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SPHERICAL CLASSES IN THE BORDISM 
OF THE TORSION MOLECULE 

BY GUILLERMO MORENO 

To Jose Adem, in menwriam 

We characterize the spherical classes in the bordism of the torsion molecule 
via MU -operations. · 

1. Introduction 

In [1], J. Harper constructed a finite simply-connected H-space, localized 
at p, for each odd prime number p. 

Let K (p) denote such a space, and 

H*(K(p )); 7l/p) = /\(x3,x2p+1) ® 7l/p[x2p+2J/(x2p+2f 

lxil = i, P 1(x3) = x2p+1 and ,B(x2p+1) = X2p+2· 

K (p) is an important object in the theory of finite mod p H -spaces because 

a) K(p) hasp-torsion; that is, K(p) is an example of a finite H-space with 
p-torsion for p as large as we wish; 

b) For lower primes,p = 3, 5, K(p) appears as a modp factor of the excep­
tional Lie groups JF 4 and 1Es, respectively; 

c) K(p) is not of the modp homotopy'.type ofa Lie group. 

In this paper we will extend the calculations, made in [3] by R. Kane and 
the auth01; of the spherical classes in the bordism of compact Lie grQUps to 
K(p), Harper's torsion molecule. 

The main result of this paper is 

THEOREM. The image of the Hurewicz map 

hMU : Il*(K(p))/Tor ----4 MU *(K(p))/Tor 

agrees with {he primitive classes in MU* (K(p)) /Tor. 

2. Spherical classes and spherical numbers 

In this section Xis a simply connected finite H-space. Thus H*(X; Q) = 
/\(x2k

1
+1, ... ,x2kr+l) where r =rank of X and k1 ~ k2 ~ · · · ~ kr are the 

exponents of X. 
Suppose that k1 < k2 < k3 < • • • < k 7 • Then the commutativity of the 

diagram 
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h®Q 

J J 
h 

II*(X)/Tor 

where h is the Hurewicz map, implies that for each ki for i = 1, 2, ... , r, 

h 
II2ki+ 1 (X) /Tor 

z z 

is multiplication by a positive integer S(X; ki) which depends on X and ki. 
Here PH*(X;Q) denotes the diagonal-primitives of H*(X;Q). In other 

words, let x2k+l E PH2k+i(X; Z)/Tor be the generator, then S(X;k) is the 
least positive integer such that 

S(X; k)x2k+l E Image of h 

Definition. A homology class is spherical if it belongs to the image of the 
Hurewicz map. {S(X; ki) E z+ Ii = 1, 2, ... , r} are the spherical numhers, for 
X a finite H -space. 

Remark. It is easy to see that S(X; k 1) = 1 

Examples ([3], [4]). 

(a) X = SU(n + 1), n ~ l. Then 

H*(X;Q) = /\(x3,x5,x7, ... ,x2n+1), 

rank of X = n k1 = 1, k2 = 2, ... ,kn= n, 

S(X, ki) = ki! (Bott periodicity). 
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(b) X = G2. Then X has only 2-torsion, 

H*(G2;Q) = /\(x3,x11) rank of X = 2, k1 = 1, k2 = 5, 

S( G2; 5) = 5! = 23 · 3 · 5 

(c) X = IF 4. Then X has only 2 and 3 torsion, 

H*(X;Q) = /\(x3,x11,x15,x23), rank X = 4, 

exponent 
dimension 

spherical no. 

i 
k-i 

2ki + 1 
S(X;ki) 

1 
1 
3 
1 

2 3 
5 7 
11 15 
2;:s .5 2;:s · 3. 7 

(d) X = 1E6. ThenX has only 2 and 3 torsion, 

4 
11 
23 
2·1 • 3~ . 5 . 7 . 11 

H*(X; Q) = /\(x3,x9,x11,x15,x17,x23), rank X = 6, 

exponent 
dimension 

spherical no. 

i 
k-i 

2ki + 1 
S(X;ki) 

1 2 
1 4 
3 9 
1 2 

3 4 5 
5 7 8 
11 15 17 

2~.5 2iS.3.7 2°.3.5 
Ill 

3. The spherical number for K (p) 

PROPOSITION (3.1). '11.,(p) denotes '11., localized at p 

,H*(K(p);Z(p))/Tor = A(y3,Y2p2+2p-1) 

and the generatar can be chosen such that 

p(y3) = x3 and PLY2p2+2p-i) = x2p+1x1'~]2, 

where p is reduction modulo p. 

6 
11 
23 
2·1 .3~.5.7.11 
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Proof. Let {Br, d 7
} be the Bockstein spectral sequence analyzingp-torsion 

inH*(K(p ); '11.,(p))· ThenB2 = H(H*(K(p ); Z/p ); /3) = A(y3,Y2p2+2p-i), where 

y3 = {x3} and Y2p2+2p-l = {x2p+1 -x1'2;} 2}. The spectral sequence must now 
collapse, thus B 00 = H*(K(p); '11.,(p)) has the same description. Q.E.D. 

COROLLARY (3.2). H*(K(p ); Q) = A(z3, Z2p2+2p-1) and H*(K(p); Z(p))! 

Tor = /\(z3,z2p2+2p-i)- Therefore rank K(p) = 2, and k 1 = I and k.2 = 
p 2 + p - 1 are the exponents of K (p ), so we have to calculate· S (K (p), k.2 ). Con­
sider the fib ration 

f g 
F---+ K(p) ---+ K(Z(p); 3) 
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where y3 = fg] E H 3(K(p ); 7l(p)); i.e., Fis the third connected stage of K(p ). 

LEMMA (3.3). In dimensions ::S 2p 2 + 2p - 1, 

H*(F; 7l/p) = /\(u2p2+l' u2p2+2p-i) © 7l/p[u2p2], 

/3(u2p2) = u2p2+l and P1(u2p2+1) = u2p2+2p-i · 

Proof. Consider the Serre spectral sequence 

E2 = H*(F; 7l/p) @H*(K(7l(p); 3); 7l/p) • H*(K(p); 7l/p). 

By the classical work of Cartan, H*(K(7l(p); 3); 3) has no higher torsion and 

H*(K('11.,(p); 3); 7l/3) = /\(fa,P 1(fa), ... ) ® 7l/p[/3P1(fa), .. . ]. 

By the description of H*(K(p ); 7l/p ), the elements 

pP P1(fa), f3PP P1(fa) and [/3P1(fa)]P 

must be killed in the spectral sequence. Therefore there exist elements u2p2, 

u2p2+ 1, and u2p2+2p-l with 

d2p2 ( U2p2) 

d2p2+1 (u2p2+1) 

d2p2+2p-1 ( U2p2+2p-1) 

pP P1(fa) 

= f3PP pl(fa) 

= [/3 P1(fa)]P. 

and 

Since the differentials act transgressively (in this situation) and because of 
the action of the Steenrod algebra, the relations f3[PP P 1(fa)] = [f3PP P 1(fa)] 
and 

[PP P1(fa)] = pl pP /3 P1(fa) = pP /3 pl(fa) = [,BP1(fa)]2 

force ,B(u2p2) = u2p2+1 and P 1(u2p2+ 1) = u2p2+2p-l. 

COROLLARY (3.4). In degrees ::S 2p 2 + 2p 

(i) H*(F; 7l/p) = /\(v2p2+l' V2p2+2p-l) © 7l/p[v2p2] 

P1(v2p2+2p-i) = V2p2+1 

(ii) H*(F; 7l(p))/Tor = /\(w2p2+l' W2p2+2p-i)/(pw2p2+1 = 0) 

Proof. (i) Dualizing in Lemma 3.3. 

Q.E.D. 

(ii) Notice that the respective Bockstein spectral sequence in homology "al­
most" collapses i.e. ,Bv2p2+l = V2p2 thenpw2p2+l = 0. 
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Remark. As a by-product of Lemma 3.3 we see that the cellular decompo­
sition of F looks as follows: 

F ~Yu eZD2+Zz>-l u .... 

If Y = s2/>2 u e2p
2+ 1 is a mod p Moore space, then the generator in dimension 

2p2 in H * ( K (p); Z) is spherical. 

LEMMA (3.5). 

is multiplication by p. 

Proof. Consider the Serre spectral sequence 

E2 = H*(K(Z(p); 3); H*(F; Z(p))) • H*(K(p ); Z(p))-

Since H*(K('Zi(p); 3); Z(p)) has no higher p-torsion, we can reduce modp with­
out losing any information. In particular, we can use our previous knowledge 
of the mod p Serre spectral sequence to obtain complete information in de­
grees::;. 2p2 + 2p in this case. Notably we have, 

wh~re a and bare integral repres~ntatives of u2p2+2p-l and [,BP1(6)JP re­
spectively. Thus 

Thus pa is a permanent cycle in the spectral sequence. This tells us that 

is a multiplication by p. We conclude the proof by dualization. Q.E.D. 

THEOREM (3.6). Th,e sph,erical number of K(p) at th,e ex,ponent (p2 + p - 1) 
is p 2; i.e., 

S(K(p);p 2 +p- 1) =p 2 . 

Proof. Consider the following commutative diagram 
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h 

h 

By Corollary (3.4), P 1(v2p2+~-l) = v~2+i E H*(F;Z/p). Therefore the 
lower Hurewicz map is a multiplication by p. By Lemma (3.5), f* is a multi­
plication by p, so 

S(K(p);p 2 + p - 1) = p 2 Q.E.D. 

Remarks. Looking at the casesp = 3 andp = 5 for K(p) and using the 
results of Harper and Wilkerson about the splittingmodp of the exceptional 
Lie groups lF4 and IEs, we see that 

S(IF 4, 11)(3) 

S(IEs, 29)(5) 

32 (See example (c)); 

52. 
' 

i.e., the Hurewicz map ofIEs is divisible exactly by 52 in dimension 59. 

4. Primitivity classes and primitivity number 

We recall that the bordism ring II* (MU) rationally looks like 

II*(MU) 0 Q Q[[CP1], ... , [CPn], .. . ]. 

Q[m1,m2, ... ,mn, .. . ]. 
Q[b1,b2, ... ,bn, .. . ] 

00 

where [CPn] = (n + l)mn, lmnl = l[CPn]I = 2n, and iflog(t) = I:ml+ 1, 
oo i=O 

then exp(t) = Lb/+ 1. For E = (e1, ... , en, ... ), a sequence of non-negative 
i=O 

integers almost all zero, let IEI = 2I: iei 
i~O 

SE MU*(X) -+MU*+IEl(X) and 

SE MU*(X)-+ MU*-IEl(X) 
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be the Landweber-Novikov operations acting on cohomology and homology, 
respectively, for X a finite complex. 

For each E = (e1, ... , en, ... ) as above, define the monomial 

E e1 e2 en II (MU) tf1\ m = m 1 • m 2 • · · mn · · · E * ® ~ 

and the total operations 

p LmEsE :MU*(X)®Q-+MU*(X)®Q, 
E 

p* EmEsE :MU*(X)®Q-+MU*(X)®Q, 
E 

for which the following properties hold (see [3]): 

1. P and P * preserved degree; 

2. for y E MU*(X) ® Q and o: E MU*(X) ® Q, (P(y), P*(o:)) = (y, a); 

3. Pis multiplicative, i.e., P(xy) = P(x)P(y) for x andy inMU*(X) ® Q; 

4. P is idemponent, i.e., P o P = P. 

Example. X = CP 00
, P(r) = I:miTi+t whenMU*(CP 00

) = IL*(MU)[[t]J. 

Definition. a EMU *(X) ® Q is primitive if all non-trivial MU-operations 
act trivially on o:, i.e., SE(o:) = 0 \/ E-:/= (0, 0, ... ). 

P* characterizes the (rational) primitive classes in the following way: o: E 
MU*(X) ® Q is primitive if and only if P*(a) = o:, or equivalently, a E lmP*. 
(See [3]). . 

Suppose from now on that X is a finite H -space. Then 

wheretheexterioralgebrahasII*(MU)®Qascoeffi.cients, and IXk-1 = 2ki+l, 
i 

and if 
T : MU *(X) ® Q -+ HiXiQ) 

denotes the Thom reduction map, then T(Xk.) = x2.k·+l as in §2. Therefore, 
i i 

to calculate primitives in 

MU *(X)/Tor C MU *(X) ® Q 

for X a finite H -space, we have to solve a two phase-problem: 

(1) Calculate ImP and ImP*; 
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(2) Integrality problem: find the smallest positive integer 

Definition. N(X;ki) E z+ is the "primitivity number" for X at the expo­
nent hi. 

The spherical and the primitivity numbers are closely related. In fact, we 
have that for allX and all k/s N(X;ki) divides S(X;ki)- This follows from 
the fact that the operations act trivially on MU*(Sn) for all n > 0, and the 
diagram 

rr.(X)/~ /:•(X)/Tor 

commutes. Therefore the point is to answer the following question: given a 
finite H- space X, for what k/s do we have N(X; ki) = S(X; ki)? 

It is easy to see that for every X, N(X;k1) = S(X; k1) = 1. 

Examples. (See [3]) 

(a)X = SU(n + 1) n 2: 1; N(X;ki) = S(X;ki) = ki!; 

(b)X = G2; N(X;5) = 5!/2 but S(X;5) = 5!; 

(c)X = IF4 . N(X; 5) = 22 -5 and S(X; 5) = 23 -5;N(X; 7) = S(X; 7) = 23 -3-7; 

N (X; 11) = S (X; 11) = 2 7 · 32 . 5 . 7 . 11. 

This last example gives us information about the situation of the torsion 
molecule at p = 3. Localizing at p = 3, IF4 ~:B5(3) x K(3). Using this we 

3 

can say that, atp = 3, N(K(p);p 2 + p - l)(p) = S(K(p);p 2 + p - l)(p) = p2. 
What we will prove now is that this equality is true for any odd prime p. 

5. Primitivity number of K(p). 

The main goal of this section is to prove that 

N(K(p);p 2 +p- l)(p) =p 2. 
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We are working locallized at p, thus we will use BP (co)homology instead of 
MU (co)homology. Recall that II*(BP) ~ 7Z(p)[v1,v2, .. . ], lvnl = 2pn - 2 and 

Vn =pmn - L J/mj 

i+j=n 
ij<n 

II*(BP) ® Q ~ H*(BP; Q) ~ Q[m1, m2, ... ]. 

The m/s in BP-theory are identified with the m/s in MU-theory under the 
Quillen idempotent in dimensions 2p - 2, 2p2 - 2, ... , 2p4 - 2, .... Therefore 
we redefine the total operation P* : BP*(X) ® Q--+ BP*(XJ ® Q as P* = 
EmEsE, where E = (e1, ... ,en, ... ) as above, mE = m~1 ·ml ... and SE is 
the oonjugate of rE, the Quillen operation. 

An extra feature of this total operation is that it ties in nicely with the 
Steenrod module structure of H*(X;7Z/p); more precisely, 

BP*(X) 

poT poT 

commutes, where T : BP *(X) ---+ H*(X; 7Z(p)) is the Thom reduction map, p 

is reduction modulo p, and pE is the Milnor Steenrod operation of E. 

PROPOSITION (5.1). H* (OK(p ); 7Z/p) ~ 7Z/p [a2, a9.p, a9.p2+9.p- 2] / (~), 

pl(a2p) = a2. 

Proof. Consider the Eilenberg-Moore spectral sequence 

E2 = TorH•(K(p);7Z/p)(7Z/p, 7Z/p) • H*(OK(p); 7Z/p). 

Calculating, E2 = f(sx3) 0 f(sx2p+1) ® /\(sx9.p+2) ® f[tx9.p+2L where bideg 
(sxi) = (-1,i) i = 3, 2p + 1, 2p + 2, we have 

bideg (tx9.p+2) = (-2, 2p2 + 2). 

Now d2 = {3P1, so d2(,2(sx3)) = sx9.p+2 and d2 is trivial in all other cases. 
Thus 
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Clearly dr = 0 for r 2: 3 and E 3 = KX). By duality 

where duality goes as follows: sx3 --- a2, sx'lp --- a'lp and 

tx'2p+2 -- a'2p2+'2p-2 and finally P 1(x3) = x'lp+l implies P 1(a'2p) = a2. 
Q.E.D. 

Now R. Kane in [2] (page 354) gives a method to calculate, for X a fi­
nite H-space, BP*(OX) from H*(OX; 'll/p). Using this we have BP*(OX) ~ 

IT*(BP) = [a2, a2p, a2p2+'2p-2]/J where J is the ideal generated by the rela-

tion R = ~ -pa2p + v1a2, where v1 = pm1. 
Now if O denotes the loop map, that is, 0 is induced from the iden­

tity map under the identifications [X,X] ~ [OX, OX] ~ [~OX,X], then 
O*QBP*(OX) -+ P BP*(X) has degree +1 and ImO* generates the diag­
onal primitives of BP* (X). Thus 

P BP*(K(p)) = A(X3,X'2p+1,X2P2+'2p-l)/(pX'2p+l - v1X3). 

Remark. The image of hBP : II*(K(p)) - BP*(K(p)) lies inside the di­
agonal primitives. It is enough for our purposes to calculate the diagonal 
primitives. 

We use the indirect aproach of Kane, instead of the direct one, i.e., calculate 
BP* ( K (p)) and then identify the diagonal primitive generators there, in order 
to make this paper less unreadable. In any case, performing such calculation, 
our result is: 

IT*(BP){ 1, X'2p2+'2p-l 'X'2p2+'2p+2 } ® 

IT*(BP){X3,X'l[J+d/(v1X3 = pX2p+1) ® 

IT*(BP)/(p, v1){X'2p+4,X4p+6, ... ,X'2p2}, 

where, following Yagita's approach as in [6], { ... } means the free-module 
generated by .... We mention this as it was included in an early preprint of 
this paper. Now we return to our main topic. 

Note that if we define the BP primitivity number in the same way, this 
agrees with the localization at p of the MU-version of the primitivity number. 

Notation. N =N(K(p);p 2 +p- l)(p)· 

PROPOSITION (5.2). p divides N and N divides p 2. 

Proof. The second assertion follows from the fact that every spherical 
class is a primitive class. Now P 1 relates H'2p2+'2p-l (K(p ); 'll/p) with H'2p2+i 
(K(p); 'll/p). From the diagram above we deduce that for E = (1, 0, ... ), 
SE(X'2p2+'2p-l) = X'2p2+l E BP*(K(p)). 
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Hence P* = LmESE, P*(X2p2+2p-i) has a non-trivial summand 
E 

mESE(X2p2+2p-l) = m1X2p2+i· 
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Thus, v 1 = pm 1, and by definition of primitivity number, p divides N. Q.E.D. 

Now we come to the most subtle and delicate part of the argument. Before 
we go into the formal proof: we will say something about what is going on 
behind this argument. 

The torsion molecule has a cell decomposition as follows: 

3 21>+ 1 2p + 2 2p2 + 1 

• • • 
pl (3 (3 pl 

The Steenrod algebra module structure of H*(X; '11../p) does not tell us if the 
lower part (left in the diagram) is attached essentially to the upper part (right 
in the diagram). This is one of the reasons that we go to a richer (co)homology 
theory (BP in this case) but up to this point of the argument we are not able 
to answer this question. Therefore we use the important fact that the torsion 
molecule is indeed an H -space. 

Let EK(p) denote the suspension of K(p). Suppose that EK(p) ~AU J 
where A is the part of K (p) represented in the diagram suspended once, and 
A = A 1 U A2; i.e., A 1 = S4 U e2p+ 2 u e2p+3, A 2 = e2p

2
+ 1 u e2p

2
+2 u e~

2
+2/J, 

J =junk. 

LEMMA (5.3). (J. Harper). In A = A1 U A2, A1 and A2 are attached non­
trivially. 

Proof. Suppose that A = A1 V A2 i.e. the attaching is trivial. Let r = 
2p2 + 2p - 1. Hence K(p) rationally looks like a product of two spheres, 

K(p) ::::::.S3 x sr then EK(p) ::::::.S4 V sr+l V sr+4_ 
0 0 

Thus A2::::::.sr+ 1, and if pt : EK (p) --+ A2 denotes the pinching map, then 
0 

is an isomorphism. 
On the other hand, the suspension map 

u*: Hr(K(p))/Tor--+ Hr+1(EK(p))/Tor 
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is mono and splits (K(p) is an H-space). Therefore the Hurewicz map 

is multiplication by p 2 and consequently the Hurewicz map 

is multiplication by p, which is a contradiction. Q.E.D. 

By the calculations in §3 on the (co)homology of F, the third connective 
cover of K(p), we can now deduce that the generator in H2p2(K(p);7!.,) is 
spherical. 

By duality (K(p) is self-dual) and the calculation of P BP*(K(p)), we con­
clude that the cell in dimension 2p2 + 2p - 1 is linked to the 3-dimensional 
one; i.e., there exists a non-trivial map in rrt2+2p-

5 
that represents this ho-

motopy class. 
But at for t = p + 2 generates rrt2+2p- 5 and by Smith-Zahler [5], at is 

detected by a primary BP-operation, namely rp+2 + pP- 1r(l,1)· 

THEOREM (5.4). The BP primitivity number for K(p) in dimension 2p2 + 
2p - 1 is p 2. · 

Proof. We know that plN and Njp 2 . The possibility p = N cannot occur, 
since there exists a BP-primary operation linking the 3 and the 2p2 + 2p- 1 
generators in P BP* ( K (p)). Therefore N = p 2 . Q.E.D. 

The complete picture of K(p) is 

3 2/>+ 1 2p +2 

• • • • • 
pl f3 l rp+2 + pP- 1r(l,l) 
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