
Boletin de la Sociedad Matematica Mexicana Vol. 37, 1992 

HOMOTOPY HOMOMORPHISMS 
AND THE HAMMOCK LOCALIZATION 

BY R. SCHWANZL AND R. VOGT 

Dedicated to the memory of Jose Adem 

1. Introduction 

In the theory of A 00 or E 00 monoids, rings and modules, or in the study of 
diagrams of spaces homomorphisms as structure preserving maps are often 
too rigid: they are not homotopy invariant. For example, if one changes a 
homomorphism by a homotopy one obtains a homomorphism up to coherent 
homotopy, called h-morphism for short. If / : X -+ Y is a homotopy equiv­
alence and X has an A00 or E00 monoid or ring structure, then Y admits an 
A 00 or E00 monoid or ring structure making / into an h-morphism but not a 
homomorphism. In the E00 monoid case the addition is an h-morphism but 
again not a homomorphism. 

Although h-morphisms seem to be the correct notion of morphisms in ho­
motopy coherence theory, they have draw-backs: composition is defined only 
up to homotopy. Fortunately, composition is homotopy associative with canon­
ical identities. Hence there is a perfectly good homotopy category. The de­
scription of naturality properties of constructions such as homotopy limits 
and colimits of diagrams or topological Hochschild homology or algebraic K -
theory of A 00 or E 00 rings is rather involved unless one passes to the homotopy 
category. 

This passage reduces the spaces of h-morphisms to their path components, 
thus depriving homotopy coherence algebra of its appropriate Hom-sets. In 
view of the work of Bokstedt [2], Waldhausen [17], and, in particular, Robin­
son [8], this is a real loss of information.· Hence we are led to analyze the 
structure of the collection of all h-morphisms before passage to homotopy. It 
forms what we will call a a-category, a category-like structure which can be 
interpreted as a category up to coherent homotopy. To be precise, any small 
a-category can be rectified to a homotopy equivalent honest topological cat­
egory with discrete space of objects, and the rectification is a "functor" of 
a-categories up to coherent homotopy. 

In the first part of this paper we develop the necessary theory of a-catego­
ries, give some examples from homotopy coherence theory, and prove the rec­
tification result. 

The description of a homotopy invariant Hom-space by h-morphisms 
-though it arises naturally- is still unsatisfactory from the view point of 
formal homotopy theory. Diagrams, A 00 or E00 monoids and rings and ho­
momorphisms form closed simplicial model categories in the sense of Quillen, 
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whose localizations with respect to the weak equivalences are isomorphic to 
the homotopy categories of h-morphisms. This indicates a relationship of the 
spaces of h-morphisms with the simplicial Hom-sets of the hammock local­
ization of closed model categories introduced by Dwyer and Kan [3]. They 
associate with each closed model category a simplicial category such that the 
path components of the simplicial Hom-sets coincide with Quillen's localiza­
tion and hence, in our examples, with the homotopy classes of h-morphisms. 

The second part of the paper deals with the relationship between h-mor­
phisms and hammocks. Up to homotopy they are two sides of the same coin: 
the space of h-morphisms is equivalent to the simplicial set of hammocks in 
the strongest sense one possibly can expect. There is a sequence of maps of 
Ll-categories and genuine simplicial functors of simplicial categories joining 
the Ll-category of h-morphisms with the simplicial category of hammocks, and 
each map is a weak homotopy equivalence. 

2. Homotopy coherent diagrams 

Throughout this paper we work in the category Top of compactly generated 
spaces in the sense of [16].. 

(2.1). A topological category C is a topologically enriched small category, 
i.e. its morphism spaces are topologized and composition is continuous. If its 
space of objects is discrete, we call it a topological index category. A 
C-diagram is a continuous functor D : C -+ Top, where C is a topological index 
category. A natural transformation/: D 1 -+ D2 is called a homomorphism. 
I ts underlying map is the collection of maps / (A) : D1 (A) -+ D2 (A), A E ob C . 
If all the /(A) are h-equivalences (homotopy equivalences), we call/ a weak 
equivalence. The category of C-diagrams is denoted by Tope . 

In the theory of homotopy limits and colimits, but also in classical homo­
topy theory, one encounters situations where one has to substitute a given 
C-diagram by a homotopy invariant modification, a homotopy coherent 
C-diagram. Such diagrams are codified by a "homotopy resolution" of C. 

CONSTRUCTION (2.2). [1]. Let Cat denote the category of t;opowgical index­
ing categories and continuous funct;ors. We construct a functor 

W: Cat-+ Cat 

and a natural transformation s : W -+ Id as foll,ows: 

ob WC= ob C 

WC(A,B) = (II Cn+1(A,B) X [O,l]n) /-
n~O 

where Cn+l ( A, B) is the space of composible morphisms 

lo Ii '2 In 
A-+ · -+ • -+ • • • -+ •-+ B 
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with the relations 

(/n, tn, · · ·, /o) = (/n, tn, · · ·, /i 0 /i-i, · · ·, /o) 
= (/n, • • •, fi+i, max(tHi, ti), fi-i, • • •, /o) 

ifti = 0 
if Ii= id 

(ti E (0, 1], /i E more; if In = id or /o = id, dekte In, tn resp. t1, Jo). Composi­
tion is 

(um, Um, ••• , go)0 (/n, tn, ... , lo) = (um, Um, ••• , go, 1, In, tn, ... , /o). 

The natural transformation e is defined by 

e(fn, tn, ... , /o) = /n° · .. 0/0. 

It is an h-equiualence on morphism spaces: there is a non-functorial section 

a : e -+ we, ff-+ (I) 

and Ht(/n, tn, ... , ti, /o) = (/n, t •tn, ... , t •ti, /o) deforms we into this section. 

The notion of homotopy resolution is justified by following result. 

PROPOSITION (2.3). [1, (3.17)]. Given a diagram of topological index cate-
gories 

we 

F 

and continuous functors such that G is an h-equivalence on morphism spaces, 
there exists a continuous functor H : We -+ e such that Foe ~ GoH (honwtQpic 
through functors). Moreover His unique up to homotopy (through functors). 

Definition. (2.4) A homotopy coherent e-diagram is a WC-diagram. 

The homotopy invariance of homotopy coher1Jnt e-diagrams is a conse­
quence of (2.3). For its formulation we need the notion of a homotopy ho­
momorphism. 

Let ln denote the linear category 

0 -+ 1 -+ 2 -+ • • • -+ n. 

An order preserving map a : [k] -+ [n], where [n] = {O, 1, ... , n}, induces a 
functor l1i: -+ ln and hence a functor a: W(e x £,1:) -+ W(e x .Cn)-As use.­
ally, we denote then order preserving injections [n - 1]-+ [n] and surjections 
[n + 1] -+ [n] by 5i resp. ui. 

Definition. (2.5). Anh-morphism (homotopy homomorphism) Do-+ Di of 
homotopy coherent e-diagrams is a continuous functor 

a : W(e X .Ci) -+ Top 
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such that ao6° = D1 and ao6 1 = Do. The collection of maps 

a((idA,O-+ 1)): Do(A)-+ D1(A), A E ob C 

is called the underlying map of a. 
The correspondence ((In, in), tn, ... , (lo, io)) 1-+ ((In, tn, ... , Jo), ino · · · 0 30) 

defines a functor W(C x .C1) -+ WC x .C1 . Hence any homomorphism of WC­
diagrams is an h-morphism in a canonial way. While it is clear how to compose 
an h-morphism with a homomorphism on either side it is far from clear how 
to compose h-morphisms. To define this composition consider the simplical 
class KTope whose n-simplices are continuous functors 

W(C X .Cn)-+ Top. 

PROPOSITION (2.6). [1, (4.9)]. KTope satisfies the restricted Kan ext:ension 
condition, i.e. a horn can be filled in provided the missing face is not the first 
or the last one. 

(2.7). Given h-morphisms a : Do -+ D1 and /3 : D1 -+ D2 there is a 
2-simplex r with ro6° = /3, ro6 2 = a. We take, = ro6 1 as a composite of 
a and /3. Then I is uniquely determined up to homotopy [1, (4.12), (4.13)], 
and composition is homotopy associative with the identical homomorphisms 
as units. Hence we obtain a homotopy category 11'" KT ope. 

(2.8). Let C be a topological index category and {Xe; C E ob C} a set of 
spaces. We topologize the set of continuous functors F : C -+ Top satisfying 
F(G) = Xe with the subspace topology of 

IT Top(C(A, B), Top(F(A), F(B))). 
A,B 

In particular, the set KTope (Do, Di) of h-morphisms Do -+ D1 obtains a 
topology. More generally, if Sis a set of homotopy coherent C-diagrams and 
Ks Tope is the simplicial subset of KT ope of all simplices having vertices in S, 
then Ks Tope has the structure of a simplicial space. 

Let Vk c W ( C x .Cn) denote the subcategory generated by all faces except of 
the k-th face, 0 < k < n. Then (2.6) is proved by constructing a deformation 
retraction functor W(C x .Cn) -+ Vk. Now let 1ri : [1] -+ [n] be the order 
preserving map sending Oto i - 1 and 1 to i. Let W c W(C x .Cn) be the 
subcategory generated by all 1r i (W ( C x .C 1)), i = 1, ... , n, n ~ 2. Applying the 
previous remark inductively, we obtain a deformation retraction functor 

W(C X .Cn)--+ W. 

PROPOSITION (2.9). 1r1, ... , 11"n induce an h-equivalence of (Ks Tope)n with 
the space of strings of h-nwrphisms 
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Do -+ D1 -+ • • • -+ Dn 

with Di ES. 
This result exhibits Ks Tope as an example of what we will call a .6.-category 

(see (3.3)). 

(2.10). Homotopy invariance. [1, (4.18), (4.19)]. Let I a denote the cate­
gory 

p o ___ 1 

q 

consisting of two isomorphic objects. Let Do be a homotopy coherent C-dia­
gram. 
(1) Given h-equivalences o:(A) : Do(A) ---+ D1 (A), one for each A E ob C, 

then Do and the o:(A) extend to a continuous functor 

o:: W(C x I a)--+ Top. 

(2) Given an h-morphism f3 : Do -+ D1 of homotopy coherent 0-diagrams, 
whose underlying map consists of h-equivalences, then /3 extends to a con­
tinuous functor 

o:: W(C XI a)--+ Top. 

Let u, v : l1 -+ I a be given by u(0) = 0, u(l) = 1, v(0) = 1, v(l) = 0. Then 
f3 = o:ou. Clearly o:ov is a homotopy inverse of /3. 

(2.11). Rectification of h-morphisms: There is an endofunctor 

U : Topwe ---+ Top~e 

together with a natural weak equivalence r : U -+ Id and h-morphisms 
fJ D : D -+ U D having the following properties 
(1) f/D is natural with respect to homomorphisms f : D -+ E ofW C-diagrams, 

i.e. U f 0 1/D = f/E 0 f 
(2) ,, D (A) : D( A) -+ U D (A) embeds D (A) as a strong deformation retract 
(3) rDoff D = id ash-morphisms 
(4) any h-morphism o: : D -+ E factors uniquely as o: = iio'ID with 

a : U D -+ E a homomorphism of WC-diagrams 
(5) The map KTopwe (D, E) -+ Tope (U D, E), o: 1-+ a is continuous. 

The composites are always meant to be the canonical composites of an 
h-morphism with a homomorphism of WO-diagrams. 

Proof: We confine ourselves to the definitions. For a detailed proof see 
[1, (4.43)]. 

UD(A) = ( 1} W(C x £1) ((B,D), (A, 1)) X D(B)) / ~ 
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with the relations (go/, x) ,.., (g, D(f)(x)) for f E 61WC. The WC-structure is 
defined by 

U D(h)(g, x) = (hog, x) 

for h : A -+ A'. The h-morphism f/D is given by the adjoints of the maps 

W(C x .C1)((B, 0), (A, 1)) x D(B) -+ U D(A), 

and if a: W(C x .C1)-+ Top is an h-morphism D-+ E, its adjoints 

W(C x .C1)((B,O), (A, 1)) x D(B)-+ E(A) 

define the WC-homomorphisms a. If a = id D, then a : U D -+ D is the natural 
map rv. • 

Hence any h-morphism a can be "decomposed" canonically into a broken 
arrow diagram 

rD 
D--UD---E 

where the map into the wrong direction is a weak equivalence. This suggests 
that there should be a connection with the localization of Topwc given by 
inverting the weak equivalences: 

PROPOSITION (2.12). [1, p. 140 fl1: Let W be the cl,ass of weak equivalences 
in Topwc, then 

3 . .6.-categories 

Let .6. be the category of finite ordered sets [n] and order preserving maps. 
Let X be a simplicial space, i.e. a functor X : .6. op -+ Top. We define 

(RLX)n ={(xi, ... , xn) E (X1t; d1xi+l = d0xi, i = 1, ... , n - 1} n ~ 1 

(3.1) 
(RLX)o =Xo 

i.e. (RLX)n is an iterated pullback X1 Xx 0 X1 Xx 0 • • • Xx 0 X1. 
Let ,ri : [1] -+ [n] be given by 1ri(k) = i -1 + k. We have the following result: 

LEMMA (3.2). A simplicial space Xis the nerve of a category object in Top 
iff 

(1r1, ... , 1rn) : Xn--+ (RLX)n 

is a homeomorphism for all n ~ 2. 

Proof. If X is the nerve of a topological category then Xn 
Conversely, 

(RLX)n, 
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defines an associative composition with identities s0 : Xo--+ X1. • 
We weaken (3.2) up to homotopy and define 

Definition (3.3). A special ll.-space is a simplicial space X such that 
(11"1, ... , 1rn) : Xn --+ (RLX)n is an h-equivalence for all n ~ 2. A ll.-category 
is a special ll.-space for which X 0 is discrete. A 11-functor is a simplicial map 
between ll.-categories. Let fl.Cat denote the category of ll.-categories. 

Example (3.4). Let Y be a topological space and SY its topologized singular 
complex, where SnY = T'op(ll.n, Y) has the function space topology. SY is a 
special ll.-space. 

Remark (3.5). Special ll.-spaces with Xo ~ * are of importance in loop space 
theory [13, (1.5)]. 

The passage from ll.-categories to the hammock localization, mentioned in 
the introduction, is given by ll.-functors up to coherent homotopies, which 
we will now introduce. Any simplicial space X and hence any ll.-category is 
canonically a homotopy coherent fl. op -diagram via 

,; X w fl.0P---fl. 0P---T'op. 

Definition (3.6). An hll.-map between simplicial spaces is an h-morphism 
of the associated W fl. 0P -diagrams. 

As in§ 2 ll.-categories and hll.-maps extend to asimplicial class K fl.Cat. Let 
S be a set of ll.-categories and Ksll.Cat the restriction of K fl.Cat to simplices 
with vertices in S, then (2.6) and (2.9) give 

PROPOSITION (3. 7). K ll.C at satisfies the restricted Kan extension condition 
and Ksll.Cat is a ll.-category. 

(3.8). Homotopy invariance: If X is a simplicial space, then 

Gr(X): X1 --Xo 

is a directed topological graph. A simplicial map/: X--+ Y defines an under­
lying map of graphs Gr(/) : Gr(X) --+ Gr(Y). Similarly if a : X --+ Y is an 
hll.-map we have underlying maps ai: Xi--+ ~,i = O, 1 which commute with 
d} up to homotopy. We call (ao, a1) the underlying h-map of graphs. Given an 
hll.-map a : X --+ Y of ll.-categories for which ao, a1 are h-equivalences, then 
ao, a1 extend to h-equivalences (RLX)n --+ (RLY)n, because Xo and Yo are 
discrete. Since X and Y are special, (2.10.2) implies: 

PROPOSITION (3.9). Given an hll.-map a : X --+ Y of ll.-categories whose 
underlying h-map of graphs ( a0 , a 1) consists of h-equivalences, then a extends 
to a continuous functor W(fl. 0P x 1 s) --+ T' op. 

Remarks (3.10): (1) Given a ll.-category X and a map of graphs Gr(/) : 
Gr(X) --+ Y which consists ofh-equivalences we cannot expect to extend Gr(!) 
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and X to an hA-map of A-categories. The analogue of(2.10.l) extends Y to a 
WA op -space which need not factor through s : WA op --+ A op and hence need 
not define a A-category. 

(2) For special A-spaces (3.9) holds, provided /J or d1 is an h-fibration. 

(3.11). Rectification of hA-maps: There is an endofunctor 

M : flCat --+ flCat 

together with a natural transformation r M --+ Id and hA-maps 
fJX: X--+ MX such that 
(1) fJX is natural with respect to A-functors 
(2) ( TJX )n : Xn -+ ( M X)n embeds Xn as a strong deformation retract 
(3) rxofJx = idx as hfl-maps 
(4) any hA-map o: : X --+ Y of A-categories factors uniquely as o: = ii.ofJx 

with a: MX--+ Ya A-functor. 
(5) The map K LlCat(X, Y) --+ ACat(X, Y), a 1--+ a is continuous. 

The functor U of (2.11) will not do since it produces a W A 0P-diagram from 
a A-category. We need a modification. 

Define a special fl-space NX by 

(NX)n = (v W(~•P X .C1)(([k], 0), (In], 1)) X xk) / ~ 

with the relations (hogof, x) ,...., (ss(h)og, X(s(f))(x)) in the notation of (2.2) 
for h E «5°W .!1°P and/ E «51W A0 P. Now proceed as in the proof of (2.11) to 
show that N X has all the required properties apart from the fact that ( N X)o 
is not discrete (but (NX)o ~ Xo). For the proof of (2) consult [10, (4.5)]. 

Let N0X denote the constant simplicial space on (NX)o. Define MX to be 
the pushout 

NoX NX 

1 1 
Xo MX 

Then N X --+ M X is a weak equivalence in the sense of (2.1) because 
N0X --+ N X is a cofibration. Since fl-categories have a discrete space of 0-
simplices the passage from NX to MX preserves properties (1), ... ,(5). • 

As in section 2 we conclude 

(3.12). An h.!l-map o: : X --+ Y of A-categories "decomposes" canonically 
into a broken arrow diagram of A-functors 

rx 
X--MX--Y 

where the fl-functor into the wrong direction is a weak equivalence. 
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4. Rectification of a-categories 

The following is an adaptation of methods of May [6] to our situation. 
Let J c il denote the subcategory of all maps / : [m] --+ [n] of the form 
/(i) = /(0) + i for all i E [m]. If J1 c J is the full subcategory with objects [0] 
and [1], then Top 1:P is the category graph of directed topological graphs. The 
obvious forgetful functor 

has a right adjoint 

JOP L: Top -+ graph 

JOP R : graph-+ Top 

given by the iterated pullback (3.1). The following is obvious. 

LEMMA (4.1). LoR = Id and the adjunction unit 6 : Id--+ RoL is given by 
the maps of (3.2) 

6n = (1r1, ... , 1rn): Yn--+ (RLY)n 

The forgetful functor R1 : T opll. op --+ Top 10
P has a left adjoint 

JOP fl. op (II ) L1 : Top --+ Top , Y H- Y ®J il = k Y1c X a([n], [kl) / ,.._, 

with the relations (Y(g)(11), I) ,-.,J (11, go/) for 11 E Y1:, g E J([m], [kl), and 
/ E a([n], [ml). The simplicial structure is given by composition on the right. 
The composite D = R10L1 is a monad on Top 10P. 

(4.2). Analysis of DY: Let a. c il be the subcategory of all morphisms 
g : [m] --+ [n] with g(O) = 0 and g(m) = n. A morphism-/ : [n] --+ [k] in a 
factors uniquely as 

Ii h 
/: [n]--[q]--[k] 

with '2 E J and Ji Ea •. Note that q = f(n) - /(0). Hence 

(DY)n = II Y1: X a.([n], [kl). 

In particular, 

k 

(DY)o = Yo , (DY)i = II Y1:. 
k 

The unit of D is 

( 'IY )n : Yn -+ II Y1: x a. ([n], [kl), 11 H- (y, id). 
k 
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(4.3) a. is a strictly monoidal category with [k] EB [l] = [k + l] and I EB g : 
[k] EB [l] -+ [m] EB [n] defined by 

. _ { l(i) i ~ k 
(/ EB g)(i) - m + g(i - ~) i > k 

Any I E a. ([n], [kl) is uniquely of the form I = Ii EB ···EB In with /i : [1] -+ 

[I (i) - l(i - 1)]. 

LEMMA (4.4). 5DR : DR -+ RLDR is a natural isomorphism of fimctors 
JOP 9raph -+ Top . 

Proof. Let Y = RZ, Z E 9raph. Think of (YI, ... , Yk) E Yk as a diagram 

tin 

with xi E Yo and Yi E YI. For ((YI, ... , Yk), h EB··· EB In) E Yk x a.([n], [kl) c 
DYn we have 

1ri((YI, • • •, Yk), h EB··· EB In)= (xf(i-I)-+ Xj(i-I)+l-+ · · ·-+ Xj(i), Ji). 

The statement follows. • 
Let JT op c TopJ

0

P denote the full subcategory of all Y for which Yo is 
discrete and 5y : Y-+ RLY is a weak equivalence in the sense of (2.1). Note 
that RIX E JTop for a a-category X. From (4.2) we obtain 

LEMMA (4.5). D preserves weak equivalences in TopJ
0

P and RL weak equiv­
alences in JT op. 

Consider the commutative diagram in TopJ
0

P 

(4.6) 

DY 

lD6y 

DRLY 
6DRLY 

RLDY 

l RLD6y 

RLDRLY 

If YE JTop then 5vRLY is an isomorphism (4.4) and D6y, RLD6y are weak 
equivalences (4.5). Hence 5vy is a weak equivalence. Since (DY)o = Yo,· we 
obtain 

LEMMA (4.7). D defines a nwnad on JTop. 

By [6, (5.2), (5.3), (f$.p)] these observations imply 

PROP-OSITION (4.8). Let 9rapho .c 9raph be the full subcategory of all graphs 
X with discrete Xo. Then · 
(1) c--::;;. LDR is a nwnad on 9rapho 

_ 6D RLD6 
(2) 6: D---RLD---RLDRL = RCL isanw,phismofmonads 
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(3) If Y E JTop is a D-object, there is a natural diagram 

e. ~ 
Y. --B.(D, D, Y) --RB.(OL, D, Y) 

of simplicial D-objects. B. ( ) is the two-sided bar construction, Y. the 
constant simplicial D-object on Y, and e• a simplicial h-equivalence in 
JTop. 

We apply this result to our problem: the D-objects in JT op are exactly the 
-6.-categories, the D-objects in JTop of the form RZ are exactly the topological 
categories. Since (DY)o = Y0 , the simplicial object (B. (D, D, Y))o is constant 
on Yo. Since (RLY)o = Yo, the same holds for RB.(OL, D, Y). Since the 
topological realization functor preserves small limits, R commutes with topo­
logical realization, and we obtain a diagram of D-objects in JTop 

le• I 16°. I 
Y--IB.(D,D, Y)I--RIB.(OL, D, Y)I-

Since the degeneracies in B.(D, D, Y) and RB.(OL,D, Y) are inclusions of 
topological summands and hence cofibrations, (4.6) implies that G of (4.8.2) 
is a weak equivalence. Consequently the D-maps le• I and IS• I are still weak 
equivalences in the sense of (2.1). 

We summarize: 

THEOREM (4.9). There are functors .M, C : tiCat -+ tiCat together with 
natural transformations e : .M -+ Id, 5 : .M -+ C which are weak equivalences, 
such that CY is a topological index category: 

ey 6y 
Y--.MY--CY. 

Inverting ey according to (3.9) we obtain an hti-map Y -+ CY which is a 
homotopy equivalence. (All maps are the identity on 0-simplices). 

Remark (4.10). There is another rectification process which passes from 
ti-categories to A 00 categories, i.e. A 00 monoids in 9rapho, and then to topo­
logical categories. A theory of A 00 categories can be developed along the lines 
of Sections 2 and 3 using [1]. 

5. The ti-categories of A 00 or E 00 monoids and rings 

The structures of A 00 and E 00 monoids and rings are codified by appro­
priate topologized algebraic theories (see [12, §2]). Among these theories are 
universal ones obtained as follows: we start with a canonical theory 0u which 
is the theory 0m ofmonoids in the A 00 monoid case, the theory 0(.Q 00 ) asso­
ciated with the little cubes PROP .Q00 of [1, (2.49)] in the E00 monoid case, 
and the theories S(J/00 , ..C) associated with the OW-approximation of Steiner's 
canonical operad pair (}100 , ..C) [14], [15] in the ring cases. In the A 00 ring case 
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we forget the action of the symmetric groups on l, in the E 00 ring case this 
action is part of the structure. We then apply the theory version of Construc­
tion 2.2 [1, p. 72 ff1 to Su to arrive at a universal theory: each A 00 or E00 

monoid or ring can be structured by W0u [1, (3.17), (6.31)]. 
We now proceed as in Section 2 with WC replaced by WSu : A00 , E00 

monoids or rings are product preserving continuous functors X : W 0u -+ 
Top, X( 1) is the underlying space of X, a homomorphism is a natural transfor­
mation of such functors. A weak equivalence is a homomorphism f : X -+ Y 
whose underlying map /(1) is a homotopy equivalence. Denote the resulting 
categories by .MA00 , .M£00 , .RA00 and .R £00 • 

Let .M denote any of these categories. h-morphisms between objects in .M 
can be defined as in (2.5) with C x £1 replaced by 0u o .C1, where Su o ln is 
the quotient of 0u x ln obtained by identifying the objects (0, i), i E ln, to a 
single terminal object. As in Section 2 the h-morphisms extend to a simplicial 
class K .M, and we have 

PROPOSITION (5.1). K .M satisfies the restricted Kan extension condition for 
.M = .MAoo, .Meoo, .RAoo and Reoo, 

The proof is a refinement of [1, (4.9)] and [9, (3.2)], which also provides 

PROPOSITION (5.2). Jf S isasetofobjects in .M = .MAoo, .Meoo, RAoo or RRoo, 
then Ks .M is a a-category. 

(5.1) allows the construction of the homotopy category 11" K .M of homotopy 
classes of h-morphisms. 

Given an h-morphism a : X -+ Y of objects in .M, we call 

a((id1, 0-+ 1)) : X(l) --+ Y(l) 

the underlying map of a. 

(5.3). Homotopy invariance [1, (4.18),(4.19)], [9, (4.4),(4.6)]: Let 
.M = .MAoo, .Meoo, RAoo or .Reoo 
(1) Let X be in.Mand/: X(l)-+ Y be an h-equivalence in Top. Then there 

is a Y E .M with underlying space Y and a continuous product preserving 
functor 

a : W ( Su o Is) -+ Top 

extending X, Y and /. 
(2) Any h-morphism a : X -+ Y of objects in .M, whose underlying map is an 

h-equivalence in Top, extends to a continuous product preserving functor 

W(Su •Is)-+ Top. 

PROPOSITION (5.4). The rectification result (2.11) holds in .MA00 , .Me00 , 

RAoo and Reoo. 
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Proofs are given in [1, (4.43)] and [9, (4.12)]. The rectification process in 
[9] is a variant of our functor N of (3.11). The necessary changes are easily 
made. 

COROLLARY (5.5). Let W c .M be the class of weak equivalences. Then 
.M[W-1] ~ '1fK .M. 

6. Comparison with the hammock localization 

Let .M be a model category in the sense of Quillen [7] and W its subcategory 
of weak equivalences. To avoid confusion we call them model equivalences. 
Dwyer and Kan associated with .M its hammock localization LH .M with respect 
to W [3]. 

(6.1). The hammock localization: ob LH .M = ob .M and LH .M(X, Y) is 
a simplicial class whose k-simplices are hammocks of arbitrary length and 
width k. A hammock in LH .M(X, Y) oflength n and width k is a commutative 
diagram in .M 

Zo,1 Zo,2 

1 1 l 
Z1,1 Z1,2 Z1,n 

X 1 l l y 

1 1 1 
zk,1 zk,2 zk,n 

such that 
(1) all vertical maps are model equivalences 
(2) in each column all horizontal maps go in the same direction. If they go 

to the left, they are model equivalences 
(3) the maps in two adjacent columns of horizontal maps point in opposite 

directions 
(4) no column of horizontal maps contains only identities. 
The i-th face operator omits the i-th row and the i-th degeneracy repeats 

it. Composition is the obvious one. Possibly one has to reduce the resulting 
diagram to a hammock by composing arrows and deleting identities. 

Although LH .M(X, Y) is a simplicial class it is homotopically small in the 
following sense [3, (2.2), (4.1)]: LH .M(X, Y) contains a simplicial subset U 
such that for each simplicial subset V containing U there is a simplicial subset 
W containing V for which the inclusion U --+ Wis a homotopy equivalence 
after realization. In particular, LH .M (X, Y) has a well-defined homotopy type, 
and one has [3, (4.2),(4.7)]: 

PROPOSITION (6.2). (1) If.Mis a model category, then 1foLH .M ~ .M[w- 11. 
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(2) If .M. is a closed simplicial model category, X E .M. is cofibrant and 
YE .M. is fibrant, then .M.(X, Y) has the same homotopy type as LH .M(X, Y). 

In (6.2.2), LH .M(X, Y) extends to a bisimplicial structure LH .M. (X, Y) with 
one direction from .M., and the homotopy equivalence is given by the obvious 
functors [3, (4.8)] 

(6.3) .M. ---+ diag LH .M. ~ LH .M 

By [4] and [11], the categories Tope, .MA00 , .Me00 , RA00 , Re00 of Section 2 
and 5 form closed simplicial model categories. Their model equivalences re­
spectively fibrations are homomorphisms whose underlying maps are weak 
h-equivalences in Top resp. Serre fibration~. In particular, all objects are 
fibrant. By (2.8) these categories have topologized morphism sets and the 
simplicial structure is obtained by passing to their singular complexes. 

Constructions such as homotopy limits and colimits, classifying spaces, al­
gebraic K-theory [12], [17] or topological Hochschild homology [2] of homo­
topy ring spaces obviously define functors on LH .M. A comparison of the 
A-categories of Sections 2 and 5 with the corresponding categories of ham­
mocks hence describes the functoriali ty of these constructions with respect to 
h-morphisms. This comparison is established in the following two theorems. 

THEOREM (6.4). Let .M = Tope, .MA00 , .Me00 , R.A00 or R.e00 and let Sc ob .M 
be a subset. Let T = {UX;X E S} c ob .Mand let .MT c .M be the full 
subcategory of objects in T. Then there is an hA-map 

whose underlying map consists of h-equivalences. 

(6.5). Let us call two A-categories A and B equivalent if there is an hA-map 
A ~ B whose underlying map consists of h-equivalences. Then A and B are 
equivalent iff there are A-functors 

which are weak equivalences (3.9),(3.11). 
LH .M(X, Y) is a set for small .M but only homotopically small in general. 

Hence only the notion of equivalence of the second part of (6.5) makes sense: 
Two simplicial categories A, B with possibly only homotopically small simpli­
cial morphism classes are called equivalent if there is a string of simplicial 
functors 

A--+•~ 

preserving the homotopy types of the morphism classes. 
C ~ . 

THEOREM (6.6). Let .M = .MAoo, .Meoo, RAoo, Reoo or Top. with mor C of 
the homotopy type of a CW -complex. Let S c ob .M be a set of objects of the 
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homotopy type of a CW-complex and T = {UX;X E S}. Then the simpli­
cial categories .MT and L-f .M are equivalent, where .MT and L-f .M are the full 
subcategories of .M and LH .M of objects in T respectively in S. 

The model equivalences in .M are homomorphisms whose underlying maps 
are weak h-equivalences in Top. Equivalences in K .M come from h-morphisms 
whose underlying maps are honest h-equivalences. Hence the comparison 
(6.6) can only hold on subcategories where weak h-equivalences and honest 
ones of the underlying spaces agree ( .M = Top.Co, f, 0 the trivial category, is a 
counter example). 

Proof of (6.4). We construct a sequence of A-categories and A-functors 
which are weak equivalences 

lo Ii h. 
Ks .M -- JI _ ____,, KT.M -- .MT. 

The A-category JI has product preserving continuous functors 

PX: W(9u•ls)--+ Top 

as vertices, where Pxl5°Weu = X and Pxlc51W0u = UX, one for each 
X E S. The existence of p x is guaranteed by the rectification process U. 
The n-simplices of JI are product preserving continuous functors 

W(0u o Is• ln) --. Top 

extending the given functors on vertices. As in the other examples )I is a 
A-category. 

The A-functors lo and Ii are induced by the two inclusions ln--+ 1 s x ln-

LEMMA (6. 7). lo and Ji are weak equivalences. 

Proof. By symmetry it suffices to prove this for /o. Since lo is a A-functor of 
A-categories it suffices to show that it is an h-equivalence on 1-simplices. Let 
1J c W(0u • 1 s • l1) be generated under composition and taking products by 
6'0W(8u•t 1) and the subcategories W(0uol s•{i}), i = 0, 1. Anh-morphism 
u : W(0u•l 1) --+ Top from X to Y with X, Y ES defines a continuous product 
preserving functor G(u) : 1J --+ Top 

ux UY 

u 

There is a deformation retraction F : W(0u •Is• l1) --+ 1J through prod­
uct preserving functors [l, (4.18)], [9, (4.8)]. Hence we obtain a continuous 
section of lo 

so: (Ks.Mh --+ Jl1 , U f--+ G(u)oF. 



446 R. SCHWANZL AND R. VOGT 

Since Fis a deformation retraction, soo/o ~ id. • 

LEMMA (6.8). The canonical A-functor f = h : .MT --+ KT.M is a weak 
equivalence. 

For the proof we need 

LEMMA (6.9). A weak equivalence h : U X--+ UY in .M, i.e. a homomorphism 
with underlying map an h-equivalence, has a homotopy inverse in .M. 

Proof: Let 1f' .M denote the category of homotopy classes of homomorphisms 
in .M. The rectification construction U defines a functor 

For a class [a] E '1i"K .M(X, Y), V[a] is defined as follows: Take any composite 
/3 

of a and f'/Y, then V[a] is represented by ,8, induced from /3 by the universal 
property of f'/X· Since /3 is unique up to homotopy, so is P. 

Let 1f' f : 1f' .M--+ 1f'K .M be induced by the A-functor of (6.8) and let 

g = ryohoqx : X--+ UX--+ UY--+ Y 

be the canonical composite of the h-morphism f'/X with the homomorphism 
ryoh. By homotopy invariance, [g] is an isomorphism in 1rK .M. Hence V[g] is 
an isomorphism in 1r.M. Since '11"/[ry] is inverse to [qy], hoqx is a composite 
of f'/Y and g. Hence U[g] is represented by hoqx = h. • 

Proof of (6.8): The composite 

I 
.M(UX, UY)--K .M(UX, UY)~ .M(UUX, UY) 

sends h : UX--+ UY to h : UUX--+ UY defined by horJux = h. Since his 
a homomorphism, (2.11) implies that h == ruyoUh = horux- By (6.9) rux is 
a homotopy equivalence in .M. Hence/ : .M(UX, UY) --+ K .M(UX, UY) is a 
homotopy equivalence. • 

Proofof (6.6). We work in the ambient categories.Mand LH .M. We have 
simplicial functors 

I 
.M.T--- diag L!j .M.---L!j .M---L1J .M 

where the left two arrows are given by (6.3) and/ is induced by the functor 
U, which preserves model equivalences. By [5, (3.3), (3.5)] 

/: LH .M(X, Y)----+ LH .M(UX, UY) 
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is a weak homotopy equivalence. Since all objects in .M are fibrant the equiv­
alence of M.T and L'!J M follows from (6.2) and 

LEMMA (6.10). If X E .M has the homotopy type of a OW-complex UX is 
homotopically cofibrant, i.e. U X is homotopy equivalent in M to a cofibrant 
object. 

Proof. Let s,,s be the initial object of .M. Decompose ~ --+ X into a cofibration 
and a trivial model fibration q: QX--+ X. Then QX is cofibrant. Let R be the 
OW-approximation and o.x : RX--+ X the associated h-morphism described 
in the appendix (for simplicity we use RX for F* RX). Consider 

Rq atqx 
RX-- RQX------4 QX. 

Since q is a model equivalence Rq is a weak equivalence in the sense of (2.1) 
or Section 5. Hence there is an h-morphism RX--+ RQX inverse to Rq up to 
homotopy, and we can choose a composite /3 : RX --+ QX. Rectification gives 
a homomorphism p : URX--+ QX. Since the underlying map of /3 consists 
of weak h-equivalences, p is a model equivalence. If, : .M --+ Ho M denotes 
Quillen's localization functor [7, (I.1.11)], ,(P) is an isomorpism. But QX is 
cofibrant and U RX fibrant. Hence [7, (I.1.16)] 

Ho M(QX, URX) ~ 1r.M(QX, URX). 

We can lift the inverse of ,(P) to a homomorphism g : QX --+ U RX. Since 
,(fiog) = idqx and Ho .M(QX,QX) ~ 1r.M(QX,QX), pog is strictly sim­
plicially homotopic to id in the sense of [7, (II.2.5)]. Since U RX is of the 
homotopy type of a OW -complex gop is a weak equivalence in .M and hence 
an h-equivalence by (6.9). Consequently p is an h-equivalence in .M. The 
h-morphism o.x induces a homomorphism U RX --+ U X whose underlying 
map is an h-equivalence. So U RX and hence QX are homotopy equivalent to 
UX in M. by (6.9). • . 

Appendix: OW-approximations 

Let R: Top--+ Top be the composite of the singular functor and the topo­
logical realization functor, and let r : R --+ Id denote the associated adj unction 
counit. Let 0 be a theory or a topological index category C and X : we --+ Top 
a W0-space. Since R preserves products we obtain a RW0-space RX defined 
by the adjoints of 

RW0(n, k) x (RXf ~ R(W0(n, k) x X'1)--+ R(Xk) ~ (RX)k, 

if 0 is a theory and correspondingly for C. Note that RW 0 is an ACX) resp. 
E 00 monoid or ring theory if e is one and that r8 : RW 0 --+ We is a theory 
functor. Moreover, r induces a homomorphism 
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of RW0-spaces whose underlying map is a weak h-equivalence in Top. If 0 is 
one of the universal theories 0u of Section 5, there is a theory functor 

F : we ---+ RW0, 

unique up to homotopy through functors, such that r8 oF ~ Id through func­
tors. If mor C has the homotopy type of a CW -complex the same holds for 
0 = C. In particular, we have a homomorphism ofW0-spaces 

whose underlying map is a weak h-equivalence. 
By [1, (6.23)] (in the ring cases this result also holds by application of 

[9, (2.17)]) the homotopy r0 oF ~ Id provides an h-morphism (3: F*r 8X-+ X 
with idx as underlying map. Consequently, we have an h-morphism 
ax: F* RX-+ X ofW0-spaces, whose underlying map is rx. 
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