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CLOSEDNESS OF' COMPRESSIONS OF FAMILIES OF HILBERT 
SPACE OPERATORS 

BY WACLAW 8Z¥MANSKI 

Dedicated to the memory of Professor Jose Adem 

1. Notations and the statement of the problem 

B(H) denotes the algebra of all linear, bounded operators on a complex 
Hilbert space H. I stands for the identity operator in H. Three topologies in 
B(H) will be considered: the norm topology, the strong (operator) topology, i.e., 
the locally convex topology defined by the family of seminorms qx(T) = IITxll, 
T E B(H), x E H, and the weak (operator) topology defined by the family 
of seminorms qxy(T) = l(Tx, y)I, T E B(H), x, y E H. The vector space 
operations in B(H) are continuous in all three topologies. The multiplication 
of operators is continuous in the norm topology, but only separately continuous 
in the strong and weak topology. The basic facts about the three topologies 
can be found in any text on von Neumann algebras, e.g., [3], [5] as well as in 
[1], [ 4]. 

Let ;J be a subset of B(H). The set of all operators in B(H) that commute 
with every element of ;J is called the commutant of ;J, it is denoted by <::f', and 
it is known to be a weakly closed subalgebra of B(H). The closure of g will 
be denoted by cl ;J and the topology will be specified. The weak and strong 
closures of a convex subset of B(H) coincide. An operator EE B(H) is called 
a projection if E = .E2 = E*. The compression of a set ;J c B(H) to the 
subspace EH is the set ;JE .= {ESIEH : SE ;J}, which is a subset of B(EH). 
A subspace EH of H, or the projection E, is invariant for <:f if SEH c EH, or, 
algebraically, ESE= SE, for each SE<:!. A subspace EH of H reduces <:f if 
EH is invariant for both <:f and<:!*= {S* : SE<:!}, or, algebraically, if EE<:!'. 

When one studies compressions, the following topological problem arises 
naturally: 

Problem. Let <:f be a subset of B(H) and let E E B(H) be a projection. If 
<:Fis closed (in norm, strongly, weakly, respectively), what are the conditions 
that guarantee that <:FE is closed (in norm, strongly, weakly, respectively)? 

Even though the problem looks rather basic, I have not seen it stated 
anywhere before. 

There is only one fairly general case in which the problem is solved. 
This case is, however, important enough to make the above general problem 
interesting and worth investigating. Namely, almost since the beginning of 
the von Neumann algebra theory it has been known that if<:! is a von Neumann 
(i.e., a symmetric, weakly closed) algebra and Eis a projection in <:for in<:!', 
then <:FE is a von Neumann algebra, thus <:FE is weakly closed. (cf. e.g. [3], 
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Part I, Ch.2, Proposition 1, [6], 5.5.6). The simplicity of the formulation of the 
general problem may deceive one to think that the solution should not be all 
that hard. Perhaps it is so, but a careful study of the von Neumann algebra 
case gives indications to the contrary. Namely, one realizes that the proofs 
of the above mentioned result on von Neumann algebras with E E ';J', i.e., if 
EH reduces ';J, always rely on one of the two elementary but fundamental, 
and by no means trivial results about von Neumann algebras: the Double 
Commutanttheorem (in [3]), or the Kaplanskydensitytheorem (in [6]). Thus 
the proofs depend in an essential way upon the assumption that ';J is a von 
Neumann algebra. 

In this paper some answers to the problem will be presented without the 
assumption that ';J is a von Neumann algebra. The von Neumann algebra case 
will also be approached in a manner different from the ones known so far. 

A bounded subset of B(H) is understood to be norm-bounded. The following 
notations will also be used. If T E B(H), then <7(T) stands for the spectrum 
of T, du(T), :ils(T) denote the closure of the algebra of all polynomials in T 
in the norm and strong (or weak) topology, respectively. <!ftu(T) stands.for the 
norm-closure of the set { u(S): u is a rational function with poles off <7(T)}. C 
denotes the complex plane. If K is a compact subset of C and f: K ----+ C 
is a continuous function, then IIJIIK = sup{IJ(z)I : z E K}. Moreover, 
K = { z E C : lp(z) I ::; I IP 11 K, for all polynomials p} is the polynomially convex 
hull of K. It is plain that IIPIIK = IIPIIR, for each polynomial p. 

2. Preliminary results 

Let E E B(H) be a projection. In what follows it will be understood that 
the topologies in B(H) and in B(EH) are of the same kind, i.e., if B(EH) is 
considered to be a subalgebra of B(H), or, more precisely, B(EH) is embedded 
isometrically into B(H) by the mapping T ----+ T E9 0 with respect to the 
decomposition H = EH E9 (I - E)H, then the topology in B(EH) is the 
restriction of the topology in B(H) to B(EH). The compression mapping 
<I> : B(H) ----+ B(EH) defined by <l>(T) = ETIEH is linear and continuous in 
any of the three topologies, because multiplication of operators is separately 
continuous. 

In practice, proving that a compression of a set of operators is closed, one 
often uses the following 

PROPOSITION (2.1). Let ';J c B(H), let E E B(H) be a projection. Then 
(cl';J)E is closed if and only if (cl';J)E = cl(';JE), i.e., if the operations of 
compression and closure can be interchanged. The closure is taken in any 
of the three topologies. 

Proof. (cl';J)E c cl(';JE), because the mapping <I> is continuous. If (cl';J)E is 
closed, then cl(';J E) c cl((cl ';J)E) = (cl ';J)E. The opposite implication is clear. 
Q.E.D. 
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This proposition is merely a restatement of an elementary property of 
continuous functions 1u10wn from the general topology. 

The following simple example shows that, in general, the compression of a 
closed set does not need to be closed. 

Example (2.2). Take an = 2-n, . f3n = 2n. In H = C EB C define Sn = 
[an] EB [f3n], for all integers n 2'.: 0. Let ';_f = {Sn : n 2'.: 0} and let E be 
the projection of H onto the first C. Then the set ';_f is closed in B(H), but 
';_IE = {[an] : n 2'.: 0} is not closed in B(EH). One could also take an = n-i, 

f3n = n, n > 0. 

In this example the topology in B(H) is any of the three topol9gies, because 
for a finite-dimensional space Hall three topologies in B(H) are identical and 
B(H) is homeomorphic to cn2 

with the Euclidean norm topology, if dim H = n. 
Notice that in Example (2.2) all operators are self-adjoint, ';_f is a semigroup 
with unit generated by a single operator Si, and EH reduces ';f. However, ';_f 

is not bounded, and, indeed, it cannot be bounded because of the following 
elementary 

PROPOSITION (2.3). If H is finite-dimensional, E E B(H) is a projection, 
and ';_f c B(H) is bounded and closed, then ';_f E is compact, and thus closed. 

Proof. ';_f is compact, cl> is continuous. Thus <t>(';f) = ';_f E is compact. Q.E.D. 

Example (2.2) can be generalized to arbitrary dimensions as follows: 

Example (2A). Let Hi, H2 be Hilbert spaces, let An E B(Hi), Bn E B(H2) 
be sequences of operators. Let H = Hi EB H2, Sn = An EB Bn, n 2'.: 0. Assume: 
IIAnll --+ 0, An -=/= 0, for each n, the set {Bn : n 2'.: 0} has no weak cluster 
point, and all En's are different. By Lemma (2.5) applied to the compression 
mapping B(H) --+ B(H 2), the set ';_f = { Sn : n 2'.: 0} has no weak cluster 
point. HenceH is weakly (therefore strongly and norm-) closed: On the other 
hand, if Eis a projectiori of H onto Hi, then 0 is in the norm-closure of ';f E, 

but not in ';_f E. Thus ';_f E is not closed in any topology. One can get ';f to be a 
multiplicative semigroup generated by a single operator choosing A E B(Hi), 
IIAII < 1, A not nilpotent, B E B(H 2) such that the set {En : n 2'.: O} has no 
weak cluster point, all En's different, and S = A EBB, Sn= sn, n 2'.: 0. 

LEMMA (2.5). Let X, Y be topological spaces, let Ac X, let f: X--+ Y be 
a continuous function whose restriction to A is one-to-one. If Xis a Ti-space 
and f (A) has no cluster point, then A has no cluster point. 

Proof. It is clear that no point in A is a cluster point of A. Let cl A denote the 
closure of A. Now, J(A) = J(clA), because f is continuous, J(A) is closed, and 
J(A) c J(cl A) c cl J(A) = J(A). Suppose x is a cluster point of A, not in A. 
Then x E cl A. Thus J(x) E J(cl A) = J(A), hence J(x) = J(a) for some a E A. 
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Since J(A) has no cluster point, there exists a neighborhood V of J(x) = J(a) 
such that V n J(A) = {f(a)}. Hence 

r 1cv) n A= 1-1(V) n 1-1(J(A)) n A= 1-1(J(a)) n A= {a}. 

The last equality holds, because f is one-to-one on A. Since x -=f. a and X is a 
T1 space, there exists a neighborhood U of x such that a (/_ U. Thus Un J- 1 (V) 
is a neighborhood of x, and Un J- 1(V) n A= Un {a}= 0. This contradicts 
the assumption that x is a cluster point of A. Q.E.D. 

The next result has been known under the assumption that g is a von 
Neumann algebra. Much less, however, suffices. 

PROPOSITION (2.6). Consider any of the three topologies in B(H). Let g be 
a multiplicative semigroup and let E be a projection in g_ If g is closed, so is 
g>E· 

Proof. Take TE cl(g>E). There exists a net Sn E g such that ESnlEH --+ T. 
The net ESnE converges. Call its limit S. Now SE g, because g is a closed, 
multiplicative semigroup, and E E g_ Finally, ESIEH = T. Q.E.D. 

B(H) with the norm topology is a Banach (thus metric) space, hence it 
would suffice to deal with sequences only. Unfortunately, neither strong, nor 
weak topology in B(H) satisfies the first axiom of countability (cf.[3], p.49, 
Exercise 4), therefore for these topologies one must use nets. 

Proposition (2.6) has several applications for non-symmetric operator alge­
bras, some of which are listed below: 

COROLLARY (2.7). a. Let Hi be a Hilbert space, Ai E B(Hi), i = 1, 2. Let E 
be the projection of H = H1 E9 H2 onto Hi, S = A1 E9 A2, g = .i/,u(S). Suppose · 
8-(A1) n 8-(A2) = 0. 

b. With Ai, S, E as above, let g = ffiu (S). Suppose a(A1) n a(A2) = 0. 
c. Let g c B(H) be a commutative, reflexive algebra, let Ebe a maximal 

antisymmetric projection for g_ 
Then g>E, gI-E are norm-closed in a, b, and weakly closed inc. 

Proof. a, b. follow from Theorem 2.1 and 2.2, respectively, in [2], where 
more situations can be found, to which Proposition (2.6) applies. c. follows 
from Corollary 2 in [9], or Theorem 4 in [10], where one also finds all necessary 
definitions. The proof is completed by applying the following 

REMARK (2.8). Let g c B(H) be an algebra with I and let E E B(H) be a 
projection. Then g = g E E9 g I -E if and only if E E g n g>'. 

To prove this assume first that g = g E E9 g I -E. Then E S(I - E) = 
(I - E)SE = 0, S E g, thus E E g>'. Moreover, E = IIEH E9 Olu-E)H E g_ 
Conversely, if EE g n g>', then g c gE E9 gI-E• Now take S, TE g_ .Then 
SIEH EB Tlu-E)H = SE+ T(I - E) E g_ Q.E.D. 
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Finally, notice that if~ c B(H) is a linear subspace and E E B(H) is a finite­
dimensional projection, then ~ E is a linear subspace of a finite-dimensional 
space B(EH), thus it is closed in all three (identical) topologies. 

3. The norm topology 

In this section B(H) has the norm topology, thus it is a Banach space. If~ 
is a closed, linear subspace of B(H), then the question asked in the problem 
is the question, when the compression mapping <I>:~ ----+ B(EH) has closed 
range. This type of questions is usually not easy to answer. Some answers are 
known. 

Recall that if X, Y are Banach spaces, then a bounded, linear mapping 
'I": X ----+ Y is called bounded below (by c > 0) if llqrxll 2'.: cllxll for all x E X. 
The following known result, whose proof uses Banach's closed graph theorem, 
will be needed: 

THEOREM (3.1). Let X, Y be Banach spaces and let qr: X ----+ Y be a 
bounded, linear mapping. qr is bounded below if and only if qr has closed 
range and ker qr = 0. 

Some solutions of the problem follow from this result. 

THEOREM (3.2). Let E E B(H) be a projection invariant for T E B(H). If 
cr(T) C 8-(TIEH) and llp(T)II :S cllPllo-CT) for some c > 0 and all polynomials p, 
then du (T) E is norm-closed. 

Proof. Let p be a polynomial. Then 

The first inequality follows from the spectral theorem for polynomials. If 
SE dlu(T), then there is a sequence Pn of polynomials such that Pn(T) --+ S. 
Passing to the limit in the above inequality written for Pn 's one gets 11 SI EH 11 2'.: 
c-1IIBII-This proves that the compression mapping <I>: dlu(T) ----+ B(EH) 
is bounded bel9w. By Theorem (3.1) applied to <I>, dlu(T)E is norm-closed. 

Q.E.D. 

A similar result, whose proof is like the one above, holds for mu (T). 

THEOREM (3.3). Let E E B(H) be a projection invariant for T E B(H). 
If cr(T) c cr(TIEH), and llu(T)II :S cllullo-CT) for some c > 0 and all rational 
functions u with poles off cr(T), then mu (T) E is norm-closed. 

Here are consequences of the last two theorems for subnormal operators, 
whose up-to-date theory is presented in [1], where all necessary definitions 
can be found. 
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COROLLARY (3.4) Suppose NE B(H) is a normal operator, EE B(H) is a 
projection invariant for N, and N is the minimal normal extension of NIEH• 
Then .'ilu (N) E, Wlu (N) E are norm-closed. 

Proof. By the spectral theorem for normal operators, llu(N)II = llullaCN) 
for each continuous function u on cr(N). Moreover, cr(N) c cr(NIEH ), by the 
minimality condition - cf. [1], Ch. II, Theorem 2.11. Now Theorems (3.2) and 
(3.3) complete the proof. Q.E.D. 

COROLLARY (3.5). Suppose T E B(H) is a subnormal operator and E E 
B(H) is a projection invariant for T. 

a. If cr(T) C a-CTIEH ), then .'il(T)E is norm-closed. 
b. If cr(T) C cr(TIEH ), then Wlu(T)E is norm-closed. 

Proof. Use Theorems (3.2), (3.3), and Proposition 9.2 of [1], Ch. II. Q.E.D 

Now, one more solution to the problem. 

THEOREM (3.6). Let ':f be a linear subspace of B(H), let V E ':f' be bounded 
below, and let E be the projection of H onto V H. If ':f is norm-closed, so is ':f E• 

Proof. By Theorem (3.1), V His closed. Also, VH is invariant for ':f, because 
VE':!'. Moreover, EV= V. Let c > 0 be a constant such that IIVxll 2 cilxll, 
x EH. Take SE':!, x EH such that llxll ::; 1. Then 

cjjSxll::; IIVSxll = IISVxll = IISIEHVxll::; IISIEHII IIVII-

Thus cl!Vll- 1 IISII ::; IISIEHII, i.e., the compression mapping cI>: ':f ~ B(EH) is 
bounded below. By Theorem (3.1) again, the proof is finished. ~.E.D. 

The subspace EH above, invariant for ':!, does not need to reduce ':f, in 
general, as the following corollary illustrates. 

COROLLARY (3. 7). Let H 2 be the Hardy space on the unit circle, let Tz E 
B(H 2 ), Tz f = zf, f E H 2 be the unilateral shift. If E is the projection onto an 
invariant subspace for Tz, then .'ilu(Tz)E is norm-closed. 

Proof. Assume E =I-0. By Beurling's theorem, there is a function q E H 00
, 

jqj = 1 almost everywhere relative to the Lebesgue measure on the circle such 
that EH 2 = TqH 2 , where Tqf = qf, f E H 2 • Tq is an isometry (hence bounded 
below) which commutes with Tz. Theorem (3.6) finishes the proof. Moreover, 
E does not commute with Tz, unless q = 1, because Tz has no non-trivial 
reducing subspace. Q.E.D. 
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4. The strong and weak topologies 

In this section mostly bounded subsets of B(H) will be considered. The 
case of the weak topology is rather simple because of an elementary but deep 
theorem, which is a version of the Banach-Bourbaki-Alaoglu theorem, and 
which states that each ball B(H)r ={SE B(H): JJSJJ :S: r} is weakly compact 
(cf. e.g. [4], (3) after Problem 107, or [5], 5.1.3). Since the weak topology 
is Hausdorff, a closed subset of a compact set is compact, and a compact 
set is closed. Moreover, the compression mapping <I> is weakly continuous. 
This proves the following perfect generalization of the finite-dimensional case 
described in Proposition (2.3). 

PROPOSITION ( 4.1). If g c B(H) is bounded and weakly closed, and 
E E B(H) is a projection, then g E is weakly compact, and thus weakly closed. 

For a von Neumann algebra g, a particular case of this proposition applied 
to the unit balling and E E gt combined with the Kaplansk.y density theorem 
essentially constitutes the proof that gE is a von Neumann algebra - cf. [5], 
5.5.6. 

The strong topology poses more difficulties. The compactness argument, 
used for the weak topology, cannot be used, simply, because balls B(H)r, even 
though obviously closed, ate not strongly Qompact (cf. e.g. [ 4], solution to 
Problem 115). Fortunately, each bounded and strongly closed subset g of 
B(H) is complete in the uniform structure associated with the strong topology. 
Namely, each ball B(H)r is complete ([5], 2.5.11). If g is bounded, then 
g c B(H)r for some r > 0. Thus g is complete, if closed (cf e.g. [6], Ch.6, 
Theorem 22). This allows one to prove the following analogue of Theorem 
(3.6): 

THEOREM ( 4.2). Let g be a bounded subset of B(H), let V E gt be bounded 
below, and let E be the projection of H onto V H. If ':J is strongly closed, so is 
gE· 

Proof Take TE cl(gE). Then there is a net Sn E g such that SnlEH--+ T. 
Let c > 0 be such that JJVxJJ 2: cllxJJ, x EH. Then 

Thus Sn is a Cauchy net. Since g is complete, Sn converges strongly. Let S 
be the limit. Then S E g, and SJEH = T. Q.E.D. 

One obtains immediately the following corollary, whose proof is similar to 
that of Corollary (3. 7), but uses Theorem (4.2) instead of (3.6). 

COROLLARY (4.3). Let Tz be the unilateral shift. If E is an invariant 
projection for Tz and g C M8 (Tz) is bounded and strongly closed, then gE 
is strongly closed. 
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Finally, how close to the amazingly complete result described in Proposition 
( 4.1) can one get for the strong topology? Here is an answer: 

THEOREM (4.4). Let g C B(H) be bounded. Let E E 'gJ' be a projection. 
Then for each TE cl('gJE) in the strong topology there is S E W*('gJ) = the van 
Neumann algebra generated by g, such that SIEH = T. 

The proof of this theorem requires some preparation. It is somewhat 
surprising that the canonical decomposition method developed in [8] is of 
help here. The reader is referred to [8] and [7] for the details and some 
applications of this method. Two projections in a von Neumann algebra <!fl are 
called equivalent-notation: E,....., F(mod <!/l)-ifthere is a partial isometry U E <!fl 
such that U* U = E, UU* = F. The projection onto the closed linear span of 
EH and FH is denoted by EV F. 

THEOREM (4.5). Let <Ji, C B(H) be a van Neumann algebra and let <lP be a 
family of projections in <!fl'. If EV FE <lP whenever E, FE <!P, then Eo = sup<!P 
exists, E0 is a projection, and it is the strong limit of the increasing net <!P. 
Moreover, if Eo E <lP and <lP satisfies the condition 

(*) for all E, F: E E <!P, F E <!fl', F ,....., E(mod <!fl') implies F E <!P, 

then Eo E <!fl. 

The above theorem contains those results of [8] that are needed here. 

THEOREM ( 4.6). Let Tn E B(H) be a bounded net and let .M, be the set of all 
Tn 's. Then there exists the largest projection E0 E .M,' with the property that 
TnEo converges strongly. Moreover, Eo E W* (.M). 

Proof Let H1 = {x E H : Tnx converges}. H1 is a linear manifold. A 
standard argument, which uses boundedness of Tn and completeness of the 
Hilbert space H, proves that H 1 is closed. Let A be the projection of H onto 
H 1. Define 

<JP = { E E W* (.M,)' : E is a projection, E :S A}. 

To prove that <JP satisfies (*) with <!fl = W* (.M,), take E E <lP, F E <!fl', 
F ,...._, E(mod <Ji,'), and let U E <!fl' be the partial isometry such that U*U = E, 
UU* = F. Then UE = U = FU. Let T be the strong limit of TnE. Take 
X EH. 

IITnFx - UTU*xll = IITnUU* Fx - UTU* Fxll = IIUTnU* Fx - UTU* Fxll 

= IIUTnEU*x - UTEU*xll = IITnEU*x -TU*xll. 

The last equality is justified, because U maps unitarily EH onto FH. Thus 
TnF converges strongly to UTU* and hence F E <!P. It is easy to see that 
<lP satisfies all remaining assumptions of Theorem (4.5). Since <lP is strongly 
closed, E0 = sup<JP E <JP. Theorem (4.5) completes the proof. Q.E.D. 
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Another proof of this theorem can be given using completeness of strongly 
closed, bounded subsets of B(H) by noticing that a bounded net Tn converges 
strongly if and only if IITnx - Tmxll --+ 0 for each x E H (cf. e.g. [6], Ch.6, 
Lemma 20). Then one needs to apply the Proposition of [7], whose proof uses 
in an essential manner the methods of [8]. 

Proof of Theorem (4.4). Take TE cl(gE), Then there is a net Sn E Et such 
that BnlEH--+ T. By Theorem (4.5), there exists the largest projection Eo E 
W*(g)' such that SnEo converges, and SnEo E W*(g)_ Thus the strong limit 
S of BnEo belongs to W*(g), Now, SIEH = IimSnEolEH = IimSnlEH = T, 
because E :=s; Eo. Q.E.D. 

If~ c B(H) is a von Neumann algebra, then ffi1 = ffi n B(Hh is strongly 
closed. In the particular case of g = ffi1, Theorem (4.4) reads: if E E ffi', 
then (~1)E is strongly closed (because W*(ffi1) = ffi). This particular case is 
known, but it has always been proved by "taking a trip" to the weak closure 
and using Proposition (4.1) for the unit ball (cf. e.g. of 5.5.6 in [5]). The proof 
above stays entirely within the strong topology. 
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