SPHERICAL CLASSES IN THE BORDISM OF THE TORSION MOLECULE

By Guillermo Moreno

To José Adem, in memoriam
We characterize the spherical classes in the bordism of the torsion molecule via $M U$-operations.

1. Introduction

In [1], J. Harper constructed a finite simply-connected H-space, localized at p, for each odd prime number p.
Let $K(p)$ denote such a space, and

$$
\begin{gathered}
\left.H^{*}(K(p)) ; \mathbb{Z} / p\right)=\wedge\left(x_{3}, x_{2 p+1}\right) \otimes \mathbb{Z} / p\left[x_{2 p+2}\right] /\left(x_{2 p+2}\right)^{p} \\
\left|x_{i}\right|=i, P^{1}\left(x_{3}\right)=x_{2 p+1} \text { and } \beta\left(x_{2 p+1}\right)=x_{2 p+2}
\end{gathered}
$$

$K(p)$ is an important object in the theory of finite $\bmod p H$-spaces because
a) $K(p)$ has p-torsion; that is, $K(p)$ is an example of a finite H-space with p-torsion for p as large as we wish;
b) For lower primes, $p=3,5, K(p)$ appears as a $\bmod p$ factor of the exceptional Lie groups \mathbb{F}_{4} and \mathbb{E}_{8}, respectively;
c) $K(p)$ is not of the $\bmod p$ homotopy type of a Lie group.

In this paper we will extend the calculations, made in [3] by R. Kane and the author, of the spherical classes in the bordism of compact Lie grqups to $K(p)$, Harper's torsion molecule.

The main result of this paper is
THEOREM. The image of the Hurewicz map

$$
h^{M U}: \Pi_{*}(K(p)) / \text { Tor } \longrightarrow M U_{*}(K(p)) / \text { Tor }
$$

agrees with the primitive classes in $M U_{*}(K(p)) /$ Tor.

2. Spherical classes and spherical numbers

In this section X is a simply connected finite H-space. Thus $H_{*}(X ; \mathbb{Q})=$ $\wedge\left(x_{2 k_{1}+1}, \ldots, x_{2 k_{r}+1}\right)$ where $r=\operatorname{rank}$ of X and $k_{1} \leq k_{2} \leq \cdots \leq k_{r}$ are the exponents of X.
Suppose that $k_{1}<k_{2}<k_{3}<\cdots<k_{r}$. Then the commutativity of the diagram

AMS Subject Classification (1980) (Revised 1985):55P45,55N22,55S05

where h is the Hurewicz map, implies that for each k_{i} for $i=1,2, \ldots, r$,

is multiplication by a positive integer $S\left(X ; k_{i}\right)$ which depends on X and k_{i}.
Here $P H_{*}(X ; \mathbb{Q})$ denotes the diagonal-primitives of $H_{*}(X ; \mathbb{Q})$. In other words, let $x_{2 k+1} \in P H_{2 k+1}(X ; \mathbb{Z}) /$ Tor be the generator, then $S(X ; k)$ is the least positive integer such that

$$
S(X ; k) x_{2 k+1} \in \text { Image of } h
$$

Definition. A homology class is spherical if it belongs to the image of the Hurewicz map. $\left\{S\left(X ; k_{i}\right) \in \mathbb{Z}^{+} \mid i=1,2, \ldots, r\right\}$ are the spherical numbers, for X a finite H-space.

Remark. It is easy to see that $S\left(X ; k_{1}\right)=1$
Examples ([3], [4]).
(a) $X=S U(n+1), \quad n \geq 1$. Then

$$
H_{*}(X ; \mathbb{Q})=\wedge\left(x_{3}, x_{5}, x_{7}, \ldots, x_{2 n+1}\right)
$$

$$
\begin{aligned}
& \operatorname{rank} \text { of } X=n k_{1}=1, k_{2}=2, \ldots, k_{n}=n \\
& \qquad S\left(X, k_{i}\right)=k_{i}!\text { (Bott periodicity) }
\end{aligned}
$$

(b) $X=G_{2}$. Then X has only 2 -torsion,

$$
\begin{gathered}
H_{*}\left(G_{2} ; \mathbb{Q}\right)=\wedge\left(x_{3}, x_{11}\right) \text { rank of } X=2, k_{1}=1, k_{2}=5, \\
S\left(G_{2} ; 5\right)=5!=2^{3} \cdot 3 \cdot 5
\end{gathered}
$$

(c) $X=\mathbb{F}_{4}$. Then X has only 2 and 3 torsion,

$$
H_{*}(X ; \mathbb{Q})=\wedge\left(x_{3}, x_{11}, x_{15}, x_{23}\right), \operatorname{rank} X=4
$$

$*$ i exponent 1 \mathbf{k}_{i}	1	5	3	4	
dimension	$2 k_{i}+1$	3	11	15	11
spherical no.	$S\left(X ; k_{i}\right)$	1	$2^{3} \cdot 5$	$2^{3} \cdot 3 \cdot 7$	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$

(d) $X=\mathbb{E}_{6}$. Then X has only 2 and 3 torsion,

$$
H_{*}(X ; \mathbb{Q})=\wedge\left(x_{3}, x_{9}, x_{11}, x_{15}, x_{17}, x_{23}\right), \text { rank } X=6
$$

3. The spherical number for $K(p)$

PROPOSITION (3.1). $\mathbb{Z}_{(p)}$ denotes \mathbb{Z} localized at p

$$
H^{*}\left(K(p) ; \mathbb{Z}_{(p)}\right) / \text { Tor }=\wedge\left(y_{3}, y_{2 p^{2}+2 p-1}\right)
$$

and the generator can be chosen such that

$$
\rho\left(y_{3}\right)=x_{3} \text { and } \rho\left(y_{2 p^{2}+2 p-1}\right)=x_{2 p+1} x_{2 p+2}^{p-1}
$$

where ρ is reduction modulo p.
Proof. Let $\left\{B_{r}, d^{r}\right\}$ be the Bockstein spectral sequence analyzing p-torsion in $H^{*}\left(K(p) ; \mathbb{Z}_{(p)}\right)$. Then $B_{2}=H\left(H^{*}(K(p) ; \mathbb{Z} / p) ; \beta\right)=\wedge\left(y_{3}, y_{2 p^{2}+2 p-1}\right)$, where $y_{3}=\left\{x_{3}\right\}$ and $y_{2 p^{2}+2 p-1}=\left\{x_{2 p+1} \cdot x_{2 p+2}^{p-1}\right\}$. The spectral sequence must now collapse, thus $B_{\infty}=H^{*}\left(K(p) ; \mathbb{Z}_{(p)}\right)$ has the same description.
Q.E.D.
$\operatorname{COROLLARY}$ (3.2). $\quad H_{*}(K(p) ; \mathbb{Q})=\wedge\left(\bar{z}_{3}, \bar{z}_{2 p^{2}+2 p-1}\right)$ and $H_{*}\left(K(p) ; \mathbb{Z}_{(p)}\right) /$ Tor $=\wedge\left(z_{3}, z_{2 p^{2}+2 p-1}\right)$. Therefore $\operatorname{rank} K(p)=2$, and $k_{1}=1$ and $k_{2}=$ $p^{2}+p-1$ are the exponents of $K(p)$, so we have to calculate $S\left(K(p), k_{2}\right)$. Consider the fibration

$$
F \xrightarrow{f} K(p) \xrightarrow{g} K\left(\mathbb{Z}_{(p)} ; 3\right)
$$

where $y_{3}=[g] \in H^{3}\left(K(p) ; \mathbb{Z}_{(p)}\right) ;$ i.e., F is the third connected stage of $K(p)$.
LEMMA (3.3). In dimensions $\leq 2 p^{2}+2 p-1$,

$$
\begin{aligned}
& H^{*}(F ; \mathbb{Z} / p)=\wedge\left(u_{2 p^{2}+1}, u_{2 p^{2}+2 p-1}\right) \otimes \mathbb{Z} / p\left[u_{2 p^{2}}\right] \\
& \beta\left(u_{2 p^{2}}\right)=u_{2 p^{2}+1} \text { and } P^{1}\left(u_{2 p^{2}+1}\right)=u_{2 p^{2}+2 p-1}
\end{aligned}
$$

Proof. Consider the Serre spectral sequence

$$
E_{2}=H^{*}(F ; \mathbb{Z} / p) \otimes H^{*}\left(K\left(\mathbb{Z}_{(p)} ; 3\right) ; \mathbb{Z} / p\right) \Rightarrow H^{*}(K(p) ; \mathbb{Z} / p)
$$

By the classical work of Cartan, $\left.H^{*}\left(K_{\left(\mathbb{Z}_{(p)}\right)} ; 3\right) ; 3\right)$ has no higher torsion and

$$
H^{*}\left(K\left(\mathbb{Z}_{(p)} ; 3\right) ; \mathbb{Z} / 3\right)=\wedge\left(\xi_{3}, P^{1}\left(\xi_{3}\right), \ldots\right) \otimes \mathbb{Z} / p\left[\beta P^{1}\left(\xi_{3}\right), \ldots\right]
$$

By the description of $H^{*}(K(p) ; \mathbb{Z} / p)$, the elements

$$
P^{p} P^{1}\left(\xi_{3}\right), \beta P^{p} P^{1}\left(\xi_{3}\right) \text { and }\left[\beta P^{1}\left(\xi_{3}\right)\right]^{p}
$$

must be killed in the spectral sequence. Therefore there exist elements $u_{2 p^{2}}$, $u_{2 p^{2}+1}$, and $u_{2 p^{2}+2 p-1}$ with

$$
\begin{aligned}
d_{2 p^{2}}\left(u_{2 p^{2}}\right) & =P^{p} P^{1}\left(\xi_{3}\right) \\
d_{2 p^{2}+1}\left(u_{2 p^{2}+1}\right) & =\beta P^{p} P^{1}\left(\xi_{3}\right) \quad \text { and } \\
d_{2 p^{2}+2 p-1}\left(u_{2 p^{2}+2 p-1}\right) & =\left[\beta P^{1}\left(\xi_{3}\right)\right]^{p}
\end{aligned}
$$

Since the differentials act transgressively (in this situation) and because of the action of the Steenrod algebra, the relations $\beta\left[P^{p} P^{1}\left(\xi_{3}\right)\right]=\left[\beta P^{p} P^{1}\left(\xi_{3}\right)\right]$ and

$$
\left[P^{p} P^{1}\left(\xi_{3}\right)\right]=P^{1} P^{p} \beta P^{1}\left(\xi_{3}\right)=P^{p} \beta P^{1}\left(\xi_{3}\right)=\left[\beta P^{1}\left(\xi_{3}\right)\right]^{2}
$$

force $\beta\left(u_{2 p^{2}}\right)=u_{2 p^{2}+1}$ and $P^{1}\left(u_{2 p^{2}+1}\right)=u_{2 p^{2}+2 p-1}$.
Q.E.D.

Corollary (3.4). In degrees $\leq 2 p^{2}+2 p$
(i) $H_{*}(F ; \mathbb{Z} / p)=\wedge\left(v_{2 p^{2}+1}, v_{2 p^{2}+2 p-1}\right) \otimes \mathbb{Z} / p\left[v_{2 p^{2}}\right]$

$$
P^{1}\left(v_{2 p^{2}+2 p-1}\right)=v_{2 p^{2}+1}
$$

(ii) $H_{*}\left(F ; \mathbb{Z}_{(p)}\right) / \mathrm{Tor}=\wedge\left(w_{2 p^{2}+1}, w_{2 p^{2}+2 p-1}\right) /\left(p w_{2 p^{2}+1}=0\right)$

Proof. (i) Dualizing in Lemma 3.3.

(ii) Notice that the respective Bockstein spectral sequence in homology "almost" collapses i.e. $\beta v_{2 p^{2}+1}=v_{2 p^{2}}$ then $p w_{2 p^{2}+1}=0$.

Remark. As a by-product of Lemma 3.3 we see that the cellular decomposition of F looks as follows:

$$
F \cong Y \cup e^{2 p^{2}+2 p-1} \cup \ldots
$$

If $Y=S^{2 p^{2}} \cup e^{2 p^{2}+1}$ is a mod p Moore space, then the generator in dimension $2 p^{2}$ in $H_{*}(K(p) ; \mathbb{Z})$ is spherical.

LEMMA (3.5).

$$
f_{*}: P H_{2 p^{2}+2 p-1}\left(F ; \mathbb{Z}_{(p)}\right) \longrightarrow P H_{2 p^{2}+2 p-1}\left(K(p) ; \mathbb{Z}_{(p)}\right)
$$

is multiplication by p.
Proof. Consider the Serre spectral sequence

$$
E_{2}=H^{*}\left(K\left(\mathbb{Z}_{(p)} ; 3\right) ; H^{*}\left(F ; \mathbb{Z}_{(p)}\right)\right) \Rightarrow H^{*}\left(K(p) ; \mathbb{Z}_{(p)}\right)
$$

Since $\left.H^{*}\left(K_{\left(\mathbb{Z}_{(p)}\right)} ; 3\right) ; \mathbb{Z}_{(p)}\right)$ has no higher p-torsion, we can reduce $\bmod p$ without losing any information. In particular, we can use our previous knowledge of the $\bmod p$ Serre spectral sequence to obtain complete information in degrees $\leq 2 p^{2}+2 p$ in this case. Notably we have,

$$
d_{2 p^{2}+2 p-1}(a)=b
$$

where a and b are integral representatives of $u_{2 p^{2}+2 p-1}$ and $\left[\beta P^{1}\left(\xi_{3}\right)\right]^{p}$ respectively. Thus

$$
d_{2 p^{2}+2 p-1}(p a)=p b=0
$$

Thus $p a$ is a permanent cycle in the spectral sequence. This tells us that

$$
f^{*}: Q H^{2 p^{2}+2 p-1}\left(K(p) ; \mathbb{Z}_{(p)}\right) \longrightarrow Q H^{2 p^{2}+2 p-1}\left(F ; \mathbb{Z}_{(p)}\right)
$$

is a multiplication by p. We conclude the proof by dualization.
Q.E.D.

THEOREM (3.6). The spherical number of $K(p)$ at the exponent $\left(p^{2}+p-1\right)$ is p^{2}; i.e.,

$$
S\left(K(p) ; p^{2}+p-1\right)=p^{2}
$$

Proof. Consider the following commutative diagram

$$
\begin{aligned}
& \left.\mathbb{Z}_{(p)} \cong \Pi_{2 p^{2}+2 p-1}\left(K(p) ; \mathbb{Z}_{(p)}\right) \longrightarrow \quad \underset{h}{ } H_{2 p^{2}+2 p-1}\left(K(p) ; \mathbb{Z}_{(p)}\right)\right) \cong \mathbb{Z}_{(p)} \\
& \uparrow \xlongequal{ } \quad{ } \quad f_{*} \\
& Z_{(p)} \cong \Pi_{2 p^{2}+2 p-1}(F ; \mathbb{Z}(p)) \quad h \quad P H_{2 p^{2}+2 p-1}\left(F, \mathbb{Z}_{(p)}\right) \cong \mathbb{Z}_{(p)}
\end{aligned}
$$

By Corollary (3.4), $P^{1}\left(v_{2 p^{2}+2 p-1}\right)=v_{2 p^{2}+1} \in H_{*}(F ; \mathbb{Z} / p)$. Therefore the lower Hurewicz map is a multiplication by p. By Lemma (3.5), f_{*} is a multiplication by p, so

$$
S\left(K(p) ; p^{2}+p-1\right)=p^{2} \quad \text { Q.E.D. }
$$

Remarks. Looking at the cases $p=3$ and $p=5$ for $K(p)$ and using the results of Harper and Wilkerson about the splitting $\bmod p$ of the exceptional Lie groups \mathbb{F}_{4} and \mathbb{E}_{8}, we see that

$$
\begin{aligned}
& S\left(\mathbb{F}_{4}, 11\right)_{(3)}=3^{2}(\text { See example }(\mathrm{c})) \\
& S\left(\mathbb{E}_{8}, 29\right)_{(5)}=5^{2}
\end{aligned}
$$

i.e., the Hurewicz map of \mathbb{E}_{8} is divisible exactly by 5^{2} in dimension 59 .

4. Primitivity classes and primitivity number

We recall that the bordism ring $\Pi_{*}(M U)$ rationally looks like

$$
\begin{aligned}
\Pi_{*}(M U) \otimes \mathbb{Q} & \cong \mathbb{Q}\left[\left[\mathbb{C} P^{1}\right], \ldots,\left[\mathbb{C} P^{n}\right], \ldots\right] \\
& \cong \mathbb{Q}\left[m_{1}, m_{2}, \ldots, m_{n}, \ldots\right] \\
& \cong \mathbb{Q}\left[b_{1}, b_{2}, \ldots, b_{n}, \ldots\right]
\end{aligned}
$$

where $\left[\mathbb{C} P^{n}\right]=(n+1) m_{n}, \quad\left|m_{n}\right|=\left|\left[\mathbb{C} P^{n}\right]\right|=2 n$, and if $\log (t)=\sum_{i=0}^{\infty} m_{i} t^{i+1}$, then $\exp (t)=\sum_{i=0}^{\infty} b_{i} t^{i+1}$. For $E=\left(e_{1}, \ldots, e_{n}, \ldots\right)$, a sequence of non-negative integers almost all zero, let $|E|=2 \sum_{i \geq 0} i e_{i}$

$$
\begin{array}{lll}
S_{E} & : & M U^{*}(X) \longrightarrow M U^{*+|E|}(X) \text { and } \\
S_{E} & : & M U_{*}(X) \longrightarrow M U_{*-|E|}(X)
\end{array}
$$

be the Landweber-Novikov operations acting on cohomology and homology, respectively, for X a finite complex.

For each $E=\left(e_{1}, \ldots, e_{n}, \ldots\right)$ as above, define the monomial

$$
m^{E}=m_{1}^{e_{1}} \cdot m_{2}^{e_{2}} \cdots m_{n}^{e_{n}} \cdots \in \Pi_{*}(M U) \otimes \mathbb{Q}
$$

and the total operations

$$
\begin{aligned}
\mathcal{P} & =\sum_{E} m^{E} S_{E}: M U^{*}(X) \otimes \mathbb{Q} \longrightarrow M U^{*}(X) \otimes \mathbb{Q} \\
\mathcal{P}_{*} & =\sum_{E} m^{E} S_{E}: M U_{*}(X) \otimes \mathbb{Q} \longrightarrow M U_{*}(X) \otimes \mathbb{Q}
\end{aligned}
$$

for which the following properties hold (see [3]):

1. \mathcal{P} and \mathcal{P}_{*} preserved degree;
2. for $y \in M U^{*}(X) \otimes \mathbb{Q}$ and $\alpha \in M U_{*}(X) \otimes \mathbb{Q},\left\langle\mathcal{P}(y), \mathcal{P}_{*}(\alpha)\right\rangle=\langle y, \alpha\rangle ;$
3. \mathcal{P} is multiplicative, i.e., $\mathcal{P}(x y)=\mathcal{P}(x) \mathcal{P}(y)$ for x and $y \operatorname{in} M U^{*}(X) \otimes \mathbb{Q}$;
4. \mathcal{P} is idemponent, i.e., $\mathcal{P} \circ \mathcal{P}=\mathcal{P}$.

Example. $X=\mathbb{C} P^{\infty}, \mathcal{P}(\tau)=\sum m_{i} \tau^{i+t}$ when $M U^{*}\left(\mathbb{C} P^{\infty}\right)=\Pi_{-*}(M U)[[t]]$.
Definition. $\alpha \in M U_{*}(X) \otimes \mathbb{Q}$ is primitive if all non-trivial $M U$-operations act trivially on α, i.e., $S_{E}(\alpha)=0 \forall E \neq(0,0, \ldots)$.
\mathcal{P}_{*} characterizes the (rational) primitive classes in the following way: $\alpha \in$ $M U_{*}(X) \otimes \mathbb{Q}$ is primitive if and only if $\mathcal{P}_{*}(\alpha)=\alpha$, or equivalently, $\alpha \in \operatorname{Im} \mathcal{P}_{*}$. (See [3]).

Suppose from now on that X is a finite H-space. Then

$$
M U_{*}(X) \otimes \mathbb{Q} \cong \wedge\left(X_{k_{1}}, X_{k_{2}}, \ldots, X_{k_{r}}\right)
$$

where the exterior algebra has $\Pi_{*}(M U) \otimes \mathbb{Q}$ as coefficients, and $\left|X_{k_{i}}\right|=2 k_{i}+1$, and if

$$
T: M U_{*}(X) \otimes \mathbb{Q} \longrightarrow H_{*}\left(X_{i} \mathbb{Q}\right)
$$

denotes the Thom reduction map, then $T\left(X_{k_{i}}\right)=x_{2 k_{i}+1}$ as in $\S 2$. Therefore, to calculate primitives in

$$
M U_{*}(X) / \operatorname{Tor} \subset M U_{*}(X) \otimes \mathbb{Q}
$$

for X a finite H-space, we have to solve a two phase-problem:
(1) Calculate $\operatorname{Im} \mathcal{P}$ and $\operatorname{Im} \mathcal{P}_{*}$;
(2) Integrality problem: find the smallest positive integer

$$
N\left(X ; k_{i}\right) \in \mathbb{Z}^{+} \text {such that } N\left(X ; k_{i}\right) \mathcal{P}_{*}\left(X_{k_{i}}\right) \in M U_{2 k_{i}+1}(X) / \text { Tor. }
$$

Definition. $N\left(X ; k_{i}\right) \in \mathbb{Z}^{+}$is the "primitivity number" for X at the exponent k_{i}.

The spherical and the primitivity numbers are closely related. In fact, we have that for all X and all k_{i} 's $N\left(X ; k_{i}\right)$ divides $S\left(X ; k_{i}\right)$. This follows from the fact that the operations act trivially on $M U^{*}\left(S^{n}\right)$ for all $n>0$, and the diagram

$$
H_{*}(X ; \mathbb{Z}) / \text { Tor }
$$

commutes. Therefore the point is to answer the following question: given a finite H-space X, for what k_{i} 's do we have $N\left(X ; k_{i}\right)=S\left(X ; k_{i}\right)$?

It is easy to see that for every $X, N\left(X ; k_{1}\right)=S\left(X ; k_{1}\right)=1$.
Examples. (See [3])
(a) $X=S U(n+1) n \geq 1 ; N\left(X ; k_{i}\right)=S\left(X ; k_{i}\right)=k_{i}!$;
(b) $X=G_{2} ; N(X ; 5)=5!/ 2$ but $S(X ; 5)=5!$;
(c) $X=\mathbb{F}_{4} \cdot N(X ; 5)=2^{2} \cdot 5$ and $S(X ; 5)=2^{3} \cdot 5 ; N(X ; 7)=S(X ; 7)=2^{3} \cdot 3 \cdot 7$;

$$
N(X ; 11)=S(X ; 11)=2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11
$$

This last example gives us information about the situation of the torsion molecule at $p=3$. Localizing at $p=3, \mathbb{F}_{4} \frac{\sim}{3} B_{5}(3) \times K(3)$. Using this we can say that, at $p=3, N\left(K(p) ; p^{2}+p-1\right)_{(p)}=S\left(K(p) ; p^{2}+p-1\right)_{(p)}=p^{2}$.

What we will prove now is that this equality is true for any odd prime p.

5. Primitivity number of $K(p)$.

The main goal of this section is to prove that

$$
N\left(K(p) ; p^{2}+p-1\right)_{(p)}=p^{2}
$$

We are working locallized at p, thus we will use $B P$ (co)homology instead of $M U(c o)$ homology. Recall that $\Pi_{*}(B P) \cong \mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right],\left|v_{n}\right|=2 p^{n}-2$ and

$$
v_{n}=p m_{n}-\sum_{\substack{i+j=n \\ i_{j}<n}} v_{i}^{p^{j}} m_{j}
$$

$$
\Pi_{*}(B P) \otimes \mathbb{Q} \cong H_{*}(B P ; \mathbb{Q}) \cong \mathbb{Q}\left[m_{1}, m_{2}, \ldots\right]
$$

The m_{i} 's in $B P$-theory are identified with the m_{i} 's in $M U$-theory under the Quillen idempotent in dimensions $2 p-2,2 p^{2}-2, \ldots, 2 p^{4}-2, \ldots$ Therefore we redefine the total operation $\mathcal{P}_{*}: B P_{*}(X) \otimes \mathbb{Q} \longrightarrow B P_{*}(X) \otimes \mathbb{Q}$ as $\mathcal{P}_{*}=$ $\sum m^{E} S_{E}$, where $E=\left(e_{1}, \ldots, e_{n}, \ldots\right)$ as above, $m^{E}=m_{1}^{e_{1}} \cdot m_{2}^{e_{2}} \ldots$ and S_{E} is the conjugate of r_{E}, the Quillen operation.

An extra feature of this total operation is that it ties in nicely with the Steenrod module structure of $H_{*}(X ; \mathbb{Z} / p)$; more precisely,

commutes, where $T: B P_{*}(X) \rightarrow H_{*}\left(X ; \mathbb{Z}_{(p)}\right)$ is the Thom reduction map, ρ is reduction modulo p, and P^{E} is the Milnor Steenrod operation of E.

PROPOSITION (5.1). $\quad H_{*}(\Omega K(p) ; \mathbb{Z} / p) \cong \mathbb{Z} / p\left[a_{2}, a_{2 p}, a_{2 p^{2}+2 p-2}\right] /\left(a_{2}^{p}\right)$, $P^{1}\left(a_{2 p}\right)=a_{2}$.

Proof. Consider the Eilenberg-Moore spectral sequence

$$
E_{2}=\operatorname{Tor}_{H^{*}(K(p) ; \mathbb{Z} / p)}(\mathbb{Z} / p, \mathbb{Z} / p) \Rightarrow H^{*}(\Omega K(p) ; \mathbb{Z} / p)
$$

Calculating, $E_{2}=\Gamma\left(s x_{3}\right) \otimes \Gamma\left(s x_{2 p+1}\right) \otimes \wedge\left(s x_{2 p+2}\right) \otimes \Gamma\left[t x_{2 p+2}\right]$, where bideg $\left(s x_{i}\right)=(-1, i) i=3,2 p+1,2 p+2$, we have

$$
\text { bideg }\left(t x_{2 p+2}\right)=\left(-2,2 p^{2}+2\right)
$$

Now $d_{2}=\beta P^{1}$, so $d_{2}\left(\gamma_{2}\left(s x_{3}\right)\right)=s x_{2 p+2}$ and d_{2} is trivial in all other cases. Thus

$$
E_{3} \cong \Gamma\left[s x_{3}\right] /\left(\gamma\left(s x_{3}\right)=0 ; i \geq 3\right) \otimes \Gamma\left[s x_{2 p+1}\right] \otimes \Gamma\left[t x_{2 p+2}\right]
$$

Clearly $d r=0$ for $r \geq 3$ and $E_{3}=E_{\infty}$. By duality

$$
H_{*}(\Omega K(p) ; \mathbb{Z} / p)=\mathbb{Z} / p\left[a_{2}, a_{2 p}, a_{2 p^{2}+\grave{\varphi}-2}\right] /\left(a_{2}^{p}\right)
$$

where duality goes as follows: $\quad s x_{3}-a_{2}, \quad s x_{2 p}-a_{2 p}$ and $t x_{2 p+2}-a_{2 p^{2}+2 p-2}$ and finally $P^{1}\left(x_{3}\right)=x_{2 p+1}$ implies $P^{1}\left(a_{2 p}\right)=a_{2}$. Q.E.D.

Now R. Kane in [2] (page 354) gives a method to calculate, for X a finite H-space, $B P_{*}(\Omega X)$ from $H_{*}(\Omega X ; \mathbb{Z} / p)$. Using this we have $B P_{*}(\Omega X) \cong$ $\Pi_{*}(B P)=\left[\alpha_{2}, \alpha_{2 p}, \alpha_{2 p^{2}+2 p-2}\right] / J$ where J is the ideal generated by the relation $R=\alpha_{2}^{p}-p \alpha_{2 p}+v_{1} \alpha_{2}$, where $v_{1}=p m_{1}$.

Now if Ω denotes the loop map, that is, Ω is induced from the identity map under the identifications $[X, X] \cong[\Omega X, \Omega X] \cong[\Sigma \Omega X, X]$, then $\Omega_{*} Q B P_{*}(\Omega X) \longrightarrow P B P_{*}(X)$ has degree +1 and $\operatorname{Im} \Omega_{*}$ generates the diagonal primitives of $B P_{*}(X)$. Thus

$$
P B P_{*}(K(p))=\wedge\left(X_{3}, X_{2 p+1}, X_{2 p^{2}+2 p-1}\right) /\left(p X_{2 p+1}-v_{1} X_{3}\right)
$$

Remark. The image of $h^{B P}: \Pi_{*}(K(p)) \longrightarrow B P_{*}(K(p))$ lies inside the diagonal primitives. It is enough for our purposes to calculate the diagonal primitives.

We use the indirect aproach of Kane, instead of the direct one, i.e., calculate $B P_{*}(K(p))$ and then identify the diagonal primitive generators there, in order to make this paper less unreadable. In any case, performing such calculation, our result is:

$$
\begin{aligned}
B P_{*}(K(p)) & \cong \Pi_{*}(B P)\left\{1, X_{2 p^{2}+2 p-1}, X_{2 p^{2}+2 p+2}\right\} \otimes \\
& \otimes \Pi_{*}(B P)\left\{X_{3}, X_{2 p+1}\right\} /\left(v_{1} X_{3}=p X_{2 p+1}\right) \otimes \\
& \otimes \Pi_{*}(B P) /\left(p, v_{1}\right)\left\{X_{2 p+4}, X_{4 p+6}, \ldots, X_{2 p}\right\}
\end{aligned}
$$

where, following Yagita's approach as in [6], $\{\ldots\}$ means the free-module generated by.... We mention this as it was included in an early preprint of this paper. Now we return to our main topic.

Note that if we define the $B P$ primitivity number in the same way, this agrees with the localization at p of the $M U$-version of the primitivity number.

Notation. $N=N\left(K(p) ; p^{2}+p-1\right)_{(p)}$.
Proposition (5.2). p divides N and N divides p^{2}.
Proof. The second assertion follows from the fact that every spherical class is a primitive class. Now P^{1} relates $H_{2 p^{2}+2 p-1}(K(p) ; \mathbb{Z} / p)$ with $H_{2 p^{2}+1}$ $(K(p) ; \mathbb{Z} / p)$. From the diagram above we deduce that for $E=(1,0, \ldots)$, $S_{E}\left(X_{2 p^{2}+2 p-1}\right)=X_{2 p^{2}+1} \in B P_{*}(K(p))$.

Hence $\mathcal{P}_{*}=\sum_{E} m^{E} S_{E}, \mathcal{P}_{*}\left(X_{2 p^{2}+2 p-1}\right)$ has a non-trivial summand

$$
m^{E} S_{E}\left(X_{2 p^{2}+2 p-1}\right)=m_{1} X_{2 p^{2}+1}
$$

Thus, $v_{1}=p m_{1}$, and by definition of primitivity number, p divides N. Q.E.D.
Now we come to the most subtle and delicate part of the argument. Before we go into the formal proof, we will say something about what is going on behind this argument.

The torsion molecule has a cell decomposition as follows:

The Steenrod algebra module structure of $H^{*}(X ; \mathbb{Z} / p)$ does not tell us if the lower part (left in the diagram) is attached essentially to the upper part (right in the diagram). This is one of the reasons that we go to a richer (co)homology theory ($B P$ in this case) but up to this point of the argument we are not able to answer this question. Therefore we use the important fact that the torsion molecule is indeed an H-space.

Let $\Sigma K(p)$ denote the suspension of $K(p)$. Suppose that $\Sigma K(p) \cong A \cup J$ where A is the part of $K(p)$ represented in the diagram suspended once, and $A=A_{1} \cup A_{2}$; i.e., $A_{1}=S^{4} \cup e^{2 p+2} \cup e^{2 p+3}, A_{2}=e^{2 p^{2}+1} \cup e^{2 p^{2}+2} \cup e^{2 p^{2}+2 p}$, $J=j u n k$.

Lemma (5.3). (J. Harper). In $A=A_{1} \cup A_{2}, A_{1}$ and A_{2} are attached nontrivially.

Proof. Suppose that $A=A_{1} \vee A_{2}$ i.e. the attaching is trivial. Let $r=$ $2 p^{2}+2 p-1$. Hence $K(p)$ rationally looks like a product of two spheres,

$$
K(p) \underset{\overline{0}}{\sim} S^{3} \times S^{r} \text { then } \Sigma K(p) \simeq S^{4} \vee S^{r+1} \vee S^{r+4}
$$

Thus $A_{2} \underset{\mathbf{0}}{\sim} S^{r+1}$, and if $p t: \Sigma K(p) \longrightarrow A_{2}$ denotes the pinching map, then

$$
p t_{*}: \Pi_{r+1}(\Sigma K(p)) \otimes \mathbb{Q} \longrightarrow \Pi_{r+1}\left(A_{2}\right) \otimes \mathbb{Q}
$$

is an isomorphism.
On the other hand, the suspension map

$$
\sigma_{*}: H_{r}(K(p)) / \text { Tor } \longrightarrow H_{r+1}(\Sigma K(p)) / \text { Tor }
$$

is mono and splits ($K(p)$ is an H-space). Therefore the Hurewicz map

$$
h: \Pi_{r+1}(\Sigma K(p)) \longrightarrow H_{r+1}(\Sigma K(p))
$$

is multiplication by p^{2} and consequently the Hurewicz map

$$
h: \Pi_{r+1}\left(A_{2}\right) / \text { Tor } \longrightarrow H_{r+1}\left(A_{2}\right) / \text { Tor }
$$

is multiplication by p, which is a contradiction.
Q.E.D.

By the calculations in $\S 3$ on the ($c o$)homology of F, the third connective cover of $K(p)$, we can now deduce that the generator in $H_{2 p^{2}}(K(p) ; \mathbb{Z})$ is spherical.

By duality $\left(K(p)\right.$ is self-dual) and the calculation of $P B P_{*}(K(p))$, we conclude that the cell in dimension $2 p^{2}+2 p-1$ is linked to the 3 -dimensional one; i.e., there exists a non-trivial map in $\Pi_{2 p^{2}+2 p-5}^{S}$ that represents this homotopy class.
But α_{t} for $t=p+2$ generates $\Pi_{2 p^{2}+2 p-5}^{S}$ and by Smith-Zahler [5], α_{t} is detected by a primary $B P$-operation, namely $r_{p+2}+p^{p-1} r_{(1,1)}$.

THEOREM (5.4). The BP primitivity number for $K(p)$ in dimension $2 p^{2}+$ $2 p-1$ is p^{2}.

Proof. We know that $p \mid N$ and $N \mid p^{2}$. The possibility $p=N$ cannot occur, since there exists a $B P$-primary operation linking the 3 and the $2 p^{2}+2 p-1$ generators in $P B P_{*}(K(p))$. Therefore $N=p^{2}$.
Q.E.D.

The complete picture of $K(p)$ is

Departamento de Matemáticas
Centro de Investigación y de Estudios
Avanzados del I.P.N.
MÉxrco D.F., 07000
MEXICO

References

[2] R. Kane, The Homology of Hopf spaces, North-Holland Math. Library 40 (1988).
[3] -_And G. Moreno, Spherical homology classes in the bordism of Lie groups, Canad. J. Math., Vol. XL, No. 6 (1988), 1331-1374.
[4] G. Moreno, The Hurewicz Map of the compact exceptional Lie group \mathbb{E}_{6}, Contemp. Math. A.M.S. 146 (1993), 361-367.
[5] L. Smith and R. Zahler, Detecting stable homotopy classes by BP cohomology operations, Math. Z. 129 (1972), 137-156.
[6] N. Yagita, Brown-Peterson cohomology groups of the exceptional Lie groups, J. Pure Appl. Algebra 17 (1980), 223-226.

