ON THE UNSTABLE ADAMS SPECTRAL SEQUENCE FOR SO and U, AND SPLITTINGS OF UNSTABLE EXT GROUPS*

By A. K. Bousfield and Donald M. Davis ${ }^{\dagger}$

This paper is dedicated to the memory of José Adem

1. Introduction

Let U denote the category of unstable modules over the mod 2 Steenrod algebra A, and let $E x t^{s, t}(-)=E x t_{u}^{s}\left(-, \Sigma^{t} Z_{2}\right)$. Let $M_{\infty}=\widetilde{H}^{*}\left(\Sigma C P_{+}^{\infty}\right)$ denote the unstable A-module with nonzero classes x_{i} such that i is odd and positive, and

$$
S q^{2 j} x_{2 k+1}=\binom{k}{j} x_{2(j+k)+1} .
$$

Then $H^{*}(U) \approx U\left(M_{\infty}\right)$, where the left side is the mod 2 cohomology of the infinite unitary group, and the right side the free unstable A-algebra generated by M_{∞}. Thus there is an unstable Adams spectral sequence (UASS), defined as in [6], converging to $\pi_{*}(U)$ with $E_{2}^{s, t} \approx E x t^{s, t}\left(M_{\infty}\right)$. We shall construct an algebraic spectral sequence (SS) which we conjecture agrees with this UASS. In Section 3, we perform the minor modifications required to yield the analogous results for the infinite special orthogonal group $S O$.

Part of our conjecture is a splitting result for $\operatorname{Ext}\left(M_{\infty}\right)$. Let M_{n} denote the subspace of M_{∞} spanned by those x_{i} such that $\alpha(i) \leq n$, where $\alpha(i)$ denotes the number of 1 's in the binary expansion of i. This provides a filtration of M_{∞} by A-submodules, associated to which is a trigraded SS with

$$
E_{1}^{n, s, t}=E x t^{s, t}\left(M_{n} / M_{n-1}\right),
$$

$d_{r}: E_{r}^{n, s, t} \rightarrow E_{r}^{n+r, s+1, t}$, and $E x t^{s, t}\left(M_{\infty}\right)$ filtered with nth subquotient $E_{\infty}^{n, s, t}$.
Conjeture (1.1). This SS collapses to an isomorphism

$$
E x t^{s, t}\left(M_{\infty}\right) \approx \bigoplus_{n \geq 1} E x t^{s, t}\left(M_{n} / M_{n-1}\right)
$$

Conjecture (1.1), which should be of much interest in its own right, is implied by our main conjecture, because the algebraic SS which we construct has $\bigoplus \operatorname{Ext}\left(M_{n} / M_{n-1}\right)$ as its E_{2}-term. The following analogue for $S O$ may be of even more interest.

[^0]CONJETURE (1.2). Let Q_{n} denote the subquotient of $\tilde{H}^{*} R P^{\infty}$ spanned by classes x^{i} with $\alpha(i)=n$. Then

$$
E x t^{s, t}\left(\tilde{H}^{*} R P^{\infty}\right) \approx \bigoplus_{n \geq 1} E x t^{s, t}\left(Q_{n}\right)
$$

The UASS on which we focus is somewhat unusual, since we know the homotopy groups which it is computing, by Bott periodicity. We do not, however, know the Adams filtrations of their classes. One thing that is known in this direction is the complete Adams spectral sequence (ASS) converging to the homotopy groups of the connective unitary spectrum u localized at 2. The $2 n$th space of this spectrum is $U[2 n+1, \infty]$, the space obtained from U by killing $\pi_{i}(-)$ for $i<2 n+1$. Using results of [7], we have $H^{*}(u) \approx \Sigma A / / A \Lambda_{1}$, where Λ_{1} is the exterior subalgebra of A generated by the Milnor primitives of degree 1 and 3. Thus this SS has

$$
\begin{equation*}
E_{\infty}^{s, t} \approx E_{2}^{s, t}=E x t_{A}\left(H^{*} u\right) \approx E x t_{\Lambda_{1}}\left(\Sigma Z_{2}\right) \tag{1.3}
\end{equation*}
$$

In the usual $(t-s, s)$ depiction of ASS, this SS consists of, for each $i \geq$ 0 , an infinite h_{0}-tower in stem $t-s=2 i+1$ beginning in filtration $s=i$. The filtrations of the generators of the towers in E_{∞} of the UASS for U are certainly not this nice. But we use an algebraic SS converging to the nice E_{∞}-term of (1.3) as an aid to constructing our conjectural UASS (U).

Let $F(n)$ denote the free unstable A-module on a generator ι_{n} of degree $n, F^{\prime}(n)=F(n) / A S q^{1}$, and $J_{n} \subset F^{\prime}(2 n-1)$ the A-submodule generated by $S q^{3} \iota_{2 n-1}$. Define

$$
D^{s, t}= \begin{cases}Z_{2} & \text { if } t-s=2 i+1 \text { and } 0 \leq i \leq s \\ 0 & \text { otherwise }\end{cases}
$$

and, for any integer n,

$$
D_{n}^{s, t}= \begin{cases}D^{s, t} & \text { if } t-s \leq 2 n+1 \\ E x t^{s-n-1, t-n}\left(J_{n+1}\right) & \text { otherwise }\end{cases}
$$

If $n<0$, then $D_{n}^{s, t}=0$. Note that $D^{s, t}$ agrees with the ASS for u described in (1.3). We will prove the following key result in Section 2.

Proposition (1.4). For $n \geq 0$, there are exact sequences

$$
\begin{aligned}
& \xrightarrow{j_{n}^{8-1, t}} E x t^{s-n-1, t-n}\left(M_{n+1} / M_{n}\right)^{\delta_{n}^{s-1, t}} D_{n}^{s, t} \xrightarrow{i_{n}^{\boldsymbol{i}, t}} D_{n}^{s, t} \\
& \xrightarrow{j_{n}^{q, t}} E x t^{s-n, t-n}\left(M_{n+1} / M_{n}\right) \xrightarrow{\delta_{n}^{\alpha, t},} .
\end{aligned}
$$

These can be spliced together to give an exact couple, and hence a SS. ([4]) Written in tableau form, the SS begins as follows.

If $t-s<2^{n+1}-2$, then $i_{n}^{s, t}$ is bijective, since both groups surrounding it are 0 . Thus limits are attained in this SS , and so the following corollary is immediate.

COROLLARY (1.5). There is a SS with

$$
\mathcal{E}_{2}^{n, s, t}=E x t^{s-n, t-n}\left(M_{n+1} / M_{n}\right)
$$

with $d_{r}^{n, s, t}: \mathcal{E}_{r}^{n, s, t} \rightarrow \mathcal{E}_{r}^{n-r+1, s+1, t}$ and $\mathcal{E}_{\infty}^{n, s, t}$ the nth subquotient of a filtration of $D^{s, t}$.

Thus this algebraic SS , which has a very complicated \mathcal{E}_{2}-term, converges to the nice ASS for u. But its \mathcal{E}_{2}-term is not the E_{2}-term of the UASS converging to $\pi_{*}(U)$, for it effectively pushes the chart of $E x t^{*, *}\left(M_{n+1} / M_{n}\right)$ up by n units, by letting $E x t^{s-n, t-n}\left(M_{n+1} / M_{n}\right)$ contribute to the limit (s, t)-group. In order to have a chance of obtaining the correct E_{2}-term, we regrade.

Define a new SS with

$$
\begin{equation*}
E_{2}^{s, t}=\bigoplus_{n} \mathcal{E}_{2}^{n, s+n, t+n}=\bigoplus_{n} E x t^{s, t}\left(M_{n+1} / M_{n}\right) \tag{1.6}
\end{equation*}
$$

with d_{r} on the nth summand of $E_{r}^{s, t}$ equal to $d_{r}^{n, s+n, t+n}$ of the SS of (1.5). The E_{∞}-term of this SS is a regraded version of \mathcal{E}_{∞} of the SS of (1.5). When an element of $D^{s, t}$ is pulled back to $D_{n}^{s, t}$ for smallest possible n, it will now be seen in filtration $s-n$ rather than s, as it was in \mathcal{E}. These n 's are a nonincreasing function of s as we move up a tower (fixed $t-s$) of $D^{s, t}$, and will eventually stabilize. But changes in this n cause what look like filtration jumps in the SS of (1.6).

We.illustrate with the situation through $t-s=9$, where this jump first happens. The left SS is that of (1.5), and the right that of (1.6). Classes with $n=0$ are indicated by \times, with $n=1$ by \bullet, and with $n=2$ by \circ. As usual, coordinates are $(t-s, s)$.

Note that when the SS of (1.5) is pictured as above, all differentials look like d_{1} 's, for they all go from a group contributing to $D^{s, t}$ to a group contributing to $D^{s+1, t}$. But the subscripts of differentials in the SS of (1.5) are related to changes of summand.

Our second main conjecture for U is as follows.
CONJETURE (1.7). The $S S$ of (1.6) agrees with the UASS of U.
As evidence, we observe that if Conjecture (1.1) is true, then the SS of (1.6) has the correct E_{2}-term, and its E_{∞} could be correct, for it has 0 in even stems and Z_{2} 's of strictly increasing filtrations in odd stems. Further evidence is given by the fact that our proof of Proposition (1.4) will involve the cohomology of the spaces in the Postnikov system for U.

As pointed out by Mark Mahowald, this algebraic SS for $\pi_{*}(U)$ can be demystified somewhat by thinking of it as arising from the destabilization of an Adams resolution of u. This is discussed in Section 4, where we also explain how the unstable A-modules M_{n+1} / M_{n} can be obtained as derived functors of the destabilization functor applied to a shifted version of $H^{*} u$. In Section 5 , we present a generalization of our results and conjectures. It is not clear whether the situation for $S O$ and U contains essential ingredients not present in the much more general context of Section 5 .

The reader attempting to prove Conjectures (1.1) and (1.2) should keep in mind that they are not true if an arbitrary module is allowed in the second variable. For example, $E x t^{0,0}\left(\tilde{H}^{*} R P^{\infty}, Q_{1}\right)=0$, while $E x t^{0,0}\left(Q_{1}, Q_{1}\right) \neq 0$. Also, the conjectures are not true for stable Ext.

We would like to thank Haynes Miller for pointing out a mistake in an early draft, and Bill Massey for allowing us to use his unpublished work [5].

2. Construction of the spectral sequence

In this section, we prove Proposition (1.4), which we have already seen implies the existence of the SS's of (1.5) and (1.6).

Define $F_{n}=F^{\prime}(2 n)$, and define K_{n} so that there is a short exact sequence (SES) in U

$$
\begin{equation*}
0 \rightarrow K_{n} \rightarrow F_{n} \xrightarrow{\cdot S q^{3}} J_{n-1} \rightarrow 0 \tag{2.1}
\end{equation*}
$$

Since $J_{m}=0$ for $m<2$, and

$$
E x t^{s, t}\left(F_{n}\right)= \begin{cases}Z_{2} & t-s=2 n, s \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

the Ext sequence of (2.1) yields
PROPOSITION (2.2).
i) if $n=1$ or 2 , then $E x t^{s, t}\left(K_{n}\right)= \begin{cases}Z_{2} & t-s=2 n, s \geq 0 \\ 0 & \text { otherwise; }\end{cases}$
ii) if $n \geq 3$, then $E x t^{s, t}\left(J_{n-1}\right) \approx E x t^{s-1, t}\left(K_{n}\right)$ unless $t-s=2 n$ and $s \geq 0$, in which case $E x t^{s, t}\left(J_{n-1}\right)=Z_{2}$ and $E x t^{s-1, t}\left(K_{n}\right)=0$.

We will need the following elementary result, where Ω is the loop functor in U as defined in [6].

Proposition (2.3). $E x t^{s, t}\left(\Omega K_{n}\right) \approx E x t^{s, t+1}\left(K_{n}\right)$.
Proof. Letting Ω_{1} denote the first derived functor of Ω, [6, pp. 43-44] and (2.1) imply that $\Omega_{1} K_{n}=0$, since it injects to $\Omega_{1} F_{n}=0$. Then the exact sequence
$\rightarrow E x t^{s, t}\left(\Omega K_{n}\right) \rightarrow E x t^{s, t+1}\left(K_{n}\right) \rightarrow E x t^{s-1, t}\left(\Omega_{1} K_{n}\right) \rightarrow E x t^{s+1, t}\left(\Omega K_{n}\right)^{-} \rightarrow$ (see, e.g., [2, 3.7]) implies the desired result.

The Postnikov tower for U is a tower

in which each $\xrightarrow{i} \xrightarrow{p} \xrightarrow{k}$ is a fiber sequence, and the map $U \rightarrow U[1,2 n+1]$ induces an isomorphism in $\pi(-)$ for $i \leq 2 n+1$, while $\pi_{i}(U[1,2 n+1])=0$ for $i>2 n+1$.

There are isomorphisms of A-algebras $H^{*}(K(Z, 2 n-1)) \approx U\left(\Omega F_{n}\right)$ and, by [7] or [3], $\left.H^{*}(U[1,2 n-1])\right) \approx U\left(X_{n}\right)$ for a certain unstable A-module X_{n}, which can be thought of as $\Sigma^{-1} Q H^{*}(B U[2,2 n])$, where Q denotes the indecomposable quotient. The morphisms of $H^{*}(-)$ of (2.4) are induced by morphisms of these unstable A-modules as below.

The following result is culled from [7] (see esp. [7, 8.6] for (2.8) and [7, 7.1] for (2.9)), with K_{n}, J_{n}, and M_{n} as above.

THEOREM (2.6) In the above diagram, $i_{n} f_{n}=\cdot S q^{3}$,

$$
\begin{equation*}
\operatorname{ker}\left(f_{n}\right)=K_{n+1} \quad \text { and } \quad \operatorname{im}\left(f_{n+1}\right) \approx J_{n+1} \tag{2.7}
\end{equation*}
$$

and there are SES's in U

$$
\begin{equation*}
0 \rightarrow M_{n} \rightarrow X_{n+1} \rightarrow \Omega k e r\left(f_{n}\right) \rightarrow 0 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \rightarrow i m\left(f_{n+1}\right) \rightarrow X_{n+1} \rightarrow M_{n+1} \rightarrow 0 . \tag{2.9}
\end{equation*}
$$

Note that (2.8) and (2.9) imply that

$$
\begin{equation*}
M_{n} \approx i m\left(X_{n} \rightarrow X_{n+1}\right) \tag{2.10}
\end{equation*}
$$

Taking quotients by M_{n} of the latter modules in (2.9), then using (2.8) to rewrite the middle group, and finally using (2.7) yields a SES

$$
\begin{equation*}
0 \rightarrow J_{n+1} \rightarrow \Omega K_{n+1} \rightarrow M_{n+1} / M_{n} \rightarrow 0 \tag{2.11}
\end{equation*}
$$

From (2.11) and (2.3), we obtain a LES

$$
\begin{align*}
\rightarrow E x t^{s-n-1, t-n+1}\left(K_{n+1}\right) & \rightarrow E x t^{s-n-1, t-n}\left(J_{n+1}\right) \rightarrow E x t^{s-n, t-n}\left(M_{n+1} / M_{n}\right) \\
& \rightarrow E x t^{s-n, t-n+1}\left(K_{n+1}\right) \rightarrow . \tag{2.12}
\end{align*}
$$

We will deduce the exact sequence of Proposition (1.4) from this.
When $n=0$, the sequence of (1.4) reduces to the fact that

$$
D_{0}^{s, t} \approx E x t^{s, t}\left(M_{1}\right) \approx \begin{cases}Z_{2} & t-s=1 \text { and } s \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

When $n=1$, both (2.12) and (1.4) reduce to the same isomorphism for $t-s>3$, using (2.2) and the definition of $D_{n}^{s, t}$. The initial towers $(t-s=1)$ in $D_{0}^{s, t}$ and $D_{1}^{s, t}$ correspond under the morphism of (1.4). The tower in $D_{1}^{s, t}$ in $t-s=3, s \geq 1$, maps in (1.4) to a tower in $\operatorname{Ext}\left(M_{2} / M_{1}\right)$ which in (2.12) maps to the tower in $\operatorname{Ext}\left(K_{2}\right)$.

If $n \geq 2$, exactness of (2.12) is maintained if $D^{s, t}$ for $t-s \leq 2 n+1$ is added to both $E x t^{s-n-1, t-n+1}\left(K_{n+1}\right)$ and $E x t^{s-n-1, t-n}\left(J_{n+1}\right)$. The latter clearly becomes $D_{n}^{s, t}$, while (2.2) shows that the former becomes $D_{n-1}^{s, t}$, as desired.

Three remarks are in order. First, the reader may object that this is not an algebraic SS, as advertised, because it involves the cohomology of the spaces $U[1,2 n-1]$. To this, we counter that the SS comes completely from (2.11), which is just algebraic. Moreover, a completely algebraic derivation of (2.11) can be given, but we felt the one presented here is more likely to lead to a proof of our conjectures.

Second, note that when the exact sequence

$$
\begin{equation*}
\Sigma^{3} A / A S q^{1} \xrightarrow{S q^{3}} A / A S q^{1} \xrightarrow{S q^{3}} \Sigma^{-3} A / A S q^{1} \tag{2.13}
\end{equation*}
$$

is destabilized, the resulting sequence fails to be exact. Massey ([5]) computed the homology of the destabilized sequence

$$
F^{\prime}(n+3) \rightarrow F^{\prime}(n) \rightarrow F^{\prime}(n-3)
$$

to be, if $n=2 m+\epsilon$ with $\epsilon=0$ or 1 , an A-module spanned by $z_{2^{m}+\epsilon}$ and all elements $S q^{I} z_{2^{m}+\epsilon}$, where $I=\left(i_{1}, \ldots, i_{r}\right)$ is admissible, and, for all j satisfying $1 \leq j \leq r$, the excess of $\left(i_{j}, \ldots, i_{r}\right)$ equals 2^{m} or $2^{m}-2^{e}$ for some e satisfying $1 \leq e<m$. Our result (2.11) is closely related to this. It says that the sequence

$$
\begin{equation*}
F^{\prime}(2 n+4) \xrightarrow{S q^{3}} F^{\prime}(2 n+1) \xrightarrow{\theta} F^{\prime}(2 n-1) \tag{2.14}
\end{equation*}
$$

has homology M_{n+1} / M_{n}. Here θ sends $S q^{I} \iota_{2 n+1}$ to $S q^{I} S q^{3} \iota_{2 n-1}$, provided excess $(I) \leq 2 n+1$. Note that θ increases degree by 1 .

Third, as more evidence for the relationship between our SS and the UASS, we point out that the Postnikov tower of U resembles an Adams-Postnikov tower, as defined in [6, p. 82], because

$$
\operatorname{ker}\left(H^{*}(U[1,2 n-1]) \rightarrow H^{*}(U)\right)=\operatorname{ker}\left(H^{*}(U[1,2 n-1]) \rightarrow H^{*}(U[1,2 n+1])\right)
$$

3. Results for $S O$

The entire argument can be directly adapted to $S O$, using results of [8] and [3] instead of [7]. We just list the replacements for the various symbols.

- $M_{\infty}=\tilde{H}^{*}\left(R P^{\infty}\right)$. Thus M_{∞} has classes x^{i} for all positive integers i, and M_{n} is spanned by those with $\alpha(i) \leq n$.
- For $0 \leq b \leq 3$, let $\rho(4 a+b)=8 a+2^{b}$. Thus $\rho(n)$ is the grading of the nth nonzero homotopy group of $B S O$. Then $X_{n}=\Sigma^{-1} Q H^{*}(B S O[2, \rho(n)])$, and $H^{*}(S O[1, \rho(n)-1]) \approx U\left(X_{n}\right)$.
- $\quad F_{n}= \begin{cases}F(\rho(n)) & \text { if } n \equiv 0,1 \bmod 4 \\ F^{\prime}(\rho(n)) & \text { if } n \equiv 2,3 \bmod 4\end{cases}$
- $\quad i_{n} f_{n}: F_{n+1} \rightarrow \Omega F_{n}$ is $\cdot S q^{d}$, where

$$
d=\rho(n+1)-\rho(n)+1= \begin{cases}2 & n \equiv 0,3 \bmod 4 \\ 3 & n \equiv 1 \bmod 4 \\ 5 & n \equiv 2 \bmod 4\end{cases}
$$

and, as before, $K_{n+1}=\operatorname{ker}\left(i_{n} f_{n}\right)=\operatorname{ker}\left(f_{n}\right), J_{n}=\operatorname{im}\left(i_{n} f_{n}\right) \approx i m\left(f_{n}\right)$, and $M_{n}=i m\left(X_{n} \rightarrow X_{n+1}\right)$.

- Let $h(i)=\left\{\begin{array}{ll}1 & i \equiv 0,1 \bmod 4 \\ \infty & i \equiv 2,3 \bmod 4 .\end{array}\right.$ Then

$$
D^{s, t}= \begin{cases}Z_{2} & \text { if } t-s=\rho(i)-1 \text { and } 0 \leq i-1 \leq s<i-1+h(i) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
D_{n}^{s, t}= \begin{cases}D^{s, t} & \text { if } t-s \leq \rho(n+1)-1 \\ E x t^{s-n-1, t-n}\left(J_{n+1}\right) & \text { otherwise }\end{cases}
$$

- Proposition (2.2) is replaced by

Proposition (3.1).
i) if $n \leq 3$, then Ext ${ }^{s, t}\left(K_{n}\right)= \begin{cases}Z_{2} & t-s=\rho(n), 0 \leq s<h(n) \\ 0 & \text { otherwise; }\end{cases}$
ii) if $n \geq 4$, then $E x t^{s, t}\left(J_{n-1}\right) \approx E x t^{s-1, t}\left(K_{n}\right)$ unless $t-s=\rho(n)$ and $0 \leq s<h(n)$, in which case Ext ${ }^{s, t}\left(J_{n-1}\right)=Z_{2}$ and $E x t^{s-1, t}\left(K_{n}\right)=0$.

With the new meaning of terms, Theorem (2.6), Proposition (1.4), and Corollary (1.5) are valid. Also, there is a SS (1.6), which we conjecture agrees with the UASS of $S O$. Conjecture (1.2) would be a corollary of this agreement, since it relates two ways of expressing the E_{2}-term.

Analogous to the second remark at the end of Section 2 is that the following sequences on the left have homology as indicated on the right.

$$
\begin{array}{cc}
\text { sequence } & \text { homology } \\
F(8 t+1) \rightarrow F^{\prime}(8 t-1) \rightarrow F^{\prime}(8 t-6) & M_{4 t-1} / M_{4 t-2} \\
F(8 t+2) \rightarrow F(8 t) \rightarrow F^{\prime}(8 t-2) & M_{4 t} / M_{4 t-1} \tag{3.2}\\
F^{\prime}(8 t+4) \rightarrow F(8 t+1) \rightarrow F(8 t-1) & M_{4 t+1} / M_{4 t} \\
F^{\prime}(8 t+8) \rightarrow F^{\prime}(8 t+3) \rightarrow F(8 t) & M_{4 t+2} / M_{4 t+1}
\end{array}
$$

There is a curious difference between this result and the unitary case discussed in the second remark at the end of Section 2. In that case, the sequence (2.14) is what comes up in our work, and its homology differs from that of the natural destabilization of (2.13). However, in the $S O$-case, using the second of the four cases of (3.2) to illustrate, the sequence

$$
F(8 t+2) \rightarrow F(8 t) \rightarrow F^{\prime}(8 t-1)
$$

where the second morphism is $S q^{2}$ but increases degree by 1 , is the one which comes up in our work, and its homology equals that of the sequence listed in (3.2), which is the natural desuspension of a stable exact sequence. These are not obviously equal; their equality follows from a comparison of our results and those of [5]. This difference between the U and $S O$ cases seems to beg an explanation, but as it is peripheral to this project, we shall not pursue it here.

We remark that a chart for $D^{s, t}$ with coordinates $(t-s, s)$ is the chart for the connective so spectrum, which begins as follows.

This can be seen since (see e.g., [3])

$$
H^{*}(s o) \approx \Sigma A / A S q^{3}=\Sigma A \otimes_{A_{1}} A_{1} / A_{1} S q^{3}
$$

where A_{1} is the subalgebra of A generated by $S q^{1}$ and $S q^{2}$, and hence in the ASS for so

$$
E_{\infty}^{s, t}=E_{2}^{s, t}=E x t_{A_{1}}\left(\Sigma A_{1} / A_{1} S q^{3}\right)
$$

4. Topological and algebraic destabilizations

Our construction of the conjectured UASS for U (resp. SO) can be viewed as a consequence of destabilizing the ASS for u (resp. so). Let $H_{n}=\Sigma^{n} H Z_{(2)}$ denote the Eilenberg-MacLane spectrum. An Adams-Postnikov tower for u has the simple form

Diagram (2.4) is just the destabilization of this. Whereas the sequence

$$
H^{*}\left(H_{2 n+4}\right) \rightarrow H^{*}\left(H_{2 n+1}\right) \xrightarrow{\tau} H^{*}\left(H_{2 n-1}\right)
$$

is exact, it destabilizes to (2.14), which has homology M_{n+1} / M_{n}. Our SS deals with the way in which the groups $\operatorname{Ext}\left(M_{n+1} / M_{n}\right)$ build $\pi_{*}(U) \approx \pi_{*}(u)$.

As pointed out by Paul Goerss, there is an algebraic analogue of this. Let $\Omega^{\infty}: \operatorname{Mod}_{A} \rightarrow \mathcal{U}$ be the left adjoint to the inclusion functor. Thus, if M is an A-module, then $\Omega^{\infty} M$ is the quotient of $M \bmod$ relations $S q^{i} x=0$ if $i>|x|$. Let Ω_{s}^{∞} denote the s th derived functor of Ω^{∞}. Then we have

Proposition (4.1). (Goerss) If M_{i} is as in Section 1, then

$$
\Omega_{n}^{\infty}\left(\Sigma^{-n+1} A / / \Lambda_{1}\right) \approx M_{n+1} / M_{n} \oplus \Sigma Z / 2
$$

while if M_{i} is as in Section 3, then

$$
\Omega_{n+1}^{\infty}\left(\Sigma^{-n-2} A / / A_{1}\right) \approx M_{n} / M_{n-1}
$$

Proof. Define an acyclic chain complex C by

$$
\cdots \rightarrow C_{1} \rightarrow C_{0} \rightarrow A / / \Lambda_{1} \rightarrow 0
$$

with $C_{i}=\Sigma^{3 i} A / A S q^{1}$ and boundary morphisms $\cdot S q^{3}$. Apply Ω^{∞} to the modules in an A-resolution of each $\Sigma^{-n+1} C_{i}$ to obtain a spectral sequence

$$
\begin{equation*}
E_{p, q}^{1}=\Omega_{p}^{\infty} \Sigma^{-n+1} C_{q} \Longrightarrow \Omega_{p+q}^{\infty} \Sigma^{-n+1} A / / \Lambda_{1}, \tag{4.2}
\end{equation*}
$$

with $d^{r}: E_{p, q}^{r} \rightarrow E_{p+r-1, q-r}^{r}$. Noting that the only homology of the sequence

$$
\cdots \rightarrow F(3) \rightarrow F(2) \rightarrow F(1) \rightarrow F(0) \rightarrow 0
$$

with morphisms $\cdot S q^{1}$, is $F(0)=Z_{2}$ and ΣZ_{2} in $F(1)$, we deduce

$$
\Omega_{p}^{\infty} \Sigma^{m} A / A S q^{1}= \begin{cases}\Sigma^{m+p} Z_{2} & \text { if } p>0 \text { and } m+p=0 \text { or } 1 \\ F^{\prime}(m) & \text { if } p=0 \\ 0 & \text { otherwise }\end{cases}
$$

Thus the only nonzero groups $E_{p, q}^{1}$ in (4.2) satisfying $p+q=n+\epsilon$ with $-1 \leq$ $\epsilon \leq 1$ are $E_{0, n+\epsilon}^{1}=F^{\prime}(2 n+1+3 \epsilon), E_{n, 0}^{1}=\Sigma Z_{2}$, and $E_{n-1,0}^{1}=Z_{2}$. By (2.14), $E_{0, n}^{2}=M_{n+1} / M_{n}$. The only possible remaining differential involving groups with $p+q=n$ is $d^{n}: E_{0, n}^{n} \rightarrow E_{n-1,0}^{n}$, but this must be zero since these differentials preserve internal grading.

The $S O$-case is proved similarly, using the acyclic complex over $\Sigma^{-n-2} A / / A_{1}$ with $C_{4 t}=\Sigma^{12 t-n-2} A / A S q^{1}, C_{4 t+1}=\Sigma^{12 t-n} A$, $C_{4 t+2}=\Sigma^{12 t-n+2} A$, and $C_{4 t+3}=\Sigma^{12 t-n+5} A / A S q^{1}$. For $\epsilon=0,1,2$, and 3 , let $\delta(\epsilon)=0,2,4$, and 7 , respectively. Then in the SS analogous to (4.2),

$$
\begin{aligned}
E_{p, 4 t+\epsilon}^{1} & = \begin{cases}\Omega_{p}^{\infty} \Sigma^{12 t-n-2+\delta(\epsilon)} A / A S q^{1} & \epsilon=0,3 \\
\Omega_{p}^{\infty} \Sigma^{12 t-n-2+\delta(\epsilon)} A & \epsilon=1,2\end{cases} \\
& = \begin{cases}F^{\prime}(12 t-n-2+\delta(\epsilon)) & \epsilon=0,3 \text { and } p=0 \\
F(12 t-n-2+\delta(\epsilon)) & \epsilon=1,2 \text { and } p=0 \\
Z_{2} & \epsilon=0,3 \text { and } 12 t-n-2+\delta(\epsilon)+p=0 \\
\Sigma Z_{2} & \epsilon=0,3 \text { and } 12 t-n-2+\delta(\epsilon)+p=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$E_{0, n+1}^{2}$ is the homology of $E_{0, n+2}^{1} \rightarrow E_{0, n+1}^{1} \rightarrow E_{0, n}^{1}$, which by (3.2) is M_{n} / M_{n+1}. Higher differentials must be 0 for dimensional reasons as in the previous case. Since for $\epsilon=0,3$ we have $\delta(\epsilon) \equiv \epsilon \bmod 4$, the only Z_{2} 's or ΣZ_{2} 's occur in $E_{p, q}^{1}$ with

$$
p+q \equiv p+4 t+\epsilon \equiv p+12 t+\delta(\epsilon) \equiv n+2 \text { or } 3 \bmod 4,
$$

and so there are none when $p+q=n+1$.

5. A generalization

In this section, we propose conditions on an algebraic resolution which are satisfied by (2.5) and its $S O$ analogue. We show that the analogue of Theorem (1.5) is true in this generality, and conjecture that the analogue of Conjecture (1.1) is true.

Suppose the diagram of unstable A-modules

satisfies

- $\quad F_{n} \rightarrow X_{n-1} \rightarrow X_{n} \rightarrow \Omega k e r\left(F_{n} \rightarrow X_{n-1}\right) \rightarrow 0$ is exact.
- $\quad F_{n}$ is a direct sum of $F(m)$'s and/or $F^{\prime}(k)$'s
- $\left(i_{n} f_{n}\right)^{*}=0: \operatorname{Ext}\left(\Omega F_{n}\right) \rightarrow \operatorname{Ext}\left(F_{n+1}\right)$
- $\operatorname{ker}\left(X_{n} \rightarrow X\right)=\operatorname{ker}\left(X_{n} \rightarrow X_{n+1}\right)$
- $X=\operatorname{dirlim}\left(X_{n}\right)$.

Let $M_{n}=i m\left(X_{n} \rightarrow X\right)$.
CONJETURE (5.1). $\operatorname{Ext}(X)=\bigoplus \operatorname{Ext}\left(M_{n+1} / M_{n}\right)$
The following proposition generalizes Theorem (1.5).
Proposition (5.2) Let

$$
D^{s, t}=\bigoplus_{n} E x t^{s-n, t-n}\left(\Omega F_{n}\right)
$$

There is a spectral sequence with

$$
E_{2}^{n, s, t}=E x t^{s-n, t-n}\left(M_{n+1} / M_{n}\right)
$$

and $E_{\infty}^{n, s, t}$ the nth subquotient of a filtration of $D^{s, t}$.
The proof is identical to the proof for $X=\tilde{H}^{*}\left(\Sigma C P_{+}^{\infty}\right)$ in Sections 1 and 2. One derives a SES

$$
0 \rightarrow i m\left(f_{n+1}\right) \rightarrow \Omega \operatorname{ker}\left(f_{n}\right) \rightarrow M_{n+1} / M_{n} \rightarrow 0
$$

and modifies its exact Ext sequence using that $E x t^{s, t}\left(i m f_{n}\right)$ and $E x t^{s-1, t}\left(\operatorname{ker} f_{n}\right)$ differ only by $\operatorname{Ext}\left(F_{n+1}\right)$. This allows one to splice the exact sequences, yielding the desired spectral sequence.

One could modify the spectral sequence of the proposition to obtain a SS with $E_{2}^{s, t}=\bigoplus E x t^{s, t}\left(M_{n+1} / M_{n}\right)$. This E_{2}-term is the same as the E_{2}-term of the SS converging to $\operatorname{Ext}(X)$ whose collapsing we would like to prove. Somehow the fact that the SS of the proposition allowed us to consider the filtrations as being much higher is supposed to yield a proof of Conjecture (5.1).

If the conjecture isn't true in this generality, then what extra conditions are required to make it true?

University of Illinois at Chicago,
Chicago, IL 60680
Lehigh University,
Bethlehem, PA 18015
References
[1] J. F. Adams, Stable Homotopy and Generalised Homology, University of Chicago Press, 1974.
[2] A. K. Bousfield and E. B. Curtis, A spectral sequence for the homotopy of nice spaces, Trans Amer Math Soc 151 (1970) 457-479.
[3] J. Long, Two contributions to the homotopy theory of H-spaces, Princeton Univ thesis (1979).
[4] W. S. Massey, Exact couples in algebraic topology, Annals of Math, 56 (1952) 364-396.
[5] ——, The mod 2 cohomology of certain Postnikov systems, unpublished handwritten paper (1978) 20 pages.
[6] W. S. Massey and F. P. Peterson, The mod 2 cohomology of certain fibre spaces, Memoirs Amer Math Soc, 74 (1967).
[7] W. M. Singer; Connective fiberings over $B U$ and U, Topology 7 (1968) 271-303.
[8] R. Stong, Determination of $H^{*}(B O(k, \infty))$ and $H^{*}(B U(k, \infty))$, Trans Amer Math Soc 107 (1963) 526-544.

[^0]: * AMS Subject Classification 55T15, 55R45. Key words: unstable Adams spectral sequence, splittings of Ext groups, looping resolutions.
 \dagger Both authors were supported by National Science Foundation research grants.

