote 
the unstable A-module with nonzero classes xi such that i is odd and positive, 
and 

2· k 
Sq 3

x2k+1 = (j)x2(j+k)+I· 

Then H*(U) ~ U(M 00 ), where the left side is the mod 2 cohomology of the in­
finite unitary group, and the right side the free unstable A-algebra generated 
by M 00 • Thus there is an unstable Adams spectral sequence (UASS), defined 
as in [6], converging to 1r. (U) with E;,t ~ Ext 81t(M 00 ). We shall construct an 
algebraic spectral sequence (SS) which we conjecture agrees with this UASS. 
In Section 3, we perform the minor modifications required to yield the analo­
gous results for the infinite special orthogonal group SO. 

Part ofour conjecture is a splitting result for Ext(M 00 ). Let Mn denote the 
subspace of M 00 spanned by those xi such that a{i) ~ n, where a{i) denotes 
the number of l's in the binary expansion of i. This provides a filtration of 
M 00 by A-submodules, associated to which is a trigraded SS with 

dr :-E;:,s,t -.. E;"+r,s+I,t, and Ext 81t(M 00 ) filtered with nth subquotient E~s,t. 

CONJETURE (1.1). This SS collapses to an isomorphism 

Ext 8 't(M00 ) ~ EE) Ext 81t(Mn/Mn-1). 
n~l 

Conjecture (1.1), which should be of much interest in its own right, is im­
plied by our main conjecture, because the algebraic SS which we construct 
has EB Ext(Mn/Mn-1) as its E2-term. The following analogue for SO may be 
of even more interest. 

* AMS Subject Classification 55T 15, 55R45. Key words: unstable Adams spectral sequence, 

splittings of Ext groups, looping resolutions. 

t Both authors were supported by National Science Foundation research grants. 
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CONJETURE (1.2). Let Qn denote the subquotient of if• RP 00 spanned by 
classes xi with a(i) = n. Then 

Ext 8 't(if* RP 00
) ~ E9 Ext 8 '\Qn)­

n2'.l 

The UASS on which we focus is somewhat unusual, since we know the ho­
motopy groups which it is computing, by Bott periodicity. We do not, however, 
know the Adams filtrations of their classes. One thing that is known in this 
direction is the complete Adams spectral sequence (ASS) converging to the 
homotopy groups of the connective unitary spectrum u localized at 2. The 
2nth space of this spectrum is U[2n + 1, oo], the space obtained from U by 
killing 1ri(-) for i < 2n + 1. Using results of [7], we have H* ( u) ~ "EA// AA1, 
where A1 is the exterior subalgebra of A generated by the Milnor primitives 
of degree 1 and 3. Thus this SS has 

(1.3) 

In the usual (t - s, s) depiction of ASS, this SS consists of, for each i 2: 
0, an infinite ho-tower in stem t - s = 2i + 1 beginning in filtration s = i. 
The filtrations of the generators of the towers in E 00 of the UASS for U are 
certainly not this nice. But we use an algebraic SS converging to the nice 
E 00 -term of (1.3) as an aid to constructing our conjectural UASS(U). 

Let F(n) denote the free unstable A-module on a generator Ln of degree 
n, F'(n) = F(n)/ASq1, and ln c F1(2n - 1) the A-submodule generated by 
S q31,zn-l · Define 

and, for any integer n, 

if t - s = 2i + 1 and O ::; i ::; s 
otherwise 

{ 
ns,t ns,t -

n - Exts-n-1,t-n(Jn+l) 
if t - s ::; 2n + 1 
otherwise. 

If n < 0, then D~,t = 0. Note that ns,t agrees with the ASS for u described in 
(1.3). We will prove the following key result in Section 2. 

PROPOSITION (1.4). For n 2: 0, there are exact sequences 

These can be spliced together to give an exact couple, and hence a SS. ([4]) 
Written in tableau form, the SS begins as follows. 
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i Exts-1,t(Mi) 6 
0 --+ --+ 

L Exts- 2,t-l(M2/Mi) !.,, 
li 

i 6 ns,t Ext 81t(Mi) 0 0 --+ --+ 

L Exts- 3,t- 2 (M3/M2) !.,, 
li 

L Exts-l,t-l(M2/M1) !.,, 
li 

i ns,t Ds+l,t 
1 0 --+ 

L Exts- 4,t- 3(M4/M3) !.,, 
li 

L Exts-Z,t- 2(M3/M2) !.,, 
li 

i ns,t Ds+l,t 
2 1 --+ 

li li 

If t - s < 2n+1 - 2, then i~,t is bijective, since both groups surrounding it 
are 0. Thus limits are attained in this SS, and so the following corollary is 
immediate. 

COROLLARY (1.5). There is a SS with 

Czn,s,t = Exts-n,t-n(Mn+i/Mn), 

. } dn st "n st "n-r+l s+l t d "n st } I b · { fil · wit 1, r' '· : '-r ' ' -+ '-r ' ' an e-od ' tie nt 1, su quotient o a tration 
of ns,t. 

Thus this algebraic SS, which has a very complicated £2 -term, converges to 
the nice ASS for u. But its £2-term is not the E2-term of the UASS converging 
to 1r.(U), for it effectively pushes the chart of Ext*,* (Mn+1/Mn) up by n units, 
by letting Exts-n,t-n(Mn+1/Mn) contribute to the limit (s, t)-group. In order 
to have a chance of obtaining the correct E2-term, we regrade. 

Define a new SS with 

E;,t = EB ,;,s+n,t+n = EB Exts,t(Mn+1/Mn), (1.6) 
n n 

with dr on the nth summand of E:,t equal to d~,s+n,t+n of the SS of (1.5). The 
E 00 -term of this SS is a regraded version of £00 of the SS of (1.5). When an 
element of ns,t is pulled back to D~,t for smallest possible n, it will now be seen 
in filtrations - n rather than s, as it was in£. These n's are a nonincreasing 
function of s as we move up a tower (fixed t - s) of ns,t, and will eventually 
stabilize. But changes in this n cause what look like filtration jumps in the SS 
of (1.6). 

We. illustrate with the situation through t - s = 9, where this jump first 
happens. The left SS is that of (1.5), and the right that of (1.6). Classes with 
n = 0 are indicated by x, with n=l by•, and with n = 2 by o. As usual, 
coordinates are ( t - s, s) . 
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1 3 5 7 g 1 3 5 7 g 

Note that when the SS of(l.5) is pictured as above, all differentials look like 
d1 's, for they all go from a group contributing to ns,t to a group contributing 
to ns+I,t. But the subscripts of differentials in the SS of (1.5) are related to 
changes of summand. 

Our second main conjecture for U is as follows. 

CONJETURE (1.7). The SS of(l.6) agrees with the UASS of U. 

As evidence, we observe that if Conjecture ( 1.1) is true, then the SS of (1.6) 
has the correct E2-term, and its E 00 could be correct, for it has O in even 
ste!lls and Z2's of strictly increasing filtrations in odd stems. Further evi­
dence is given by the fact that our proof of Proposition (1.4) will involve the 
cohomology of the spaces in the Postnikov system for U. 

As pointed out by Mark Mahowald, this algebraic SS for 1r* (U) can be de­
mystified somewhat by thinking of it as arising from the destabilization of an 
Adams resolution of u. This is discussed in Section 4, where we also explain 
how the unstable A-modules Mn+i/ Mn can be obtained as derived functors 
of the destabilization functor applied to a shifted version of H* u. In Section 
5, we present a generalization of our results and conjectures. It is not clear 
whether the situation for SO and U contains essential ingredients not present 
in the much more general context of Section 5. 

The reader attempting to prove Conjectures (1.1) and (1.2) should keep in 
mind that they are not true if an arbitrary module is allowed in the second 
variable. For example, Ext 0 ,0 (ii* RP 00

, Q1) = 0, while Ext 0,0 (Q1 , Q1) =I= 0. 
Also, the conjectures are not true for stable Ext. 

We would like to thank Haynes Miller for pointing out a mistake in an early 
draft, and Bill Massey for allowing us to use his unpublished work [5]. 
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2. Construction of the spectral sequence 

In this section, we prove Proposition (1.4), which we have already seen 
implies the existence of the SS's of (1.5) and (1.6). 

Define Fn = F 1(2n), and define Kn so that there is a short exact sequence 
(SES) in U 

Since Jm = 0 for m < 2, and 

Ext'• 1 (Fn) = { ; 2 

the Ext sequence of (2.1) yields 

PROPOSITION (2.2). 

i) if n = 1 or 2, then Ext'• 1(Kn) = { ; 2 

t - s = 2n, s ~ 0 
otherwise, 

t - s = 2n, s ~ 0 
otherwise; 

(2.1) 

ii) if n ~ 3, then Exts,t (Jn-d ~ Exts-l,t (Kn) unless t - s = 2n ands ~ 0, in 
which case Ext 81 t(Jn-1) = Z2 and Exts-l,t(Kn) = 0. 

We will need the following elementary result, where O is the loop functor 
in U as defined in [6]. 

PROPOSITION (2.3). Ext 81t(OKn) ~ Exts,t+l(Kn), 

Proof. Letting 0 1 denote the first derived functor of 0, [6, pp. 43-44] and 
(2.1) imply that 01Kn = 0, since it injects to 01Fn = 0. Then the exact 
sequence 

-+ Ext 8 't(OKn)-+ Ext 81 t+1(Kn)-+ Exts-l,t(01Kn)-+ Exts+l,t(OKnr-+ 

(see, e.g., [2, 3. 7]) implies the desired result. • 

The Postnikov tower for U is a tower 

K(Z,5)~ 

K(Z,3)~ 

u 
L 

L 
U[l,5] 

lp 
U[l,3] 

lp 
K(Z, 1) 

k 
-t K(Z, B) 

k 
-t K(Z,6) 

k 
-t K(Z,4), 

(2.4) 
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in which each~ ~ ~ is a fiber sequence, and the map U-+ U[l, 2n + 1] 
induces an isomorphism in 1r(-) for i ::; 2n + 1, while 1ri (U[l, 2n + 1]) = 0 for 
i > 2n + 1. 

There are isomorphisms of A-algebras H* (K(Z, 2n - 1)) ~ U(OFn) and, 
by [7] or [3], H*(U[l, 2n - 1])) ~ U(Xn) for a certain unstable A-module Xn, 
which can be thought of as ri- 1QH* (BU[2, 2n]), where Q denotes the indecom­
posable quotient. The morphisms of H* (-) of (2.4) are induced by morphisms 
of these unstable A-modules as below. 

OFn+l 
in+I 

Xn+l 
fn+I 

Fn+2 - -
in 

t 
In 

OFn - Xn - Fn+l (2.5) 

t 
fn-1 

Xn-1 - Fn 

The following result is culled from [7] (see esp. [7, 8.6] for (2.8) and [7, 7.1] 
for (2.9)), with Kn, Jn, and Mn as above. 

THEOREM (2.6) In the above diagram, infn = ·Sq 3 , 

ker(fn) = Kn+l and im(/n+1) ~ ln+l, 

and there are SES 's in U 

0 -+ Mn -+ Xn+l -+ Oker(f n) -+ 0 

and 

0-+ im(/n+1) -+ Xn+l -+ Mn+l -+ 0. 

Note that (2.8) and (2.9) imply that 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Taking quotients by Mn of the latter modules in (2.9), then using (2.8) to 
rewrite the middle group, and finally using (2.7) yields a SES 

(2.11) 

From (2.11) and (2.3), we obtain a LES 

-+ Exts-n-l,t-n+l(Kn+1)-+ Exts-n-1,t-n(Jn+l)-+ Exts-n,t-n(Mn+1/Mn) 

-+ Exts-n,t-n+l(Kn+1) -+. (2.12) 
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We will deduce the exact sequence of Proposition (1.4) from this. 

When n = 0, the sequence of (1.4) reduces to the fact that 

ns,t ~ Exts,t(Mi) ~ { Z2 t - s = 1 ands 2:'.: O 
0 O otherwise. 
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When n = 1, both (2.12) and (1 .4) reduce to the same isomorphism for 
t - s > 3, using (2.2) and the definition of D~,t. The initial towers (t - s = 1) 

in D~,t and D~,t correspond under the morphism of (1.4). The tower in D~,t 
int - s = 3, s 2:'.: 1, maps in (1.4) to a tower in Ext(M2/M1) which in (2.12) 
maps to the tower in Ext(Kz). 

If n 2:'.: 2, exactness of (2.12) is maintained if ns,t fort - s ~ 2n + 1 is added 
to both Exts-n-l,t-n+l(Kn+1) and Exts-n-l,t-n(Jn+1), The latter clearly 

becomes n:/, while (2.2) shows that the former becomes D~'~1, as desired. 

Three remarks are in order. First, the reader may object that this is not an 
algebraic SS, as advertised, because it involves the cohomology of the spaces 
U[l, 2n - 1]. To this, we counter that the SS comes completely from (2.11), 
which is just algebraic. Moreover, a completely algebraic derivation of (2.11) 
can be given, but we felt the one presented here is more likely to lead to a 
proof of our conjectures. 

Second, note that when the exact sequence 

~ 3 A/ASq 1~ A/ASq 1~ ~- 3 A/ASq 1 (2.13) 

is destabilized, the resulting sequence fails to be exact. Massey ([5]) computed 
the homology of the destabilized sequence 

F 1(n + 3)-:+ F1(n) - F'(n - 3) 

to be, if n = 2m +€with€= 0 or 1, an A-module spanned by z2m+1: and all el­
ements Sq 1 z2m+1:, where I= (i1, ... ,ir) is admissible, and, for all j satisfying 
1 ~ j ~ r, the excess of (ij, ... ,ir) equals 2m or 2m - 2e for some e satisfy­
ing 1 ~ e < m. Our result (2.11) is closely related to this. It says that the 
sequence 

F1(2n + 4)~ F 1(2n + 1)~ F1(2n - 1) (2.14) 

has homology Mn+1/Mn, Here 0 sends Sq11,2n+1 to Sq1Sq31,2n-1, provided 
excess(!) ~ 2n + 1. Note that 0 increases degree by 1. 

Third, as more evidence for the relationship between our SS and the UASS, 
we point out that the Postnikov tower of U resembles an Adams-Postnikov 
tower, as defined in [6, p. 82], because 

ker(H*(U[l, 2n - 1]) - H*(U)) = ker(H*(U[l, 2n -1]) - H*(U[l, 2n + 1])). 
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3. Results for SO 

The entire argument can be directly adapted to SO, using results of[8] and 
[3] instead of [7]. We just list the replacements for the various symbols. 

• 

• 

• 

• 

• 

M 00 = H*(RP 00
). Thus M 00 has classes xi for all positive integers i, and 

Mn is spanned by those with a(i) ~ n. 

For O ~ b ~ 3, let p(4a + b) =Ba+ 2b. Thus p(n) is the grading of the nth 
nonzero homotopy group of BSO. Then Xn = :E- 1QH* (BSO[2, p(n)]), 
and H*(SO[l,p(n) -1]) ~ U(Xn)-

Fn = { F(p(n)) ifn = 0, 1 mod 4 
F 1(p(n)) ifn = 2,3 mod 4 

infn : Fn+l--+ OFn is ·Sqd, where 

d = p( n + 1) - p( n) + 1 = n n = 0, 3 mod 4 
n = I mod 4 
n = 2 mod 4 

and, as before, Kn+l = ker(inf n) = ker(f n), Jn = im(inf n) ~- im(f n), and 
Mn = im(Xn - Xn+I). 

Let h(i) = { 1 ~ ~ O, 
1 mod 4 Then 

oo i = 2, 3 mod 4. 

and 

ns,t = { 
0
Z2 if t - s = p(i) - I and 0 ~ i - 1 ~ s < i - I+ h(i) 

otherwise 

{ 
Ds,t 

ns,t -
n - Exts-n-1,t-n(Jn+I) 

ift-s~p(n+l)-l 
otherwise 

• Proposition (2.2) is replaced by 

PROPOSITION (3.1). 

i) if n ~ 3, then Exts,t(Kn) = { OZ2 t - s = p(n), 0 ~ s < h(n) 
otherwise; 

ii) if n 2: 4, then Ext 81t(Jn-1) ~ Exts-l,t(Kn) unless t - s = p(n) and 
0 ~ s < h(n), in which case Ext 81t(Jn-1) = Z2 and Exts-l,t(Kn) = 0. 

With the new meaning of terms, Theorem (2.6), Proposition (1.4), and 
Corollary (1.5) are valid. Also, there is a SS (1.6), which we conjecture agrees 
with the UASS of SO. Conjecture (1.2) would be a corollary of this agreement, 
since it relates two ways of expressing the E 2-term. 

Analogous to the second remark at the end of Section 2 is that the following 
sequences on the left have homology as indicated on the right. 
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sequence 
F(Bt + 1) -+ F' (Bt - 1) -+ F' (Bt - 6) 

F(Bt + 2) -+ F(Bt) -+ F'(Bt - 2) 
F'(Bt + 4)-+ F(Bt + 1) -+ F(Bt - 1) 

F' (Bt + 8) -+ F' (Bt + 3) -+ F(Bt) 

homology 
M4t-i/ M4t-2 
M4t/M4t-1 
M4t+i/M4t 
M4t+2/M4t+l 
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(3.2) 

There is a curious difference between this result and the unitary case dis­
cussed in the second remark at the end of Section 2. In that case, the sequence 
(2.14) is what comes up in our work, and its homology differs from that of the 
natural destabilization of (2.13). However, in the SO-case, using the second 
of the four cases of (3.2) to illustrate, the sequence 

F(Bt + 2) -+ F(Bt) -+ F 1 (Bt - 1), 

where the second morphism is Sq 2 but increases degree by 1, is the one which 
comes up in our work, and its homology equals that of the sequence listed in 
(3.2), which is the natural desuspension of a stable exact sequence. These are 
not obviously equal; their equality follows from a comparison of our results 
and those of [5]. This difference between the U and SO cases seems to beg an 
explanation, but as it is peripheral to this project, we shall not pursue ft here. 

We remark that a chart for ns,t with coordinates (t - s, s) is the chart for 
the connective so spectrum, which begins as follows. 

1 3 7 11 15 

This can be seen since (see e.g., [3]) 

where A 1 is the subalgebra of A generated by Sq 1 and Sq 2, and hence in the 
ASS for so 
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4. Topological and algebraic destabilizations 

Our construction of the conjectured DASS for U (resp. SO) can be viewed 
as a consequence of destabilizing the ASS for u (resp. so). Let Hn = 1,;n HZ( 2) 

denote the Eilenberg-MacLane spectrum. An Adams-Postnikov tower for u 
has the simple form 

u 

t 

t 
Hs--+ u[l, 5] --+ Hs 

t 
H3--+ u[l, 3] --+ H5 

t 
H1 --+ H4. 

Diagram (2.4) is just the destabilization of this. Whereas the sequence 

is exact, it destabilizes to (2.14), which has homology Mn+i/ Mn, Our SS deals 
with the way in which the groups Ext(Mn+1/Mn) build 1r.(U) ~ 1r.(u). 

As pointed out by Paul Goerss, there is an algebraic analogue of this. Let 
0 00 

: M odA--+ Ube the left adjoint to the inclusion functor. Thus, if Mis an 
A-module, then 0 00 Mis the quotient of M mod relations Sqix = 0 ifi > jxj. 
Let O;° denote the sth derived functor of 0 00

• Then we have 

PROPOSITION (4.1). (Goerss) If Mi is as in Section 1, then 

while if Mi is as in Section 3, then 

Proof. Define an acyclic chain complex O by 

• • ·--+ 01 --+Co--+ A// A1 --+ O 

with Ci = :E3i A/ AS q1 and boundary morphisms -S q3
. Apply 0 00 to the mod­

ules in an A-resolution of each :E-n+Ioi to obtain a spectral sequence 

(4.2) 
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with dr: E;,q -t E;+r-l,q-r· Noting that the only homology of the sequence 

• • • -t F(3) -t F(2) -t F(l) ~ F(O) -t O, 

with morphisms •Sq1, is F(O) = Z2 and EZ 2 in F(l), we deduce 

{ 

Em+p Z2 if p > 0 and m + p = 0 or 1 
f2;':EmA/ASq 1 = F'(m) ifp = 0 

0 otherwise. 

Thus the only nonzero groups EJ,q in (4.2) satisfying p + q = n +'=with -1 s 
€ s 1 are EJ,n+€ = F'(2n + 1 + 3€), E~,o = EZ2, and E~_ 110 = Z2. By (2.14), 

E5 n = Mn+1/Mn. The only possible remaining differential involving groups 
with p + q = n is dn : E0 n ~ E~_ 1 0 , but this must be zero since these 
differentials preserve inte~al grading.' 

The SO-case is proved similarly, using the acyclic complex over 
E-n- 2 A//A1 with 04t E12t-n- 2 A/ASq 1, 04t+l :E12t-n A, 
04t+2 = E12t-n+ 2 A, and 04t+3 = E12t-n+ 5 A/ AS q1. For € = 0, 1, 2, and 
3, let 8(€) = 0, 2, 4, and 7, respectively. Then in the SS analogous to (4.2), 

{ 

!1fE 12t-n- 2+o(€)AjASq 1 € = 0, 3 

nooE12t-n-2H(€} A € _ 1 2 
p - ' 

( 

F 1(12t - n - 2 + 8(€)) € = 0, 3 and p = 0 
F(12t - n - 2 + 8(€)) € = 1, 2 and p = 0 
Z2 E = 0, 3 and 12t - n - 2 + 8 ( <:) + p = 0 
:EZ2 € = 0, 3 and 12t - n - 2 + 8(€) + p = 1 
0 otherwise 

E5,n+1 is the homology of EJ,n+ 2 ~ EJ,n+l ~ EJ,n, which by (3.2) is 
Mn/Mn+l· Higher differentials must be O for dimensional reasons as in the 
previous case. Since for€= O, 3 we have 8(€) = E mod 4, the only Z2's or :EZ2's 
occur in EJ,q with 

p + q = p + 4t + € = p + 12t + 8(€) = n + 2 or 3 mod 4, 

and so there are none when p + q = n + 1. 

5. A generalization 

In this section, we propose conditions on an algebraic resolution which are 
satisfied by (2.5) and its SO analogue. We show that the analogue of Theorem 
(1.5) is true in this generality, and conjecture that the analogue of Conjecture 
(1.1) is true. 
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Suppose the diagram of unstable A-modules 

Fi F2 F3 

lio l1i 112 
~ ·••-+X Xo Po X P1 X2 ----+ 1 ----+ 

li1 li2 
f2F1 f2F2 

satisfies 

• Fn-+ Xn-1-+ Xn-+ flker(Fn-+ Xn-d -+ 0 is exact. 

• Fn is a direct sum of F(m)'s and/or F'(k)'s 

• (inf n)* = 0: Ext(f2Fn) -+ Ext(Fn+1) 

• ker(Xn -+ X) = ker(Xn -+ Xn+1) 

• X =dirlim(Xn)-

Let Mn = im(Xn -+ X). 

CONJETURE (5.1). Ext(X) = EB Ext(Mn+i/Mn) 

The following proposition generalizes Theorem (1.5). 

PROPOSITION (5.2) Let 

ns,t = EB Exts-n,t-n(nFn), 
n 

Th<;!re is a spectral sequence with 

E;,s,t = Exts-n,t-n(Mn+1/Mn) 

and E~s,t the nth subquotient of a filtration of ns,t. 

The proof is identical to the proof for X = H* (EOP-t°) in Sections 1 and 2. 
One derives a SES 

0-+ im(/n+1)-+ flker(/n)-+ Mn+1/Mn-+ 0, 

and modifies its exact Ext sequence using that Ext s,t(imfn) and 
Exts-l,t(kerfn) differ only by Ext(Fn+1)- This allows one to splice the exact 
sequences, yielding the desired spectral sequence. 

One could modify the spectral sequence of the proposition to obtain a SS 
with E;,t = EB Ext 8 ,t(Mn+1/Mn)- This E2-term is the same as the E2-term of 
the SS converging to Ext(X) whose collapsing we would like to prove. Some­
how the fact that the SS of the proposition allowed us to consider the filtra­
tions as being much higher is supposed to yield a proof of Conjecture (5.1). 
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If the conjecture isn't true in this generality, then what extra conditions are 
required to make it true? 
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