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ON EQUIVARIANT COHOMOLOGY 

BYE. SPANIER 

1. Introduction 

In a previous paper [5] machinery was developed for establishing isomor­
phism theorems (and n-equivalences) in ordinary cohomology. This machine­
ry is based on a result called the uniqueness theorem in [5,6] and the compar­
ison theorem in [7]. 

In the present paper a similar machinery is developed for equivariant coho­
mology on G spaces. The corresponding comparison theorem can be applied 
in situations similar to those where the original theorem for ordinary coho­
mology applies. 

Our presentation is an elementary exposition of the subject. We present 
only one application of the comparison theorem. This is a simple proof of a 
Vietoris-Begle-like theorem for the Borel equivariant cohomology theory (a 
result proved in [ 4] by use of spectral sequences). Hopefully there will be 
other interesting applications of the comparison theorem. 

The rest of the paper is divided into three sections. In Section 2 we sum­
marize some properties of G spaces. In Section 3 we define equivariant coho­
mology theories. There is a bijection between equivariant cohomology theo­
ries on a G space X and ordinary cohomology theories on the quotient space 
X/G. Thus, the comparison theorem for equivariant cohomology theories is 
deduced from the comparison theorem for ordinary cohomology. 

In Section 4 we define the Borel equivariant cohomology theory on the cate­
gory ofparacompact G spaces by a limiting procedure and deduce the Vietoris­
Begle-like theorem for this cohomology from the comparison theorem. 

In the sequel G will denote a compact topological group. 

2. G spaces 

In this section we recall some basic properties of G spaces, the main one 
being that a G space X is paracompact if and only if the quotient space X / G 
is paracompact. 

AG space is a topological space X togethe~ with a continuous map 

µ:GxX---+X 

such that: 
1) µ(e, x) = x for all x EX where e is the identity element of G, 
2) µ(9192, x) = µ(91, µ(92, x)) for 91, 92 E G, x EX. 
If we denote µ(9, x) by 9x, then 1) becomes ex = x for all x E X and 2) 

becomes the "associativity" (9192)x = 91(92x) for 91, 92 E G, x EX. From 1) 
and 2) it follows that x f---+ 9x is a homeomorphism of X onto itself for every 
9 E G (with inverse x f---+ 9- 1x). 

If Xis a G space, a G set A c Xis a subset such that µ( G x A) c A (i.e. 
9a E A for 9 E G, a EA). Then A together withµ I G x A : G x A---+ A is a 
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G space called a G subspace of X. Since x 1--+ gx is a homeomorphism for each 
g E Git follows easily that if A is a G set so are A and intA. 

Let p: X--+ X/G be the canonical projection of X onto the space of orbits 
of G in X topologized by the quotient topology. It is clear that A c X is a G 
set if and only if A= p- 1(A') for some A' c X/G, in which case A= p- 1 (pA). 
Thus, p induces a bijection between G sets in X and subsets of X/G (with 
inverse p- 1 from subsets of X/G to G sets in X). , 

Since G is compact, for every open neighborhood U of a G set A c X there 
is an open G set V in X with A c V c U. It follows that the projection 
p : X --+ X/G is an open and closed continuous map. If Xis Hausdorff, it 
follows that p is a perfect map (see the definition on p. 236 of [2]). Therefore, 
by 3.7.20 of [2], X/G is also a Hausdorff space, and, by 5.1.33 and 5.1.35 of 
[2], Xis paracompact if and only if X/G is paracompact. 

3. Equivariant cohomology 

For G spaces equivariant cohomology is a natural generalization of ordi­
nary cohomology. This-section contains the relevant definitions for equivari­
ant cohomology and the comparison theorem for homomorphisms between 
two equivariant cohomology theories on the same G space. 

If Xis a G space, clG (X) will denote the category of closed G sets in X and 
inclusion maps between them. In case G is the trivial group, clG (X) = cl(X) 
is the category of all closed sets in X. 

A G equivariant cohomology theory H, 6 on a G space X consists of: 
i) a contravariant functor H from clG (X) to the category of graded abelian 

groups (H(A) = {Hq(A)}qEZ) such that H(0) = 0, and 
ii) a natural transformation 6 which assigns to every A, B E clG ( X) a ho­

momorphism of degree 1 

6 : H(A n B) --+ H(A u B) 

such that both of the following are satisfied: 

Continuity. For every A E clG ( X) the homomorphism 

p: lim{Hq(B) I Ba neighborhood of A in clG(X)}--+ Hq(A) 
+--

defined by p{ u} = u I A for u E Hq ( B) is an isomorphism. 

MV Exactness. For every A, BE clG(X) the following sequence is exact 

6 o: {3 6 o: 
.. -~Hq(A u B) ~Hq(A) EB Hq(B) ~Hq(A n B) ~nq+l(A u B) ~ ... 

whereo:(u) = (u I A,u I B) foru E Hq(AuB) and,B(u, v) = u I AnB-v I AnB 
for u E Hq(A), v E Hq(B). 

The equivariant theory is nonnegative if Hq(A) = 0 for all q < 0 and all 
A E clG ( X). It is said to be additive if for every discrete family {A;}; EJ in 
clG ( X) the homomorphism 

u : Hq (ujEJ A;) --+ II;EJ Hq (A;) 
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defined by u( u) = { u I Ai }jEJ for u E Hq (ujEJ A;) is an isomorphism. It is 
weakly additive if for every discrete family {A; }jEJ in clG (X) and for every 
u E Hq (ujEJ A;) there is some finite subset F c J such that u I Ujff.FA; = 0. 
This implies there is an isomorphism 

so the definition above is equivalent to the one in [7]. 
A cohomology theory H, 5 on Xis defined to be a G equivariant cohomology 

theory for G equal to the trivial group. It follows that there is a bijection 
between G equivariant cohomology theories on X and cohomology theories 
on X/G induced by the obvious isomorphism between the categories cla(X) 
and cl(X/G). This bijection preserves nonnegativity and additivity or weak 
additivity (because discrete families in clG (X) correspond to discrete families 
in cl(X/G)). 

Example (3.1). If G' is a closed subgroup ofG and Xis a G space then Xis 
also a G' space and cla(X) c clG,(X). Thus, every G' equivariant cohomology 
theory on X determines by restriction a G equivariant cohomology theory on 
X. 

Example (3.2). Let X be a G space where G is a compact Lie group and let k 
be a covariant coefficient system for G over a ring R [3]. For A E clG ( X) define 
Hq(A) = H~q(X,X- A;k) (equivariant singular homology with coefficients 
k [3]). With a suitable definition of 5 this is a weakly additive G equivariant 
cohomology theory on X (not usually nonnegative). 

Example (3.3). Let EG be any compact Hausdorff G space. If X is a para­
compact G space, defirie Hon X by Hq(A) = Hq((A x EG)/G; R) (Cech co­
homology with coefficients R of the quotient space of A x EG by the diagonal 
action of G) for A E clG ( X). With a suitable definition of 5 this is a nonnega­
tive additive G equivariant cohomology theory on X. (Xx EG is paracompact 
by 5.1.36 of [2] so (Xx EG )/G is paracompact. If A is a closed G set in X the 
compactness of EG implies that every closed neighborhood of ( A x EG) / G in 
( X x EG) / G contains a closed neighborhood of the form ( N x EG) / G where 
N is a closed neighborhood of A in X which is a G set.) 

A homomorphism of degree o, cp : r ---+ r' between graded abelian groups 
is called an n-equivalence if cp : ri -+ r'i is an isomorphism for i < n and a 
monomorphism for i = n. 

If H, 5 and H', 51 are two G equivariant cohomology theories on the same 
G space X, a homonwrphism cp : H, 5 -----+ H', 51 consists of a natural transfor­
mation from H to H' (both being functors on clG (X)) which commutes up to 
sign with 5, 51

• Because of the bijection between G equivariant cohomology 
theories on X and cohomology theories on X / G the comparison theorem for 
cohomology theories [7] translates to the following comparison theorem for G 
equivariant cohomology theories. 



522 E. SPANIER 

THEOREM (3.4) Let cp : H, 6 --+ H', 61 be a homomorphism between G equiv­
ariant cohomology theories on the same G space X both of which are additive 
or both are weakly additive. Suppose there is n such that cp A : H (A) --+ H' (A) 
is an n-equivalence for every orbit A in X. If both H, 5 and H', 51 are nonneg­
ative or if X/G is locally finite diinensional"then 'PA : H(A) --+ H'(A) is an 
n-equivalence for all A E clG ( X). • 

4. The Borel cohomology theory 

In this section we use the comparison theorem of the last section and the 
construction in Example (3.3) to define the Borel chomology theory, a par­
ticular Cech-like G equivariant cohomology theory on every paracompact G 
space where G is a compact Lie group. The main result of the section is a 
mapping theorem for Borel cohomology theory which generalizes a result of 
Kosniowski. 

For a compact Lie group G there is a sequence E1 c E2 c • • • of path 
connected compact G spaces such that En is an n-universal fibration over 
Bn = En/G [8]. Then 1ri(En) = 0 for 1 ~ i < n. From the exactness 
of the homotopy sequence of a fibration and the "5-lemma" it follows that 
1ri(Bn) --+ 1ri(Bn+1) is an isomorphism for i ~ n. 

Let X be a paracompact G space and consider (Xx En)/G. This has a 
natural projection to En/ G = Bn. This projection 

Pn: (Xx En)/G--+ Bn 

is a fibration with fiber X (see 1.3 on p. 50 of [1]). Again using the exactness 
of the homotopy sequence ofa fibration and the "5-lemma" it follows that the 
natural map 

(Xx En)/G c (Xx En+1)/G 

induces a homomorphism 1ri((X x En)/G) --+ 1ri((X x En+1)/G) which is an 
isomorphism for 1 ~ i < n and an epimorphism for i = n. Therefore, ((Xx 
En+1)/G, (Xx En)/G) is n-connected so that, in singular cohomology with 
integer coefficients, 

Hi((X x En+1)/G)--+ Hi((X x En)/G) 

is an isomorphism for 1 ~ i < n and a monomorphism for i = n. In particular, 
if A is an orbit of G in X, then 

H*((A x En+1)/G)--+ H*((A x En)/G) 

is an n-equivalence. But if GA is the isotropy subgroup of A, (Ax En+1)/G ~ 
En+i/GA and (Ax En)/G ~ En/GA, Since both En, En+l and their quotient 
spaces En/GA, En+1/GA are manifolds [8] it follows that their singular and 
Cech cohomology groups are isomorphic so that 

fr ((Ax En+i)/G; R) --+ fr ((Ax En)/G; R) 



ON EQUIVARIANT COHOMOLOGY 523 

is an n-equivalence (in Cech cohomology with coefficients R). 
Let Hn, 6n be the G equivariant cohomology theory defined on the para­

compact G space X using En as in Example (3.3). Then H~(A) = ifi ((Ax 
En)/G; R) for A E clG(X). There is a natural map 

induced by the inclusion map (A x En)/G c (A x En+1)/G so there is a ho­
momorphism of G equivariant cohomology theories on X 

By ( *) above this is an n-equivalence for all orbits A of G in X. It follows 
from Theorem (3.4) that 'Pn is an n-equivalence for all A E clG (X) (both coho­
mology theories are nonnegative and additive). Therefore, we can define a G 
equivariant cohomology theory H00 , 600 on X by H00 (A) = lim {Hn(A)} and 

. +--n 
600 = lim {6n}. We call H00 ,600 the Borel G equiuariant cohomology theory 

+--n 
on X with coefficients R. It is nonnegative and additive and is a contravariant 
functor on the category ofparacompact G spaces and G maps between them. 

Example (4.1). Let f : X-+ Y be a closed continuous map between para­
compact G spaces. For B E clG(Y) define H 1(B) = H 00 (!- 1(B)). With a 
suitable definition of 61 we obtain a nonnegative additive G equivariant coho­
mology theory HI, 6 I on Y. 

The following was obtained by Kosniowski (comparison theorem in [ 4]) us­
ing spectral sequences .. 

THEOREM ( 4.2) Let f : X -+ Y be a closed continuous G map between para­
compact G spaces. Suppose there is n such that f*: H 00 (B)-+ H00 (/-

1 (B)) is 
an n-equiualenceforeueryorbit B ofG in Y. Then f*: H00 (B)-+ H00 (!- 1 (B)) 
is an n-equiualen_ce for all B E clG (Y). 

Proof. Clearly/* is a homomorphism from H00 , 600 on Y to the G equivari­
ant cohomology theory H 1, 61 on Y constructed in Example (4.1). Then the 
result is a consequence of the comparison theorem Theorem (3.4). • 
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