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ON EQUIVARIANT COHOMOLOGY
BY E. SPANIER
1. Introduction

In a previous paper [5] machinery was developed for establishing isomor-
phism theorems (and n-equivalences) in ordinary cohomology. This machine-
ry is based on a result called the uniqueness theorem in [5,6] and the compar-
ison theorem in [7].

In the present paper a similar machinery is developed for equivariant coho-
mology on G spaces. The corresponding comparison theorem can be applied
in situations similar to those where the original theorem for ordinary coho-
mology applies. :

Our presentation is an elementary exposition of the subject. We present
only one application of the comparison theorem. This is a simple proof of a
Vietoris-Begle-like theorem for the Borel equivariant cohomology theory (a
result proved in [4] by use of spectral sequences). Hopefully there will be
other interesting applications of the comparison theorem.

The rest of the paper is divided into three sections. In Section 2 we sum-
marize some properties of G spaces. In Section 3 we define equivariant coho-
mology theories. There is a bijection between equivariant cohomology theo-
ries on a @ space X and ordinary cohomology theories on the quotient space
X/G. Thus, the comparison theorem for equivariant cohomology theories is
deduced from the comparison theorem for ordinary cohomology.

In Section 4 we define the Borel equivariant cohomology theory on the cate-
gory of paracompact G spaces by alimiting procedure and deduce the Vietoris—
Begle-like theorem for this cohomology from the comparison theorem.

In the sequel G will denote a compact topological group.

2. G spaces

In this section we recall some basic properties of G spaces, the main one
being that a G space X is paracompact if and only if the quotient space X/G
is paracompact.

A G space is a topological space X together with a continuous map

p:Gx X - X

such that:

1) p(e, z) = z for all z € X where e is the identity element of G,

2) #(9192, 2:) = ”‘(glal‘l'(gL I)) for 91,92 € G,reX.

If we denote p(g, z) by gz, then 1) becomes ez = z for all z € X and 2)
becomes the “associativity” (g1g2)z = g1(g2z) for g1,92 € G, z € X. From 1)
and 2) it follows that z +— gz is a homeomorphism of X onto itself for every
g € G (with inverse z — g7 1z).

If X is a G space, a G set A C X is a subset such that (G x A) C A (ie.
ga € Aforg € G,a € A). Then Atogetherwithp |GXx A:GXx A — Aisa
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G space called a G subspace of X. Since £ — gz is a homeomorphism for each
g € G it follows easily that if A is a G set so are A and intA.

Let p : X — X/G be the canonical projection of X onto the space of orbits
of G in X topologized by the quotient topology. It is clear that A ¢ X isa G
set if and only if A = p~1(A') for some A’ C X/G, in which case A = p~!(pA).
Thus, p induces a bijection between G sets in X and subsets of X/G (with
inverse p~! from subsets of X/G to G sets in X).

Since G is compact for every open neighborhood U of a G set A C X there
is an open G set V in X with A ¢ V c U. It follows that the projection
p : X — X/G is an open and closed continuous map. If X is Hausdorff, it
follows that p is a perfect map (see the definition on p. 236 of [2]). Therefore,
by 3.7.20 of [2], X/G is also a Hausdorff space, and, by 5.1.33 and 5.1.35 of
[2], X is paracompact if and only if X/G is paracompact.

3. Equivariant cohomology

For G spaces equivariant cohomology is a natural generalization of ordi-
nary cohomology. This section contains the relevant definitions for equivari-
ant cohomology and the comparison theorem for homomorphisms between
two equivariant cohomology theories on the same G space.

If X is a G space, clg(X) will denote the category of closed G sets in X and
inclusion maps between them. In case G is the trivial group, clg(X) = cl(X)
is the category of all closed sets in X.

A G equivariant cohomology theory H,é on a G space X consists of:

i) a contravariant functor H from clg(X) to the category of graded abelian
groups (H(A) = {H?(A)},7) such that H(#) = 0, and

ii) a natural transformation § which assigns to every A, B € clg(X) a ho-
momorphism of degree 1

§:H(ANB) — H(AU B)
such that both of the following are satisfied:
Continuity. For every A € clg(X) the homomorphism
p: lim{H?(B) | B a neighborhood of A in cig(X)} — H?(A)
defined by p{u} = u | A for v € H?(B) is an isomorphism.
MYV Exactness. For every A, B € clg(X) the following sequence is exact

.y HI(AU B) 2 HY(A) @ HY(B) - HY(AN B) - HIP1(4U B) -
where a(u) = (v | A,u | B) foru € HY(AUB) and f(u,v) =u | ANB—v | ANB
for u € HY(A), ve HI(B).

The equivariant theory is nonnegative if H7(A) = 0 for all ¢ < 0 and all
A € clg(X). It is said to be additive if for every discrete family {4;};cs in
cl@(X) the homomorphism

o: HU(UjerA;) — ey HY(4;)
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defined by o(u) = {u | A;};cs for u € HI(U;csA;) is an isomorphism. It is
weakly additive if for every discrete family {4,};cs in clg(X) and for every
u € H%(Ujeg A;) there is some finite subset F' C J such that u | U;gp 4; = 0.
This implies there is an isomorphism

@esHY(4;) = HY(Ujes 4;5)

so the definition above is equivalent to the one in [7].

A cohomology theory H,é on X is defined to be a G equivariant cohomology
theory for G equal to the trivial group. It follows that there is a bijection
between G equivariant cohomology theories on X and cohomology theories
on X/G induced by the obvious isomorphism between the categories ¢lg(X)
and ¢l(X/G). This bijection preserves nonnegativity and additivity or weak
additivity (because discrete families in ¢lg (X) correspond to discrete families
in cl(X/Q)).

Example (3.1). If G' is a closed subgroup of G and X is a G space then X is
also a G' space and clg(X) C clg/(X). Thus, every G' equivariant cohomology
theory on X determines by restriction a G equivariant cohomology theory on
X. '

Example (3.2). Let X be a G space where G is a compact Lie group and let &
be a covariant coefficient system for G over aring R [3]. For A € clg(X) define
HI(A) = H§q (X, X — A; k) (equivariant singular homology with coefficients
k [3]). With a suitable definition of § this is a weakly additive G equivariant
cohomology theory on X (not usually nonnegative).

Example (3.3). Let Eg be any compact Hausdorff G space. If X is a para-
" compact G space, defire H on X by H(A) = HY((A x Eg)/G;R) (Céch co-
homology with coefficients R of the quotient space of A x Eg by the diagonal
action of G) for A € clg (X). With a suitable definition of § this is a nonnega-
tive additive G equivariant cohomology theory on X. (X x Eq is paracompact
by 5.1.36 of [2] so (X x Eg)/G is paracompact. If A is a closed G set in X the
compactness of Eg implies that every closed neighborhood of (4 x Eg)/G in
(X x Eg)/G contains a closed neighborhood of the form (N x Eg)/G where
N is a closed neighborhood of 4 in X which is a G set.)

A homomorphism of degree 0, ¢ : ' — I between graded abelian groups
is called an n-equivalence if ¢ : I* — I'% is an isomorphism for i < n and a
monomorphism for 7 = n.

If H,6§ and H' §' are two G equivariant cohomology theories on the same
G space X, a homomorphism ¢ : H,6§ — H' 6' consists of a natural transfor-
mation from H to H' (both being functors on clg (X)) which commutes up to
sign with 6, 6'. Because of the bijection between G equivariant cohomology
theories on X and cohomology theories on X/G the comparison theorem for
cohomology theories [7] translates to the following comparison theorem for G
equivariant cohomology theories.
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THEOREM (3.4) Let ¢ : H,§ — H',§' be a homomorphism between G equiv-
ariant cohomology theories on the same G space X both of which are additive
or both are weakly additive. Suppose there is n such that p4 : H(A) — H'(A)
is an n-equivalence for every orbit A in X. If both H,é and H',§' are nonneg-
ative or if X/G is locally finite dimensional then p4 : H(A) — H'(A) is an
n-equivalence forall A € clg(X). o

4. The Borel cohomology theory

In this section we use the comparison theorem of the last section and the
construction in Example (3.3) to define the Borel chomology theory, a par-
ticular Céch-like G equivariant cohomology theory on every paracompact G
space where G is a compact Lie group. The main result of the section is a
mapping theorem for Borel cohomology theory which generalizes a result of
Kosniowski.

For a compact Lie group G there is a sequence £y C E3 C --- of path
connected compact G spaces such that E,, is an n-universal fibration over
B, = E,/G [8]. Then n;(E,) = 0 for 1 < i < n. From the exactness
of the homotopy sequence of a fibration and the “5-lemma” it follows that
7;(Bn) — m;(Bp+1) is an isomorphism for i < n.

Let X be a paracompact G space and consider (X x Ey,)/G. This has a
natural projection to E,/G = By,. This projection

pn: (X X E,)/G — By,

is a fibration with fiber X (see 1.3 on p. 50 of [1]). Again using the exactness
of the homotopy sequence of a fibration and the “5-lemma” it follows that the
natural map

(X x Ep)/G Cc (X x Ent1)/G

induces a homomorphism =; ((X x Ep)/G) — m;((X X En+1)/G) which is an
isomorphism for 1 < 7 < n and an epimorphism for 7 = n. Therefore, ((X x
En+1)/G, (X x E,)/G) is n-connected so that, in singular cohomology with
integer coefficients,

HY (X % En41)/G) — H (X x En)/C)

is an isomorphism for 1 < 7 < n and a monomorphism for ¢ = n. In particular,
if A is an orbit of G in X, then

H*((A X En41)/G) — H*((A x Er)/G)

is an n-equivalence. But if G4 is the isotropy subgroup of A, (A X Ep41)/G =~
Ent1/G4and (AX E,;)/G = En/G 4. Since both Ey, E, 1 and their quotient
spaces En/G 4, Ent+1/G 4 are manifolds [8] it follows that their singular and
Céch cohomology groups are isomorphic so that

(*) H*((AX Epy1)/G; R) — H*((A x En)/G; R)
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is an n-equivalence (in C&ch cohomology with coefficients R).

Let Hy, 6, be the G equivariant cohomology theory defined on the para-
compact G space X using Ep, as in Example (3.3). Then H;,(A) = H*((A x
E,)/G;R) for A € clg(X). There is a natural map

Hp1(4) — Hu(4)

induced by the inclusion map (4 x E,)/G c (A X En41)/G so there is a ho-
momorphism of G equivariant cohomology theories on X

©n Hn+1;6n+1 — Hp, 6.

By (*) above this is an n-equivalence for all orbits A of G in X. It follows
from Theorem (3.4) that ©y, is an n-equivalence for all A € ¢lg(X) (both coho-
mology theories are nonnegative and additive). Therefore, we can define a G
equ1var1ant cohomology theory Hoo,6c0 0n X by Hoo(A) = lim {Hn(A)} and

= hm {6,,} We call Hy,,6 the Borel G equivariant cohomology theory

on X w1th coefﬁments R. It is nonnegative and additive and is a contravariant
functor on the category of paracompact G spaces and G maps between them.

Example (4.1). Let f : X — Y be a closed continuous map between para-
compact G spaces. For B € clg(Y) define H;(B) = Hoo(f 1(B)). With a
suitable definition of §; we obtain a nonnegative additive G equivariant coho-
mology theory Hy,6;onY.

The following was obtained by Kosniowski (comparison theorem in [4]) us-
ing spectral sequences.

THEOREM (4.2) Let f : X — Y be a closed contznuous G map between para-
compact G spaces. Suppose there is n such that f* : Hoo(B) — Heo(f~1(B)) is
an n-equivalence for every orbit Bof Gin'Y. Then f* : Ho(B) — Hoo(f~1(B))
is an n-equivalence for all B € clg(Y).

Proof . Clearly f* is a homomorphism from H, 6. on Y to the G equivari-
ant cohomology theory Hy, 65 on Y constructed in Example (4.1). Then the
result is a consequence of the comparison theorem Theorem (3.4). o
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