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PRODUCT FORMULAS FOR QUADRATIC FORMS 

BYDANIELB. SHAPIRO AND MAREK SZY"JEWSKI 

Dedicated to the memory of Professor Jos~ Adem 

A product formula of size (r,s, t) over a field Fis a formula of the type 

where each zk is a bilinear form in the sets of indeterminates X, Y with co
efficients in F. Throughout this work we assume that the coefficient field F 
has characteristic not 2. It is a well-known open problem to determine the 
possible sizes (r, s, t) for such families. In 1898 Hurwitz [Hul] formulated 
the problem in terms of matrices and proved that a formula of size ( n, n, n) 
can exist over the complex field (C if and only if n = 1, 2, 4 or 8. In the 
1920's Hurwitz [Hu2] and Radon [Ra] settled the question for formulas over 
(C of sizes (r,n,n). The matrix technique used by Hurwitz can be extended 
to establish the same results for any coefficient field F. See [Shl], [Sh3] for 
further details. 

The existence of a product formula can be restated in a more geometric 
framework. Let p, er, r be the sums-of-squares quadratic forms on the vector 
spacesFr,Fs ,Ft, respectively. Then there is a product formula of size (r, s, t) 
over F if and only if there is a bilinear map 

satisfying the formula 

p(x) • cr(y) = r (f(x,y)) 

In 1940 Stiefel [St] and Hopf [Ho] used this formulation to analyze such for
mulas over the field JR of real numbers. 

THEOREM (Stiefel, Hopf). If there exists a product formula of size (r, s, t) 

over JR then the binomial coefficient ( : ) is even whenever t - s < i < r. 

For example it follows that no formulas of sizes (3, 5, 6) or (5, 9, 12) or (6, 
10, 13) can exist over JR. Since the present work is an attempt to generalize 
Hopfs proof: we present an outline of his ideas, suppressing the details. The 
given bilinear map f : JRr x 1R8 

----t ]Rt satisfies the norm condition llxll · llYII = 
llf(x,y)II- (Here llxll denotes the euclidean norm of x E JRr.) This map f 
induces a map on the real projective spaces 

f : IF7"-l X ~-1 ----t p[-1, 
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and hence a map on the corresponding cohomology rings. Let H(X) denote 
the cohomology ring of a topological space X, with 7l/27l coefficients. Then 
H(X x Y) ~ H(X) ® H(Y) and H(wt- 1) ~ Z[r]/(2, rt) where the class [T] 
represents the fundamental 1-cocycle. The induced cohomology ring homo
morphism then becomes 

* Z[r] 7l[R] Z[S] 
f : (2, rt) -+ (2, Rr) ® (2, S8 ). 

Since f* arose from a normed, bilinear map it follows that f* ( [r]) = [R] ® 1 + 
1 ® [ S]. Therefore 

o = f*([T]') = ([Rl 0 1 + 10 [SJ)' = L ( ~ ) [Rl; 0 [s)'-i, 

and hence ( ! ) = 0 in Z/2'11, whenever i <rand t - i < s. This completes 

our sketch of the proof. 
Hopf actually proved a stronger result where the norm condition on f is 

replaced by the hypothesis that f be "nonsingular". That is, we assume only 
that if f(x,y) = 0 then either x = 0 or y = 0. (The bilinearity condition can 
also be weakened.) Since the 1940's a number of topological tools have been 
applied to obtain further results for formulas over JR, but only a few of these 
results are known over more general fields. In 1939 Behrend [Be] used ideas 
fro~ real algebraic geometry to extend the Stiefel-Hopf result to general real 
closed fields. In 1984 T.-Y Lam and K.-Y Lam observed that the Stiefel-Hopf 
condition remains true for product formulas over any field F of characteristic 
0. This was done by reducing to the case F = (C, noting that from a product 
formula of size (r, s, t) over (C one can produce a nonsingular bilinear pairing 
of size (r, s, t) over :W., and applying Hopf s result. See [Shl]§3 for the details. 

Pfister's theory of multiplicative quadratic forms can also be applied to 
analyze product formulas over a field F. With this approach we can show 
that if there is a product formula of size ( r, s, t) over F and if the quadratic 
form t(l) = (1, 1, ... , 1) is anisotropic over F, then the Stiefel-Hopf condi
tions must hold. See [Shl]§4 for the precise statements. Unfortunately this 
argument is worthless over a field F of positive characteristic since t(l} is 
isotropic over such F whenever t > 2. 

There are three results about product formulas which are known to be 
valid for fields of any characteristic =/= 2. These are: 

(1) The Hurwitz-Radon Theorem for sizes (r, n, n ). 

(2) Adem's Theorem for sizes (r,n - 1,n). 

(3) Yuzvinsky's Theorem for sizes (4,n - 2,n). 
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For (1) see [Shl]; for (2) see [Adl], [Ad3], [Sh2]; for (3) see [Yu], [Ad2]. It is 
tempting to conjecture as in [Shl] (3.8) that the existence of product formulas 
of size ( r, s, t) is independent of the field F. 

In the present work we apply the machinery of Chow rings to find another 
proof that the Stiefel-Hopf criterion is valid in characteristic O and to find a 
weakened version of that criterion which is valid in characteristic p. In fact, 
these results are valid for arbitrary quadratic forms, not just for the sum-of 
squares forms. 

The Chow ring of a quasiprojective variety is a notion from classical al
gebraic geometry which codifies some of the properties of intersections of 
subvarieties. The Chow ring methods can be viewed as a generalization of 
combinatorial arguments dealing with degrees and roots of polynomials in 
one variable. The proof of our Theorem is modelled after Hopf s original 
proof, replacing the cohomology ring by the Chow ring. As one concrete con
sequence of this work we deduce that a product formula of size (5, 9, 12) is 
not possible over any field. 

1. Nonsingular pairings 

We use here the simplest parts of the Chow ring technique described briefly 
in [Ha]§I.7 and Addendum A, although we refer to the monograph [Fu] as 
well. 

For an arbitrary field F we denote by Fwin- 1 the set of lines in the vector 
space Fn. Then Fwin- 1 is the set of rational points of the projective space 
IPj,-1, which is the scheme 

Proj F[x1,x2, ... ,xn]-

In order to investigate a bihomogeneous polynomial map 

f : Fr X Fs --+ Ft 

our basic strategy is to pass to the induced map 

f: FJIDr-1 X F~-1--+ F~-1, 

and then lift this to a morphism of schemes 

f # : ~-1 X IPj;,-1 --+ IIJl~-1 

to obtain a homomorphism of the correspo~ding Chow rings. However these 
induced maps might fail to exist. In fact, f exists if and only if f is a "non
singular" map in the sense defined above. Similarly f # exists if and only if f 
is nonsingular over every algebraic extension field of F. 

Examples (1.1). (1) Ift = rs there is a standard nonsingular bilinear map 
f given by 

f ((x1, ... ,xr), (y1, ... ,Ys)) = (X1Y1,X1Y2, ... ,X1Ys, ... ,XrYs). 
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This f does yield well-defined maps f and f#, providing the classical Segre 
immersion [Ha] Exer. I.2.14. 

(2) There is an ancient formula for a product of sums of two squares: 

(x5 + xy) · (y5 + YI) = (xo.Yo - X1Y1)2 + (xo.Y1 + X1Yo)2. 

Let f : F 2 x F 2 - F 2 be the corresponding map: 

f ((xo,x1), (Yo,Y1)) = (xo.Yo - X1Y1, Xo.Y1 + XJYo). 

The induced map f exists only if the fo~ ( 1, 1) is anisotropic over F. For 
if F contains a square root i of -1, then f is not defined at the two points: 
((1 : i), (1 : -i)) and ((1 : -i), (1 : i)). Even if the form (1, 1) is anisotropic 
over F this map f does not define a morphism f # on the projective spaces. 
In this case the closed subscheme 

Xo.Yo - X1Y1 = xQY1 + XJYo = 0 of IF} x IF} 

consists ofone closed degree two point with residue class fieldF(i). (To com
pute the residue field of this point one may restrict to the product of affine 
lines xo f O and Yo f O and putt = xif xo and u = Yi/Yo• The point under 
consideration has the equations 1 + tu = t + u = 0, and its residue field is 
F[t, u]/(1 - tu, t + u) == F[t]/(1 + t2) == F[i].) 

Our first application of the Chow ring technique is to determine when a 
morphism like f # can exist. 

PROPOSITION ( 1.2). Suppose g : IPYF 1 x JP1;,-1 - ]IJIF-l is a polynomial mor
phism of schemes. If t < r + s - 1 then g is constant with respect to at least 
one of the variables x E IF;,-1 or y E JP1;,-1. 

Proof. The morphism g defines a graded ring homomorphism of the Chow 
rings 

g* : A* (IF~-l) - A* (IFF-l x IfDp,-l), 

([Ha] Add. A §1, or [Fu] §8.3). This ring A *(JFp, )is isomorphic to Z[u]/(un+l) 
as a graded ring, where the coset [ u] has degree 1 and corresponds to the class 
of a hyperplane. Furthermore the coset of uk corresponds to an intersection 
of k hyperplanes in general position, so it is the class of a linear subvariety 
of dimension n - k ([Ha] Add. A, Example 2.0.1 or [Fu] Example 1.9.3). We 
introduce indeterminates R, S, T such that 

Taking products of cycles induces a graded ring isomorphism 
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as in [Fu] Example 8.3. 7 (see also [Ha] Add. A, §2 Al 1). Under this isomor
phism [R] © 1 corresponds to the class of 

(hyperplane in lF~- l) x ~- l 

while 1 © [S] corresponds to the class of 

nrp-1 x (hyperplane in ~- l) 

and both are homogeneous of degree one. Since g* preserves degrees of ho
mogeneous elements of Chow rings, there are integers a, b such that 

g*([T]) =a· ([R] © l) + b · (l © [S]). 

CLAIM. a is the degree of g as a homogeneous function of x E wi;-1 and b 

is the degree of g as a homogeneous function of y E nrp-1. 

The identity [T]i = 0 inA*(rrrt- 1) yields 

0 = g* ([Tf) = (a • ([R] 0 1) + b • ( 10 [SJ)/ = L ( ~ ) aibt-i[]t] 0 (st-i] 

in Z:[R]/(Rr) © Z:[S]/(S 8
). Since t < r + s - lat least one of the terms [Ri] © 

[st-i] must be nonzero, so that either a = 0 orb = 0. Using the Claim we 
conclude that g must be constant in one of the variables. 

To prove this Claim consider an arbitrary rational point P of nrp-1 and the 
regular imbedding (c.f. [Fu] §B.7.1): 

• . mr-1 xP mr-1 p ~ mr-1 mS-1 
1, • i.rF ---+ JYF X ---+ JYF X JYF · 

Then (go i)*([T]) = i* o g*([T]) is the intersection of g*([T]) with wi;-1 x P 
regarded as a class of cycles on lF~-l ([Fu] §6.1). Since [P] = (S8

-
1], we have 

[JF~-l x P] = 1 © (ss- l] and hence 

(go i)*([T]) = (a[R] © 1 + b © [S]). (1 © [S8
-

1]) = a[R]. 

On the other hand, denote by ( z 1 : z2 : ... : Zt) the homogeneous coordinates 
in ~- l and choose a hyperplane H defined by the equation 

a1z1 + a2z2 + ... + atZt = 0 

as a representative of the class [T]. If (g1 : g2 : ... : gt) denotes the homoge
neous coordinates of g, then (go i)*([T]) is the class of the Weil divisor 

a1g1 (x, P) + a2S2(x, P) + · · • atgt(x, P) = 0, 
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unless g(nr"p1 x P) lies inside H ([Fu] §2.2). Note that Weil divisors and 
Cartier divisors are the same thing in this case ([Ha] Prop. II.6.11). Of 
course the variety g(W:,-l x P) cannot be inside all such hyperplanes H be
cause their (set-theoretical) intersection is empty, so one may choose H to 
be proper. Therefore the number a equals the degree of that divisor ([Ha] 
Exer. II.6.2), which is simply the common degree of the gi as homogeneous 
functions of x. The value of b follows analogously and the Claim is proved. D 

From Proposition (1.2) we can determine when nonsingular bilinear maps 
exist over an algebraically closed field F. Recall that f : Fr x F 8 -+ Ft is 
nonsingular if f(x,y) = 0 implies x = 0 or y = 0. One easy example of a 
nonsingular bilinear map fo : Fr x F 8 -+ Fr+s- l is given by the expansion of 
the product 

(xo +x1T + · · · +xr-1Tr-l) ·(Yo+ Y1T + · · · + Ys-1Ts-l) 

in the polynomial ring F[T]. Therefore there certainly exist nonsingular bi
linear maps of size (r, s, t) whenever t ~ r + s - 1. 

COROLLARY (1.3). Assume that F is algebraically closed. There exists a 
nonsingular bilinear map f : Fr x F 8 -+ Ft if and only if t ~ r + s - 1. 

Proof. Assume t < r + s - 1. The nonsingularity implies that f defines 
the map f mentioned at the start of § 1. Suppose f induces a morphism 
f # : IID;-1 x IID8F 1 - wF-l. Then Proposition 1.2 implies that f must be 
constant with respect to one variable. Since f is bilinear it must equal zero, 
contrary to the nonsingularity. Therefore f cannot define a morphism of 
schemes, and the subscheme of IID_p,-1 x IP'}-1 defined by putting all homoge
neous coordinates off equal zero must be nonempty. Since Fis algebraically 
closed Hilbert's Nullstellensatz implies that this subscheme contains a ra
tional point. But then f is not defined at this point of Fpr- l x FIID8-1, a 
contradiction. • 

This result was proved over !.C in [Sm] using the cohomology of complex 
projective spaces. We can also deduce the Corollary (for any algebraically 
closed F) from a dimension calculation given in [We] Theorem 2.1: Suppose 
s :St and let S(t,s) be the set of singular t x s matrices over F (here a matrix 
is singular if its rank is< s). Westwick showed that S(t, s) is an irreducible 
subvariety of Mtxs(FJ of codimension t - s + 1. For a map f as in Corollary 
1.3 the induced map f : Fr ---+ Mtxs(F) carries Fr injectively to a subspace 
which meets S(t,s) only in 0. Therefore r :S codim S(t,s) = t - s + 1, as 
claimed. 

2. Product formulas for anisotropic forms 
We shall investigate another type of condition on the map f : Fr x F 8 -+ Ft. 

No confusion should arise between the notion of "nonsingular" maps defined 
above and the usual notion of nonsingular quadratic forms. 
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Consider three nonsingular quadratic forms p, u, r over F of dimensions 
r, s, t, respectively. We now consider bihomogeneous polynomial (hence bi
linear) maps f : Fr x F 8 

- Ft satisfying the following product formula: 

p(x) · u(y) = T (f (x,y)) for x E Fr, y E F 8
. 

Such a map certainly exists when r:::: p ® u. As in Example (1.1)(2) such a 
map f might not define a morphism on the product of projective spaces. How
ever it does induce a morphism on the open subscheme of~- l x ~- l defined 
by the condition that at least one homogeneous coordinate off (x,y) does not 
vanish. To fix notations letX, Y, Z be the quadrics in ~- 1, ~-land JP>j;,-1 

defined by the forms p, u, r respectively, and denote by A, B, C the open com
plements to X, Y or Zin the corresponding projective spaces. The product 
formula implies that points of irregularity (i.e. where all the coordinates van
ish) of the rational map f # must lie inside the subvariety X x ~- l U ~- l x Y 

of the product ~- l x ~- l. We shall derive information on f fro~ the induced 
morphism of schemes f#: Ax B - C, and its action on Chow rings. 

The following computation of the Chow ring A *(A) is easily deduced from 
Lemma 13.4 of[Sw], but we give a more elementary proof here. 

PROPOSITION (2.1). Let A be the open, complement of the quadric X defined 
by the equation p = 0 in ~- 1. If the quadratic form p is anisotropic, then 
A*(A):::: Z[R]/(Rr,2R). 

Proof. By [Fu] Proposition 1.8 or [Ha] Add. A, §2 A.10 the following se
quence of Chow groups is exact: 

The middle arrow here is the graded ring homomorphismj* induced by the 
inclusion morphismj: A- JP>F-l' sothatA*(A) isafactorringofA*(~- 1):::: 

Z[R] / (Rr). The left arrow is a group homomorphism which shifts the grading 
up by one. It carries the eiemen.t 1 e A *(X) to the class [X] of the subvari-
ety X in Wp,-1. Here [X] _is in A 1(JP>F-1); which is, by definition, the group of 
classes of Weil divisors ([Fu] §2.1). By [Ha] Proposition II.6.4 we find that 
[X] = 2[R] where [R] is the class of a hyperplane. Therefore 2[R] is in the 
kernel ofj* (compare [Fu] Example 1.9.4). To show that this kernel is the 
principal ideal generated by 2[R] it is enough to show that 

j* (class of a rational point) =j*([Rr-l]) is nonzero. 

To do this let us consider the exact sequence 
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By definitionAr- 2 (X) andAr- 1(IP>p,-1) are factor groups of the free abelian 

groups generated by the closed points of X and IP>p,-1, respectively ([Fu] § 1.3 
or [Ha] Add. A, §1). The left arrow in that sequence is induced by the inclu
sion map of sets of closed points ([Fu] § 1.4, a closed immersion is a proper 
morphism, see [Ha] Corollary II.4.8). The degree of a closed point is the de
gree of its residue class field over the field F: 

deg(P) = (F(P) : F) 

(see [Fu] Definition 1.4 and [Ha] §I.7). Two closed points P and Qin ~-l 

have equal images in A* (IfDF-l) if and only if they have equal degrees ([Fu] 
§8.4). The essential step is that under the assumption that the form pis 
anisotropic, all closed points inside X have even degrees. In fact the coordi
nates of such a point P define a nontrivial zero of p, sop becomes isotropic 
over the residue class field F(P), and Springer's Theorem ([Sch] Ch. 2 Theo
rem 5.3) implies thatF(P) has even degree over F. Therefore the class [Rr-l] 
of a rational point is outside the image of the map A *(X) -A *(IfDF-l ). D 

To continue with the analog of the argument of Hopf we must compute 
A*(A x B). 

PROPOSITION (2.2). Continue the notations for p, a, X, Y, A, B as ahove. If 
the forms p and er are anisotropic then 

A*(A x B) ~A*(A) 0zA*(B). 

Proof. Ifis known that for an arbitrary variety S, the product map 

x : A *(S) 0zA *(IfD72) -A *(S x IfD'2) 

is an isomorphism of graded rings ([Fu] Examples 8.3.4 and 8.3. 7, see also 
Theorem 3.3(b); or [Ha] Add. A, §2 All). We have again the exact sequence 
of [Fu] (1.8): 

A*(A x Y) -A*(A x IPj,-1) -A*(A x B) - 0 

which is built from the following exact sequences in each degree i: 

Ai-l(A x Y) -Ai(A x IPj,-1) -Ai(A x B) --t 0. (*) 

Therefore A *(A x B) is a factor ring of Z[R]/(Rr, 2R) 0z Z[S)/(S 8
) by some 

ideal which contains 2 0 [S) = 10 2[S], the class of Ax Y inA*(A x IPj,-1). 

To complete the proof we need only show that 

10 [S)i, [R) 0 [S)i-l, [R)2 0 [S)i- 2 , ... , [R]i 0 1 
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are linearly independent over 7l./27l. for each i > 0. If there is a dependence 
relation 

[R]k 0 [S]i-k + [Rr 0 [S]i-m + ... = 0, 

we may multiply it by [Ry-k-l ® [S]s-i+k-l to deduce that the class of the 
rational point vanishes: 

[Rt-1 0 [S]s-1 = 0 

in the groupAr+s- 2(A x B). To show that this is impossible, put i = r + s - 2 
in the sequence (*) above to obtain: 

Ar+s- 3(A X Y) --+Ar+s- 2(A X JP}-1) --+Ar+s- 2(A X B)--+ 0. 

The middle group is 7l./27l. with generator [Ry- 1 0 [SJ5 -
1. This generator 

corresponds to the class of a rational point on A x JID}-1, since r + s - 2 = 
dim(A x lP}-1). So we have to show that no closed point of A x Y is a rational 

point of A x JP}-1, or equivalently that A x Y has no rational points. This is 
so since the image 1r(P) of a rational point P E A x Y under the projection 
1r: Ax Y--+ Y must be a rational point ofY, while Y has no rational points 
(the form er is anisotropic). D 

Now we can deduce the Stiefel-Hopf condition whenever there is a product 
formula for anisotropic forms. 

THEOREM (2.3). Suppose p, er, rare anisotropic quadratic forms over F with 
dimensions r, s, t respectively. If there exists a bilinear map f : Fr x F 5 ---+ Ft 
satisfying the product fomiula: 

p(x) · er(y) = r (f(x,y)) for x E Fr, y E F 5
, 

then the binomial coefficient ( ~ ) is even whenever t - s < i < r. 

Proof. Using the notations above, this f induces a morphism of schemes 
f# : A x B --+ C, with its associated graded ring homomorphism f* : 
A* ( C) --+ A* (A x B). For the Weil divisor [T] in A 1 ( C) we have f* ( [T]) = 
[R] 0 1 + 1 ® [S] as in the proof of Proposition (1.2) (with coefficients in 
7l./27l. as follows from Propositions (2.1) and (2.2)). Applying f* to the iden-

tity [T]t = 0 we obtain L ( f ) [R]i 0 [SJ1-i = 0 in the ring A*(A x B) ~ 
7l.[R]/(Rr, 2R) ®z 7l.[S]/(S5

, 2S). This immediately yields the assertion. o 

3. The isotropic case 

When the quadratic forms p, er, rare isotropic these Chow rings are more 
difficult to compute. We find the answer by quoting some results of Swan. 

If pis a (nonsingular) quadratic form over F let w(p) denote the Witt index 
of p. That is, w(p) is the dimension of a maximal totally isotropic subspace 
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of p. 

PROPOSITION (3.1). Let A be the open complement of the quadric X defined 
by the equation p = 0 in JID~-1. Then A *(A)==== Z[R]/(Rr-w(p), 2R). 

Proof. We continue with the ideas used to prove Proposition (2.1). Since 
dim X = r - 2 we apply Lemma 13.4 of [Sw] to conclude that, up to torsion, 
Ai(X) is generated by one cycle of degree two for i = 0, 1, ... , r - w(p) - 2, 
andAi(X) is generated by (one or two) cycles of degree one for i = r- w(p)-
1, ... , r - 2. Recall that for projective space the degree map furnishes an 
isomorphismAi(Ipi~- 1):::: Z. Therefore in the exact sequence 

the left arrow is an epimorphism for i ~ r - w(p) and is an injection onto the 
subgroup of index 2 for i < r - w(p). Therefore 

Ai(A) ==== { Z/22 for i = 0, ~' ... , r - w(p) - 1 
0 for 1, ~ r - w(p) 

The stated ring structure quickly follows. D 

PROPOSITION (3.2). Continue the notations for p, a-, X, Y, Z, A, B as above. 
Then 

A*(A x B) ::::A*(A) @zA*(B). 

Proof. The argument proving Proposition (2.2) applies the same way here. 
D 

THEOREM (3:3). Suppose rho, a-, r are quadratic forms over F with dimen
sions r, s, t, respectively. Let ro = r - w(p) where w(p) is the Witt index of p 
and similarly define so and to. If there exists a bilinear map f ·: Fr xF 8 ~ Ft 
satisfying the product formula: 

p(x) · a-(y) = T (f(x,y)) for x E Fr, y E F 8
, 

then the binomial coefficient ( t? ) is even whenever to - so < i < ro. 

Proof. Imitate the proofof Theorem (2.3). D 

As one consequence we see that a product formula of size ( r, s, t) = ( 5, 9, 12) 
is impossible over any field ( with characteristic f:. 2). On the other hand 
product formulas of size (6, 10, 13) are impossible in characteristic 0, but it 
is unknown whether they are possible over fields of positive characteristic. 
The reader is invited to investigate further small examples of these types. 
Further numerical properties of the original Stiefel-Hopf criterion and this 
weaker version for isotropic forms are studied in [Sh3]. 
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Remark (3.4). The results above can be immediately extended to a "com
posed product formula" {t 1, ... , r}. Here each ti is a formula defined on an 
open subscheme Ui, where { Ui} forms a cover of A x B, and the maps fi are 
compatible in the sense that 

(tf (x,y) : ... : r/(x,y)) = (t{ (x,y) : ... : r{ (x,y)) 

whenever both ti and ti are defined at the point ( x, y). This extension is done 
by the usual method of defining morphisms of quasi-projective varieties, and 
all we need for the proof is a morphism of such a variety. The results can 
be extended further to the case when the components of the ti's are rational 
functions of degree 1 defined in the whole open subset Ui. (The degree of 
a rational function is the degree of the numerator minus the degree of the 
denominator.) Only some technical tricks with degrees of divisors are needed 
to show that f*([T]) = [R] 0 1 + 10 [S]. 

However using these methods we cannot say anything about composed 
product formulas with independent (not necessarily compatible) parts. These 
sorts of formulas arise from identities 

a-(x) · p(y) = r (t(x,y)) 

where t ( x, y) is a rational function in the in determinates in x and y. See [Sh 1] 
§4 for a discussion of such "rational compositions". 
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