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THE INDEX OF A VECTOR FIELD UNDER BLOW UPS 

BY JOSE SEADE 

A la menwria de Jose Adem, con admiraci6n y respeto 

A useful technique when studying the behaviour of holomorphic vector 
fields around their isolated singularities is that of blowing up the singular 
points. (See for instance [5].) On the other hand, the most basic invariant 
of a vector field with isolated singularities is its local index, as defined by 

-Poincare and Hopf [16]. It is thus natural to ask how does the index of a 
vector field behave under blowing ups ? In this work we study and answer 
this question, by taking a rather general point of view and bearing in mind 
that complex manifolds have a powerful birational invariant, the Todd genus 
[9]. The method we use lies within the framework of algebraic topology. Since 
the Todd genus is invariant under blow ups on almost complex manifolds [10, 
p.51], our method actually applies to smooth vector fields on almost complex 
manifolds, so we work in this category. 

The idea is the following: suppose we are given a continuous vector field 
X on a compact manifold W with boundary M, such that X has no singular
ities on M and only finitely many singularities in the interior of W. Morse 
[17] showed that the total index of X in W, Ind(X; W), is determined by 
the behaviour of X near M, regardless of what happens in the interior of 
W. If we keep our bounda~data (M,XIM) but we replace the interior of 
W by some other manifold W with boundary M, what information about. 
Ind(X; W) can we read out from W? To answer this question, let us im-
pose_some restrictions: we assume Wis ev~ dimensional and it has trivial 
complex tangent bundle; we also assume W is almost complex and the U
structure on its boundary Mis compatible with the one induced from W. If 
Xis as above, its complex orthogonal complement in TW is not necessarily 
trivial [20], though TW is trivial. However, we can use the techniques of 
[12, 14] to define (in § 1 below) a trivialization P(X) of TW IM , whose degree 
is canonically determined by the index of X in W . Moreover, all the Chern 
classes of W relative to P(X) vanish, except the top one which is given by the 
degree of P(X), so by the index of X. Hence, up to a constant multiple, we 
can think oflnd(X; W) as being the Todd genus of W relative to P(X). (See 
Lemma (2.2) below.) Thus we can use the theorems of [1,9,10] for the Todd 
genus to say something about the index. Using this we prove: 

THEOREM (1). With the above hypotheses and notation: 
a) If the ( real) dimension of W is 4k, then 

Ind(X; W) = Ind(X; W) + ( - l Jk~~. (2k) ! . Td21, [W] 
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where Bk is the k th Bernoulli number and Td 2k [W] is a fixed contribution of 

W, independent of X: It is the part of the Todd polynomial Td2k involving 
lo7!:!r Chem classes ci, i = 1, ... , 2k - 1, of W relative to a trivialization of 
TWIM, evaluated on the orientation cycle ofW. 

b) If 1r : W -+ W is the composition of a finite number of blow ups away 
fromM, then 

Ind(X; W) = Ind(X; W) + (-l)k~:. (2k)! . Tdi;[W]. 

We recall [9] that the Bernoulli numbers are the coefficients Bk in the power 
series 

In Theorem (1), by blow ups we mean almost complex blow ups along sub
manifolds [lO;p. 51]. In fact, the same conclusion holds if we perform blow
ing downs too, but the manifolds in question must be non-singular. When 
W has real dimension 4k + 2 our method does not throw any information 
about the index. Instead, what the method gives in these dimensions is that 
the Todd genus is an obstruction for W to be "birationally equivalent" to a 
manifold with trivial tangent bundle (see §2). It i~orth mentioning that the 
Chern numbers involved in the polynomial TdZ,[W] coincide with the Chern 
numbers introduced by Looijenga in [15]. 

In § 3 we specialize the discussion to the case of a single blowup at the origin 
in en, where explicit computations are easy. Similar, but more complicated, 
formuli hold when we make several blow ups at points. 

Finally, in §4 we prove (see the text for the definitions involved): 

THEOREM (2). Let W be a compact, almost complex 2n-manifold, n > 1, with 
boundary M. Let X be a continuous vector field, defined and non-singular on 
a neighbourhood of Min W. Then: 

i) If 1J = Vx is a distribution on W by complex lines, with isolated singu
larities and extending the distribution defined by X near M, then 

Ind(X; W) = µ(V; W) + (c1(1J,X) · cn-1(N1J))[W], 

independently of the choice of distribution V, where µ(V; W) is the sum of 
the local indices of1J at the singular points, c1(1J, X) is the Chern class ofV 
relative to X and cn_ 1(N1J) is the top Chem class of the normal bundk of1J. 

ii) Let 1r: W-+ W be as in Theorem (1.b), with n = 2k, then 

Ind(X; W) = µ(V; W) + (ci(D,X) · cn-1(N1J))[W] + Td;[W], 
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where D is a distribution on W with isolated singularities and extending the 
distribution defined by 7r*(X). 

The above integer µ(V; W) is essentially the ~-index of a 2-distribution, 
introduced by E. Thomas in [21] and our Theorem (2) is indeed a refinement 
of his Theorem (1.3). The first part of Theorem (2) is an extension to man
ifolds with boundary of a theorem in [8]. If, in particular, the vector field X 
can be extended to the interior of W being contained in 1J, then c 1 (V, X) = 0 
and Theorem (l.i) becomes the Poincare--Hopfindex theorem for manifolds 
with boundary [16]. The second statement in Theorem (2) is a corollary of 
the first statement and Theorem (1). 

Theorem (2) applies in particular to the case when W is a neighbourhood 
of O in c2n, Xis the germ of a holomorphic vector field in c2n with an isolated 
singularity at O and 71" is an analytic morphism. In this situation (c.f. [5].), 
if the strict transform :F of the holomorphic foliation on W defined by 1r*(X) 
has isolated singularities, then Theorem (2) says , 

- - -
µ(X) = µ(:F; W) + (c1(:F) · c2n-1(N:F))[W] + Td2,i[W], 

where µ(X) is the Milnor number of X, because that number equals the lo
cal index [4,8]. Explicit computations can be done using the techniques of 
§3. Examples of vector fields satisfying these hypotheses are provided by the 
absolutely isolated singularities of [5]. When n is 1, every holomorphic vec
tor field with an isolated singularity satisfies that the strict transform of its 
induced foliation on W has isolated singularities. 

This work grew out of useful visits of the author to the I.C.T.P., in Trieste, 
Italy, and to I.M.P.A., in Rio de Janeiro, Brazil, and he is grateful to these 
inst~tutions for support. and hospitality. Special thanks are due to profes
sors Jacob Palis and Alberto Verjovsky, for many insights into the topology 
of vector fields. 

1. The trivialization P(X) 

Let W be a compact, 2k-manifold with boundary M and trivial (complex) 
tangent bundle TW. We let X be a vector field, defined and non-singular on 
a neighbourhood of M in W. Since TW is trivial, there exists an immersion 
I: W-+ JR.2k, by the theorem ofHirsch-Poenaru [18]. Let 

I* : TW ~ T1R2k = 1R2k X 1R2k' 

be its derivative. 

LEMMA (1.1). The map (}(X): M-+ s2k-l defined by 

T*(X(m)) 
(}(X)(m) = III*(X(m))II' 

has degree r = Ind(X; W). 

mEM, 
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Proof. We can assume X has only one singular point xo in the interior of 
W and we take I to be an embedding near xo, So g extends to W minus a 
disc De around xo; The degree of g on the boundary o(W - De) is 0, because 
g is defined everywhere, but o(W -De) isM union a small sphere aroundx 0, 

with the orientation coming from W. Hence the lemma. 
By Bott's computations [3] one has 1r2k-i(U(k)) = Z, letjk be a smooth 

representativeoftheusualgenerator. ThenJf9(X): M-+ U(k) determines a 
linear transformation on each fibre of TW IM. If a = ( a 1, ... , ak) is a complex 
trivialization of TW, we can twist a over M using the map Jf (}(X), as in 
[12]. The result is a new trivialization of TW IM that we denote by P(X) = 
(pl, ... ,Pk)· Each sectionp1, ... ,Pk can be regarded as a non-singular vector 
field on a neighbourhood of M in W; they all have the same total index in W, 
and this index is the degree of P(X). 

Consider the long exact sequence , 

11 II 11 11 

Z/(k - l)! 0 

By Bott's computations, these groups are as stated above, and therefore 
the map p* is multiplication by (k - 1)!. Hence P(X) has degree r • (k - 1)! 
in W. 

We recall [11] that given an almost complex manifold N with boundary 
Mand a trivialization /3 of TNIM, we have Chern classes of N relative to /3, 
ci(N;/3) E H 2i(N,M), i = l, ... ,k. They map to the usual Chern classes, 
but as relative classes they depend on the choice of /3, generally speaking. If 
the components of /3 are {31, ... , f3k then the top relative Chern class is the 
obstruction for extending one of the /3i's to the interior of N. When N is the 
above manifold W, lemma 1.1 implies ck(W, P(X))[W] = r • (k - l)!, where 
[W] is the orientation cycle. Also, since g extends to W minus a disc, the 
lower Chern classes of W relative to P(X) vanish. We summarize the previ
ous discussion in the following proposition: 

PROPOSITION (1.2). Let W, Mand X be as above. Then, for every triv
ialization a of TW and every immersion I of Win m.2k, the vector field X 
determines (the homotopy class of) a trivialization P(X) of TWIM, and the 
corresponding relative Chem classes ci (W, P (X)) are O for i = 1, ... , k - 1, 
while ck(W, P(X))[W] is (k- 1)! • Ind(X; W). (Independently of the choices of 
I and a.) 
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For example (c.f. [13]), when Wis the Milnor fibre of a complex surface 
singularity, the trivialization P(X) is the canonical framing of [15], up to 
homotopy. 

2. The Todd genus 

Let N be a compact U-manifold of dimension 2k, with a complex tri vializa
tion /3 of TNlaN, its stable tangent bundle restricted to the boundacy. Then 
/3 defines relative Chem classes ci(N; /3) E H'2i,(N, 8N; 7l) as above. Let Tdk 

be the kth Todd polynomial [9]. The Todd genus of N relative to /3 is: 

So it is a rational linear combination of the relative Chem numbers of N. If 
8N is empty, this is the usual Todd genus [9] , otherwise the class of Td[N; ,B] 
in Q/7l is a framed cobordism invariant of (8N, /3), see [6]. 

LEMMA (2.1). Let W be a c.!!_mpact, almost complex 2k-manifold with bound
ary Mand TW trivial. Let W be also alnwst compl,ex with boundary M as U
manifolds. If Xis a vector field as in §1 above and P(X) is the trivialization 
of §1 then: 

Td[W;P(X)] = Td[W;P(X)] mod Z. 

If, moreover, we can take W into W by a finite sequence of alnwst complex blow 
ups and blow downs over the interior ofW, then 

Td[W;P(X)] = Td[W;P(X)]. 

Proof. The first statement is well known [6] and it is a consequen~ of the 
iritegrality of the Todd genus for closed manifolds [9, 1]. The second state
ment follows from the invariance of the Todd genus under blow ups and blow 
downs [9 and 10,p. 51]. 

LEMMA (2.2). Let W, Wand P(X) be as above. Then: 

i) Td[W;P(X)] = qk · (k - 1)! · Ind(X; W), where qk is the coefficient of ck 
in the Todd polynomial Tdk. 

- -
ii) The Chern number ck(W; P(X))[W] is 

- - - -ck(W; P(X))[W] = [(k - 1)! - 1] · (x(W) - x(W)) + (k - l)!Ind(X; W), 

where xis the (Topological) Euler-Poincare characteristic. 

iii) We can express Td[W;P(X)] as 

- - - -
Td[W; P(X)] = qkck(W; P(X))[W] + TdZ[W], 
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where Tdk [W] is the part of the Todd polynomial involving the Chem classes 

ci(W; P(X)), i = 2_, ... , k - 1. Td;_[W] is independent of P(X). In particular 

TdZ [W] = 0 if TW is trivial. 

Proof. The first statement follows from (1.2) above and the definition of 
the Todd genus. Also [14, 15], the relative Chern numbers involving classes 
c1, ... ,ck-l are indeed independent of the choice of the trivialization on the 
boundary, hence statement (iii). Thus, the only new point in (2.2) is state
ment (ii). To prove this we need the following lemma. 

LEMMA (2.3). Let Wand W' be arbitrary compact, snwoth manifolds with 
diffeonwrphic boundary M , let X and Y be non-singular vector fields defined 
on a neighbourhood of M in W and denote also by X, Y the corresponding 
vector fields on a neighbourhood of Min W'. Then 

Ind(X; W) - Ind(Y; W) = Ind(X; W')- Ind(Y; W'). 

This lemma is well known. We include an elementary proof for complete
ness. 

Proof. Let us attach a "collar" M x [O, c), c > 0, to Wand we denote by We 
the resulting manifold, which is diffeomorphic to W, with boundary M x c. 
We put on M x O the unit outwards normal field of M in W, we put the vector 
field X on the boundary M x c and we extend this to a vector field on We with 
finite singularities. Obstruction theory and the theorem of Poincare-Hopf 
for manifolds with boundary [16] tell us 

Ind(X;W) = x(W) +l(X;M*) 

where the last term in this formula is the number of singularities, counted 
with multiplicities, that we have on the collar M x [O, c). Similar arguments 
apply to the vector field Y. The same arguments applied on W' yield 

Ind(X; W') = x(W') + I(X;M*), 

and similarly for Y. Hence 

Ind(X; W) - x(W) 

Ind(Y; W) - x(W) 
Ind(X; W') - x(W'), 

Ind(Y; W') - x(W'), 

and the result follows. . 
Let us return to the proofof (2.2) ii) Ifwe denote by Pl one of the k sections 

that define P(X), then lemma (2.3) implies: 

- -
Ind(p1; W) = Ind(p1; W) + x(W) - x(W). 
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Hence by §1, 

lnd(p1; W) = (k - 1)! · Ind(X; W) + x(W) - x(W) 
- -= (k - 1)! · [Ind(X; W) + x(W) - x(W)] + x(W) - x(W) 

(1 - (k - 1)!) · (x(W) - x(W)) + (k - 1)! · Ind(X; W). 

Statement (ii) now follows because by definition, 

- - -
Ind(p 1; W) = ck (W; P(X) )[W]. 

We are now ready to prove Theorem (1), stated in the introduction. From 
lemmas (2.1) and (2.2) we have 

qk · (k - 1)! · Ind(X; W) = qk { [(k - 1)! - 1] · (x(W) - x(W)) 

+(k - 1)! · lnd(X; W)} + Td;[w] mod z. 

Suppose first that restricted to M the vector field Xis everywhere transversal 
toM, then 

- -
lnd(X; W) = x(W) and lnd(X; W) = x(W), 

by the theorem of Poincare-Hopf for ~ifolds with boundary [16]. The 
above formula becomes qkx(W) = qkx(W) + Tdk[W] mod Z. The first claim 
in Theorem (1) follows from this equation together with lemma (2.3) and the 
fact that for k = 2r even, the coefficient qk of ck in Tdk is [2], 

(-l)k-lBr 
qk = 2r! . 

To prove the second statement in Theorem (1) we observe that in this situa
tion lemmas (2.1) and (2.2) imply 

qk · (k - 1)! · Ind(X; W) = qk { [(k - 1)! - 1] · (x(W) - x(W)) 

+(k - 1)! · Ind(X; W)} + Tdk[W]. 

For k even this means 

Ind(X; W) = Ind(X; W) + qk 1 
• Tdk[W], 

proving Theorem (1). Fork> 1 odd, the coefficient of ck in Tdk is O, by [9], 
thus~e get that the Todd genus Td[W, ,B] is O for every complex trivialization 
of TWIM, as mentioned in the introduction. 
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Example (2.4). Let (V, P) denote a hypersurface germ in c2k+ 1, k > 0, with 
an isolated singularity at P. Let F be a Milnor fibre of P, let 1r : V --+ V be 
a resolution of P and let V c V be a compact tubular neighbourhood of the 
exceptional set 71"- 1(P). Then Theorem (1) says 

od 
2k! 

m Bk' 

which is a weak version ofLooijenga's result [15]. Fork= 1 this is Durfee's 
formula [7], 

µ + 1 = x(V) + K 2 mod 12, 

where K is the canonical class and µ is the Milnor number. For k = 2 the 
formula reads 

where the c/s are !he Chern classes of V relative to a trivialization of the 
tangent bundle of V restricted to its boundary. For k = 3 the formula gives 
a congruence modulo 30240, fork= 4 a congruence modulo 1,209,600, etc. 

Example (2.5). Let (V, P) be a smoothable normal Gorenstein surface sin
gularity (See [15] for the definitions involved), and let V be a resolution of 
P. Then the Euler-Poincare characteristic ofV depends on the choice ofres
olution. The same happens with the self-intersection number K 2. However, 
any two resolutions of a surface singularity can be taken into each other by 
blow ups and blow downs, hence Theorem (1) implies that x(V) + K 2 is in
dependent of the resolution. (This is well known, see [15].) 

3. Blowups 

Let us consider the germ at 0 E ck, k > 1, of a continuous vector field X 
with an isolated zero at 0. We let 71": Li--+~ be the blow up at 0, where~ c 
ck is a small disc around 0. The exceptional divisor is E = 1r- 1(0) = cpk-l. 
We take ~ to be the manifold W of the previous sections. The boundary of 
~, and of Li, is the (2k - 1)-sphere § = §2k-l. Since Hi(§) = 0 for i = 
1, ... , 2k - 2, given any complex trivialization a of T.6.I§, the corresponding 
relative Chern classes ci (Li; a), i = 1, ... , k - 1, are the unique relative classes 
that map to the usual Chern classes of Li. The manifold Li retracts strongly 
to E = cpk- l, hence its Chern classes are essentially the Chern classes of 
TEt:Bv(E), where v(E) is the normal bundle. We recall thatH 2i(cpk- 1;Z) = 
Z for i = 1, ... , k - 1, generated by ti, where t E H 2( cpk- l) is the generator. 
The Chern class of v(E) is C1(v(E)) = -t, while the Chern classes of E are 
given [9] by the polynomial (1 + t)k, with tk = 0. That is, Ci(cpk- 1) is biti, 
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where bi is the coefficient of ti in (1 +ti. By the axioms for Chern classes 
we have, for i = i, ... , k - 1, 

where bo = 1. When k is even Theorem (1) implies 

where 
Td,;[l] = Tdk(c1(Tl), ... ,ck-1(Tl), O)[l] 

by definition. Thus we arrive to the following corollary of Theorem (1): 

COROLLARY (3.1). Let X be (the germ of) a continuous vector field in c2k, 
with an isolated singularity at O , let Ind(X) be its local index at O , and kt 
1r : K --+ ~ be the blow up at 0, where ~ is a small disc around 0. If ti is the 
usual generator of H 2i(cpk-l; Z) = H2i(Li; Z), and bi is the coefficient of ti 
in (1 + t)2k, then 

~ (-l)k-1. 2k! ~ 
Ind(X) = Ind(X, ~) + Bk Td2k(c1, ... ,c2k-1, 0)[~], 

where the c/s, i = 1, ... , 2k- 1, are the unique classes in H2i(l, a.Li; Z) map
ping to (bi - bi-1)ti E H2i(cpk-l; Z), i = 1, ... , 2k - 1. 

Also, (2.3) above implies, 

Ind(X; ~)-- Ind(X, Li)= x(~) - x(Li) = qk 1TdZ[Li] .. 

Since~ is a disc we have x(~) = 1, and Li retracts to cpk-l, so x(~) = k 
and one has, · 

Example (3.2). Let us consider the germ at O E c2 of the linear vector field 

This is the radial vector field, so it has index 1 at O , which is the Euler
Poincare characteristic of a small disc~ around 0. Let us now. perform a 
blow up at 0, obtaining a space Li and a map 1r : Li --+ ~ with exceptional set 
E = 1r-

1(0) = CP 1 embedded in Li with self intersection -1. The adj unction 
formula [7] tells us thatE represents the canonical classK, dual to minus the 
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first Chern class of .6. relative to a trivialization of T.6.la;;:· Hence K 2 = -1 
and 

~ 2 ~ -1 * ~ 1 = Ind(Z;~) = x(~) +K = Ind(Z;~) +q 2 Td 2 [~], 

as it should b~ by Theorem i2). Now pick a point xo in E c Li and blow it up 

obtaining i : .6. --+ ~, then .6. has graph 

-2 -1 

each vertex having genus 0. The exceptional set E__ has two irreducible com

ponents, corresponding to the two vertices, so x(.6.) = 3, and the canonical 
class is K = Eo + 2E1, by the adjunction formula. Hence K 2 = -2 and we 
have 

etc. 

Example (3.3). More generally, consider the linear vector field 

1 0 0 
0 1 0 0 

Z = 0 1 
0 

0 0 0 1 

in en, n > 1. This has index 1 at 0 E en . As above, consider a small 
disc~ around 0, and perform the blow up at 0, obtaining 1r : Li--+~ with 
exceptional set E = 1r- 1(0) = epn-l . The index of Z in Li is the Euler
Poincare characteristic of E, so it equals n. To evaluate the Chern classes of 
Li, relative to some trivialization of its tangent bundle over the boundary, we 
recall that the coefficients of the ti's in (t + 1r are given by Pascal's triangle 
. The corresponding Chern classes are determined by Theorem (2). When 
n = 2 this is the example above. For n = 3 we have: 

bo = 1, 

hence c 1 = 1 and c2 = 0. The Todd polynomial Td 3 is [9]: 

Td 3 = Td3 = 2~c1c2 = 0, 

as it should be since 3 is odd. For n = 4 : 

bo = 1, b3 = 4. 
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Hence, 
c1 = 3, 

the Todd polynomial Td is : 

C3 = -2, 

* 1 2 2 4 -3 
Td4 = 720 (c3c1 + 3c2 + 4c2c1 - c1) = 720 

459 

so that Td 4[Ll] = 3/720, because c1(v(E)) = -t. Since the coefficient q4 of c4 

in Td4 is -1/720 we get: 

1 = Ind(Z; ~) = x(CP 3
) + q4

1Td 4[Ll], 

as claimed in Theorem (2), and so on. 

4. On complex distributions 

In this section we prove Theorem (2). Let W be a compact almost com
plex 2n-manifold, n > I, with or without boundary. Let D be a continuous 
I-dimensional complex distribution on W, with isolated singularities, all in 
the interior of W. By [8,4], if Pis a singularity of D, then D has a well de
fined local index µ = µ(D, P) at P: this is the index at P of a continuous 
vector field on a neighbourhood of Pin W, singular only at P and tangent 
to D. It is shown in [8,4] that this local index is well defined, i.e. it does not 
depend on the choice of the vector field. We let µ(D, W) be the total index ofD 
in W, i.e. the sum of all its local indices. Let TD and ND be, respectively, the 
tangent bundle and the normal bundle ofD away from the singular points. 
The bundle TD has a Chern class c1(D) E H 2(W*; Z), where W* is W mi
nus the singularities ofD. The group H 2(W*; Z) is isomorphic to H 2 (W; Z), 
because D has isolated singularities. Hence c1 (V) can be regarded as a class 
in H 2 (W; Z). ·When W has no boundary, this is the Chern cl,ass of D; when 
W has non-empty boundary M and we are given a vector field X tangent to 
Von M, then the Chern class of V has a representative in H 2(W* ,M; Z), 
which is isomorphic to H 2(W,M;Z). The class c1(D,X) E H 2(W,M;Z) so 
obtained is the Chern class of V relative to the vector field X on M. Similarly, 
the normal bundle ND has well defined Chern classes ci(NV) in H2i(W; Z), 
i = I, ... ,n - 1. If Cn-1(NV) is the top Chern class of ND, then the prod
uct c1(V,X) · Cn-1(ND) lies in H2n(W,M; Z) = Z. The first statement in 
Theorem (2) says : 

r 

Ind(X;W) = Lµi + (c1(D,X) ·Cn-1(ND))[W], 
i=l 

where the sum runs over the singular points P 1, ... ,Pr of D. To prove this, 
let B1, .. . Br be pairwise disjoint balls around P1, .. . P, respectively, and let 
W* = W - Int(B1 U .. U Br), Let Y be a vector field on W*, tangent to D, 
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transversal to the zero section ofV, and such that Y extendsX and it is non
zero on the boundary of the B/s. The zero-locus :Ey of Y in W* is a smooth 
submanifold of W*, representing c 1 (V, X). Similar~.y, let y+ be a vector field 
on W*, orthogonal to V and transversal to the zero-section of NV; the zero
locus :Ey+ ofY+ is a smooth submanifold ofW* representingcn_ 1(NV). We 
may assume that :Ey and :Ey+ intersect transversally, hence 

by duality. Let us extend Y to the interior of the Bi's tangent to V. The local 
index of Y at each Pi is µi. Similarly, extend y+ to the interior of the B/s 
being normal to V; multiplying y+ by an appropiate continuous function 
¢ : W -+ [O, 1), we obtain a vector field Y/, which is the same as y+ away 
from a neighbourhood of &W*, but Y/ vanishes onM and neartheP/s. Then 
define w(x) = Y(x) + Y/(x). So '11 agrees with X on M, hence Ind(X; W) = 
Ind(w; W). The local indices of '11 at the P/s are the µ/s, and the remaining 
singularities of '11 on Ware_ the points where both vector fields Y and y+ 
vanish . Hence 

r 

Ind(w; W) = I: µi + :Ey. :Ey+, 
i=l 

and we arrive to Theorem (2). 
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