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MODULAR REPRESENTATIONS AND THE COHOMOLOGY 
OF FINITE CHEVALLEY GROUPS 

BY CHARLES B. THOMAS 

In memory of Jose Adem 
1. Motivation and Preliminaries 

The structure of the representation rings of the classical compact Lie 
groups in characteristic zero is well-known, see for example the book of T. 
Brocker and T. tom Dieck [2]. In particular we have 

RSU(n) = Z[..\1, ..\2, ... , ..\n-1] , 

and 
RSp(n) = Z[..\1, ..\2, ... , ..\n] 

where ..\i corresponds to the ith exterior power of the natural representation 
of the group on en (respectively on c2n = IBr). For the smallest exceptional 
group we have 

RG2 = Z[u, adj] , 

where u is the real irreducible representation of degree 7 given by the inclu
sion of G2 in Spin (7), the degree of the adjoint representation equals 14 and 

With minor modifications these assertions remain true for the finite groups 
SL(~,IFq), Sp(2m,IFq) and G2(IFq), where q = pt; indeed there is a general re
sult of this kind, which is valid for representations in the natural characteris
tic p for any simply connected, simple algebraic group. The argument is given 
in the book of P. K.leidman and M. Liebeck [8, §5.4], and in the typical case of 
G = SL( n, IF q) can be summarised as follows. 

G contains a maximal torus Tn(IFq) consisting of diagonal matrices with el
ements 6, ... , en E IF; such that 66 ... en= 1. As an abstract group Tn(IFq) 
is a direct product of ln- 1) copies of a cyclic group oforder (q- 1), hence has 
order coprime with p. Working, if necessary, over an extension field IFq,, the 
representation theory of T n (IF q) is formally similar to the theory over the com
plex numbers. Furthermore, again copying the argument from characteristic 
0 the restriction map from RIFq,G to RIFq,Tn is injective. Since by elementary 
linear algebra any matrix in G is conjugate to one in Tn, if two representation 
modules have the same Brauer character over Tn, they also have the same 
character over G. The equivalence relation on the modules generating RJF q' ( ·) 

is expressed in terms of short exact sequences rather than direct sums, so the 
Brauer character of a representation determines its equivalence class. Clearly 
the image is contained in (RIFq,Tn)w, where W denotes the Weyl group, and 
inspection of the representations ..\i ( i = 1, ... , n) shows that this image is 
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as large as possible. Perhaps the hardest part of the argument is to descend 
from lFq, to lFq, i.e. to show that lFq is a splitting field for G, for this see [8, 
Prop. 5.4.4], and compare [10, Thm. 2. 7] on Galois invariance. In this case 
one actually has 

THEOREM (1). If G = SL(n,lFq) the modular representation ring RlFq(G) 
equals IZ[A1, A2, .. . ] subject to the relations (i) Ad= 0 if d ~ n, (ii) An = 1 and 
(iii) 'Pq Ai = Ai . 

The third relation enters since under Brauer lifting modular representa
tions are invariant under the action of the Adams operation 'Pq. With the re
lations particularly in mind, Theorem 1 should be compared with the results 
in section three of the paper [3] by D. Carlisle and N. Kuhn for the general 
linear group GL(n,lFq)-

Whereas the modular representations of a simple algebraic group Gin char
acteristic p reflect the influence of the Cartan-Weyl theory for finite dimen
sional representations ofa compact group, the ordinary representation theory 
in characteristic O has some of the flavour of infinite dimensional representa
tions of semi-simple Lie groups, such as SL(n, JR). The aim of this paper is 
to look at this dichotomy from the point of view of group cohomology, and to 
show that, for both untwisted and twisted Chevalley groups, the passage from 
R(G) to RlFq(G) corresponds to neglecting p-torsion in integral cohomology, 
i.e. to studying H* ( G, Z[ ¼]) rather than H* ( G, 2). More precisely: Let G be 
a Chevalley group defined over the field IF q. Then away from the prime p the 
Chern subring of H* ( G, Z) is generated by the Chern classes of the Brauer lifts 
of the irreducible IF q,-representations ( q1 ~ q). This is proved in section two, 
and then illustrated by examination of the cases SL(n,lFq) (n S 4), Sp(4,lFq), 
G2(q) and 2G2(lFq) (q = s2m+l). (In a subsequent paper we propose to return 

. to the exceptional groups of types F4 and En, n = 6, 1, 8.) The proof of the 
main theorem depends on the completion theorem of D. Rector, and in a final 
section we prove analogues of this for orthogonal and symplectic representa-
tions. With the orthogonal groups arising in this last section particularly in 
mind let us fix our notation as follows: 

SL(n, lFq) is the group of invertible (n x n) matrices over the field lFq hav
ing determinant equal to 1, S0(2m,lFq) of those matrices with determinant 
1 which preserve the quadratic form x1xm+1 + · · · + XmX2m on JFt2m, and 
Sp(2m,lFq) of those matrices which preserve the skew-symmetric bilinear 

form described by the matrix (-~m 1
;;'). In some places it will also be 

neressary to assume that q is odd; in this case the elements of S0(2m,lFq) 

preserve the bilinear symmetric form ( 1~ 
1
;;'). Finally G2(q) denotes the 

finite group of exceptional Lie type, associated with the Dynkin diagram 

o========== o . 
This paper has its roots in a talk given at the Adams memorial symposium 
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in July 1990. The half-hour talk was devoted to rather special cohomological 
calculations (see section three below), as an illustration of what one can do 
with characteristic classes. In conversation with Nick Kuhn it then became 
clear that the argument applied to SL(n,IFq); Jan Saxl then referred me to [8], 
out of which grew the generalisation to more general algebraic groups. The 
final version was written while I was a guest at the ETH in Zilrich in June 
1992. 

2. The Chern Subring of SL( n, IFq) 

We start by recalling the main result of [10]: 

THEOREM (2). If G is a finit:e group and RIFq(G)" the completion of the 
modular representation ring with respect to powers of the ideal of elements of 
virtual dimension zero, then there is a continuous isomorphism 

RIFq(G)" ~ KIFq(BG), 

which is natural for group homomorphisms and field extensions. 

The importance of this theorem is that the right hand side can be stud
ied by means of the Atiyah-Hirzebruch spectral sequence for the cohomology 
theory KIF; ( •), which has coefficients in K • (IF q), a sequence of groups which 
in positive dimensions are alternately zero and cyclic of order coprime with p. 
This has the effect that atthe E2-level we can neglect p-torsion in cohomology. 
Furthermore at least for both the untwisted and twisted Chevalley groups the 
whole construction can be lifted to characteristic zero, provided the field IF q 

is a sufficiently large extension of IF p. The point here is that if l -=I-p divides 
the order of G, then l divides some qi - 1 for some power j. Hence, if neces
sary extending1Fq to IFq,, we can guarantee that H2k-l( G, K2A:_1(IFq,)) carries 

fIJt-:j;pH2k(G, Z)(t)· 

THEOREM (3). ut G be a finite untwisted or twisted Cheualley group defined 
over IFq. Then the subring Gh(G)t:h of Heven(G,'ll)t-:j;p is generated by the 
classes {ci(P) : i = 1, 2, ... , deg (p)}, where p runs through the irreducible 
representations of G over IF q', some sufficiently large ex.tension of IF q• 

Proof. As in our earlier papers Gh(G) denotes the subring in even-dimen
sional cohomology generated by the Chern classes of all representations in 
characteristic 0. The point of Theorem 3 is that away from l = p we can 
restrict attention to the smaller class of p-modular representations, defining 
Chern classes as in our earlier paper [13]. 

The proof is by comparison of Rector's spectral sequence with the analogue 
of Atiyah's spectral sequence in algebraic K-theory. This takes the form 

E;,' = Hr(G,K-a(Q)) ~ K<Q{+8 (BG), 

where KQ0 (BG) may be identified with the 1-adic completion of the charac
teristic O representation ring R ( G), I = kernel of the augmentation map. Now 
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since G is finite, we can neglect the uniquely divisible summand in K-a(Q), 
and take the coefficients in E;,6 as 

K-a(O) = { Q/Z' o, 
a= odd, 
s =even. 

For this see [11]. Using the work of Quillen and Suslin we can therefore con
struct a commutative diagram 

in which the vertical arrow on the left is the inclusion of the unique cyclic 
group of order (qi - 1) and that on the right is induced by Brauer lifting. (As 
explained in [9] a fixed choice of embedding w; -+ Q* ~ (C* gives rises to a map 
of classifying spaces BGL(IFq)+-+ BGL(Q)+; now take homotopy groups.) In 
its turn Br : K-a(IFq) -+ K_ 6 (Q) induces a map of spectral sequences, such 
that in characteristic zero {E~-r : r ~ O} is isomorphic to the topologically 
graded object determined by the image of RIFq(G) under Brauer lifting. Now 
extend IFq to IFq, far enough to ensure that Ei'-r(IFq,) maps onto Ei'-r(O)t,tp 
(see the remark preceedingthe statement of the theorem). At the E~-r-level 

we can now replace the Brauer image by R ( G) "P
91

, when ,µq' is the appropriate 
Adams operation. Note that in algebraic K-theory the term E;,-r is non-zero 
for r = 2i - 1 (odd); translation in to the language of topological K -theory is 
made by means of the Bockstein isomorphism 

compare the discussion in section 2 of [13]. Algebraically the topological fil
tration is odd, explaining the shift in dimension brought about by operation 
with (3. 

Remarks: (1) The splitting field IFq, equals 1Fq except when G = 2 B2, 2G2 or 
2 F4, see the remarks following 5.4.1 in [8]. For the case SL(n, IFq) this is clear 
from the discussion below. 

(2) It would be interesting to construct a direct proof of Theorem 3, with
out passing through algebraic K-theory. Given the identification of RIF q ( G) 
with R( G)'Y'9

, this should be possible by comparing cohomology operations in 
ordinary cohomology and K-theory. 

Let us interpret theorem 3 in the special case of G = SL(n,IFq) of order 
(qn - 1) (qn - q) ... (qn - qn- 2)qn-l. As a ;\-ring R1Fq( G) is generated by the 
class of the identity representation over IF q (Theorem 1), and if p denotes its 
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Brauer lift to characteristic zero, then Ch(SL(n,lFq))t,tp is generated by the 
Chem classes {ci(p) : i = 1, 2, ... , n}. Without explicit mention of algebraic 
K-theory we can explain this as follows: G contains a cyclic subgroup S = (a), 
generated by the so-called "Singer cycle" of order qn -1/q -1, which has the 
following properties: 

(i) Sis self-centralising, ZG(S) = S, 
(ii) the group of automorphisms of S induced by inner automorphisms of 

G, Nc(S)/S, is cyclic of order n, and 
(iii) if x ES and for each k with k < n and kin the order of x does not divide 

qk - 1, then Nc((x)) = NG(S). Property (iii) implies that if Gt is an l-Sylow 
subgroup contained in S, then H*(G,7l)(t) ~ H*(Gt,7l) has period 2n and is 
generated by cn(P)(t), where pis the Brauer lift of the identity representation 
of Gover IFq, For the group theory see [7]. The class cn(P)(qn-l/q-l) actually 

restricts to a generator of H 2n(s, 7l), but if l divides l'-1 for some k < n, S no 
longer contains an l-Sylow subgroup, and we have only obtained part of the l
cohomology of G. Hence for an arbitrary prime l # pit is possible to regard the 
l-torsion in Oh(G)(t) as being carried by the Singer cycles for the ascending 
chain of subgroups {SL(k,lFq) : k ~ n}. Thus we obtain particularly good 
information about H*(G, 7l)(tl when an l-Sylowsubgroup Gt is cyclic, i.e. the 
l-torsion in cohomology is periodic. Such primes l can be picked out as follows 
(see [7, page 190]): 

Let l be an odd prime number such that, 
1) the order t of q ( mod l) is greater than i, and 
2) l divides q' - 1 to the first power only. 
Then if m ~ n is the smallest positive integer such that 2 > T ~ 1, 
H* (SL( n, .tlq), ?l) ( t) is periodic and is generated by cm (p) (t). . 

For more detail of what is going on consider the special cases of n = 2, S, 4. 

Example (1). SL(2, lFq)-

Away from the prime p this group has cohomological period 4, and 
H*(SL(2,1Fq), .z)t,tp is generated by c2(P), where p denotes the standard ac-

tion on IFf 2. Lifted to characteristic O, p = Pl - P2, where Pl (of degree q + 1) 
and P2 (of degree q-1) are irreducible representations constructed by a trans
fer argument. 

Example (2). SL(S, lFq), q = -1 (mod 12). 

This example is more interesting. The group has order (q3 - l)(q2 -:--l)q3 = 
( q2 + q + 1) ( q + 1) ( q - 1) 2 q3 , where the first factor gives the order of the Singer 
cycle and the third that of the maximal torus T31Fq. Suppose first that l # 
2, S, pis a prime not dividing q - 1, so that if l divides the order of G, l divides 
either q2 +q+ 1 or q+ 1. There is a corresponding Sylow subgroup Gt contained 
either in the subgroup generated by the Singer cycle for SL(2,1Fq)(q + 1 caae) 
or for SL ( S, JF q) ( q2 + q + 1 caae). The l-torsion in cohomology is periodic with 
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period equal to 2 or 3, and a generator is provided by the appropriate Chern 
class of p. In order to obtain an easily expressible answer for the primes 2 
and 3, we restrict attention to primes q such that q = -1 ( mod 4) and = -1 
( mod 3). The first restriction implies that a 2-Sylow subgroup is semi dihedral, 
a class of groups whose cohomology is well-understood. In particular, since G 
is perfect, neven(G, Z)(2) is generated by c2(P)( 2) of dimension 4. Finally if q+l 
is divisible by 3, a 3-Sylow subgroup must be cyclic, and has been covered in 
the previous discussion. 

It remains to consider primes l ~ 5 dividing q-1. There is a representative 
l-Sylow subgroup contained in the rank 2 maximal torus, and the cohomology 
has been described by several authors, see for example [9]. The polynomial 
part is generated by Chern classes -associated with the two Singer cycles. 
Putting everything together we have quite explicitly shown that, with q = -1 
(mod 12), 

Heven(SL(3,1Fq),Z)p;tt = (c2(P),c3(p)) · 

Working directly in characteristic O rather than in the natural characteristic 
would make this result much less transparent. Thus as a virtual representa
tion p = Pl - P2 + p3, where 

deg (P1) = q2+q+l, deg (p2) = (q-l)(q2+q+l) and deg p3 = (q-1) 2 (q+l). 

All three representations are obtained by transfer from proper subgroups, p3 
restricts to a fixed point free representation of the 3-Singer cyclic subgroup 
and Pl - P2 to a similar representation of the Singer cycle of a suitably em
bedded copy of SL(2, 1Fq). 

For n ~ 4 the situation becomes progressively more complicated. Thus if 
n = 4 the primes l for which the cohomology is periodic are those dividing 
q2 + 1 (period 8) and q2 + q + 1 (period 6), and in these cases c;(p)(j = S, 4) 
provides a generator. 

3. Further Examples 

First consider the symplectic group Sp(2m, lFq ), for which the representa-· 
tion ring in the natural characteristic is generated by the exterior powers>.; 
of the identity representation acting the vector space JFr2m. Stably one knows 

that H* (BSp(oo), z) contains the subalgebra Z[p1, P2, ... ]/ {(q2k - l)PA: = o}, 
where Pk E H 4k is the kth symplectic Pontrjagin class (see [4]). Non-stably 
the situation is illustrated by 

Example (3). Sp(4,1Fq),p ~ 5. 

The group has order (q2 + l)(q + 1)2(q - 1)2q4, and we suppose that l is a 
prime distinct from 2 or p. The relations q2 + 1 = ( q ± 1) 2 =f= 2q show that l can 
divide at most one of the factors (q2 + 1), (q + 1) and (q - 1). In particular 3 
divides either (q + 1) or (q- 1) and a 3-Sylow subgroup is of "toral type" with 
rank equal to 2. In general we have 
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(i) l divides q - 1, and H*(G, Z)(t) is obtained by restriction to a maximal 
torus, 

(ii) l divides q + 1, and H*(G, Z)(t) is obtained by restriction to the subgroup 
SL ( 2, IF q) x SL ( 2, IFq) . Finally 

(iii)l divides q2 + 1, and an l-Sylow subgroup is generated by some power of 
the Singer cycle. 

If as before p describes the Brauer lift of the identity representation we 
have proved that netJen (Sp(4,IFq), Z) ®Z[l/2p) is generated by the symplectic 
Pontrjagin classes Pk(P), k = 1, 2. 

Example (4). G2(IFq), q ~ S. 

In his thesis [6] D. Green determines the structure of the cohomology ring 
ofG2(q) away from the primes 2,3 and p. Thus 

H* ( G2(q), z) ® z[ _!_] ~ z[ _!_ ][a, ,8) ® E(x) , 
6p 6p 

where the generators have degrees (respectively orders) equal to 4, 12, 15 (re
spectively q2 - 1, (q6 - 1), q2 - 1). Furthermore the even dimensional part 
is generated by Chern classes. The relation between the representations in 
characteristic O and the natural representation u mentioned in the introduc
tion is clearly a complicated one. In particular, if q = 5, the cohomology is 
periodic for l = 1, 31, and in both cases the period is 12. (Note that a makes 
no appearence, since q2 - 1 = 24.) The required 6th Chern class can be read 
off from the Big Red Book; in order to handle l = 31 we need the character 
x21 of degree 12096 = 26 • s 3 • 7. 

Tp.ere is a similar result for the twisted grpup 2 G2(IFq}, 
q = s2m+l. Here netJen(2G2(IFq},Z) ® z[l] ~ z[l][a,,8), where a and /3 have 
the same degrees as before and orders (q-1), (q3 + 1). Again the precise rela
tion between representations in characteristics O and 3 would be interesting. 

4. Real and Symplectic Versions of Rector's Theorem 

Theorem 2, quoted in section two, is the analogue in characteristic p to 
Atiyah's theorem on the completion of the representation ring of a finite group 
G over the complex numbers. This holds both for real and symplectic repre
sentations, although in the first case one must prove the original theorem in 
the framework of "representations with involution", and in the second ap
peal to Bott periodicity in the form K oi H (point) = KS pi (point), see [ 12]. In 
characteristic p, as lucidly explained by Quillen in the appendix to [9], one 
can also define Grothendieck groups of orthogonal and symplectic represen
tations, starting from homomorphisms p : G ~ Aut(IFfn) which respect a 
preassigned symmetric or antisymmetric bilinear form. From the point of 
view of K -theory one can define cohomology theories K OIF; ( ·) and KS pIF; ( ·) 
with coefficients given by the homotopy groups of the appropriate fibre F,pq. 
(At this point one makes essential use of the initial assumption that 'I is odd, 
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since one needs to use the fact that an odd tensor power of a symplectic bun
dle is symplectic.) The coefficients are listed in the following table, in which 
(r) denotes 71../r, see [5]: 

i (mod 8) 1ri (BO(lFq )+) 

0 (2) 
1 (2) EB (2) 
2 (2) 
s (q(Hl)/2 _ 1) 
4 0 
5 0 
6 0 

7 (q(Hl)/2 _ 1) 

The groups 1ri(BSp(lFq)+) can be calculated from 'KiH(BO(lFq)+); in par
ticular the copies of ?l/2 arise in dimensions 4,5,6 -compare the calculations 
of Fiedorowicz and Priddy already alluded to at the start of §3. 

THEOREM (4). There are fiat bundle honwmorphisms a, whose completions 
define isomorphisms 

& : ROlFq(G)"--+KOlFq(BG) and 

& : RSplFq(G)"--+KSplFq(BG), 

having the naturality properties of Theorem 1. 

Proof. We have the identifications ROlFq(G) = Ker(,J,q - 1), where ,t,q : 
RO(G)--+ RO(G) is the Adams operation on the classical real representation 
ring, and KOlFq(BG) = Ker(,J,q -1), where ,t,q is the correspondingoperation 
in real K-theory. For the first result see [9, 5.4.2], for the second [5, Corollary 
1.5]. Furthermore by taking the field in which we work to be sufficiently large 
we can ensure that ,t,q is an idempotent operator, under which, for example, 
RO(G) maps onto ROlFq(G). Consider the diagram 

ROlFq(G) --+ RO(G) RO(G) 

la' 
KOlFq(BG) --+ KO(BG) -+ KO(BG) , 

where a' is the flat bundle homomorphism for O(n)-bundles and a is its char
acteristic p analogue, defined as in [10, §3]. Complete the upper row with 
respect to the augmentation ideal in RO(G), i.e. first give ROlFq(G) the struc
ture of an RO( G)-module (using the surjective homomorphism ,pq)_ Comple
tion is left exact, so this gives the diagram 
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ROIFq(G)" -+ RO(G)" 
,p9-l 

RO(G)" -+ 

,p9-l 
l 0t.'" 

-+ KO(BG). KOlFq(BG) -+ KO(BG) 

The assertion of the theorem will follow once we show that the topologies on 
ROIF'q(G) as an /Ca and I1Fqa-module coincide. This follows from the identi
fication of t/Jq with the decomposition homomorphism d, again see [9, 5.4.2]. 

The symplectic argument is similar, using the bijection 0t.1
" in characteristic 

zero symplectic theory, constructed as already mentioned in [12]. In a way 
similar to that used in section two these isomorphisms, and their associated 
spectral sequences, can presumably be used to throw light on the orthogonal 
and symplectic representations of finite linear groups. 

DPMMS, 16 MILL LANE 
GB-CAMBRIDGE CB2 lSB 
E-MAIL: C.B.THOMAS@PMMS.CAM.AC.UK. 

REFERENCES 

[1] M. F. ATIYAH, Characters and the cohomology of finite groups, Publ. Math. !HES 9 (1961), 
23-64. 

[2] TH. BROCKER, T.TOM DrF.CK, Representations of compact Lie groups; Springer-Verlag (Heidel
berg), 1985. 

[3] D. CARLISLE, N. KUHN, Subalgebras of the Steenrod algebra and the action of matrices on 
trunooted polynomial algebras, J. Algebra 121 (1989), 370-387. 

[4] Z. FIEDOROWICZ, S. PRIDDY, Homology of classical groups over a finite field, Springer LN551 
(1976), 269-277. 

[5] E. FRIEDLANDER, Computations of K-theories of finite fields, Topology 16 (1976), 87-109. 
[6] D. J. GREEN, Thesis (Cambridge University, 1991). 
[7] B. HUPPERT, Endliche Gruppen I; Springer-Verlag (Heidelberg), 1966. 
[8] P. KLEIDMAN, M. LIEBECK, The subgroup structure of the finite classical groups, LMS Lecture 

Notes 129, Cambridge University Press (1990). 
[9] D. QUILLEN, The Adams Conjecture; Topology 10 (1970), 67-80. 
[10] D. REcTOR, Modular characters and K-theory with coefficients in a finite field, J. Pure and 

Appl. Algebra 4 (1974), 137-158. 
[11] A. A. SUSLIN, On the K-theory of local fields, J. Pure and Appl. Algebra 34 ( 1984), 301-318. 
[12] C. B. THOMAS, Maps between real classifying spa.ces, Math. Ann. 253 (1980), 195-203. 
[13] --. , Characteristic classes and 2-modular representations of some sporadic simple 

groups, Contemporary Math. 96 (1989), 303-318. 




