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THE TOP OF A SYSTEM OF EQUATIONS 

BY WOLMER V. VASCONCELOS* 

Dedicated to the memory of Professor Jose Adem 

Introduction 

Let R = k[x1, ... , xn] be a polynomial ring over a field k, and let f = fi, ... , 
f m be a set of polynomials in R. This paper seeks means· to determine the 
isolated zeros of the system of equations f = 0. The motivation stems from 
the fact that often those zeros are the 'most singular' ones. 

There are already techniques to accomplish this goal. For instance, in 
[2] methods are developed to compute radicals of ideals and which as a 
byproduct would isolate that set. It works by successively computing the 
higher dimensional components of the variety V(f) first. We look here for 
more direct means. An example of the results obtained is the following explicit 
formula (mod some restrictions on the characteristic of k): 

THEOREM (3.1). Let Ji, ... , fn E k[x1, ... , Xn] be a set of n polynomials, 
and let d be its Jacobian determinant. Then 

(fi, ... ,fn):d 

is the radical of the minimal primary components of dimension 0. 

The notation means that the elements of R which multiply d into (f) is an 
ideal (g1 , ... , gn) of a finite set of points. In addition, its excess multiplicities 
have been stripped away. This last feature is important when one wants to 
solve the system of equation by analytic methods, such as the path continua­
tion approach. 

To extend this to any ideal, we sketch a method to make slightly more 
effective the classical proof that ideals of k[x 1, ... , xn] are set-theoretically 
generated by n polynomials ([1], [8]). This means that for any ideal I there 
are elements f = {!1, ... , fn} with ft= -Jen. Since (f) and I have the same 
minimal prime ideals, the formula applied to f yields the isolated zeros of I. 

1. Regular sequences and radicals 

Before we outline the technique that will be used, we recall the definition 
of the Jacobian ideals attached to a given ideal I and of the socle of an algebra. 
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Let R = k[x1, ... , Xn], k is a perfect field, and let I= (Ji, ... , fm) be an ideal 
of R. We shall recall some basic properties of the module of Kahler differentials 
of the algebra A= R/ I. Our basic reference will be [5]. 

The module of k-differentials of the algebra A will be denoted by nA/k· 
Although this module is independent on how it is presented as a quotient of 
a polynomial ring, it can be conveniently described by the exact sequence of 
modules of differentials 

where dis the universal derivation: df = I:~=l -££dxi. 
The Jacobian ideals of I are the determinantal ideals of the matrix 

<p = (8(!1, ... 'fm)) mod I. 
8(x1, ... , Xn) 

We denote them by 

If r = codim I, the Jacobian ideal proper is the ideal of r x r minors of <p; it shall 
be denoted by J. Because the Ja(I) are the Fitting ideals of the module OA/k, 
they behave well with regard to many processes: localization, completion. 

Let (A, m) be a local algebra of dimension zero. The socle of A is the 
annihilator of m. For an example, let k be a field and let O =/-f E k[x] be 
a polynomial. Suppose that the characteristic of k does not divide the degrees 
of the irreducible factors off. The algebra A decomposes into a finite product 
of local algebras 

A= A1 X · · · X Ar, 

and the image of f'(x), the derivative of f(x), in each Ai generates its socle. 
This can be formulated as an explicit radical formula: 

y'(j) = (f):f' 

For more general algebras, it is not well known how to predict, from the 
generators and relations of the algebra, which elements will generate the socle. 
An important exception is the following result of Scheja and Storch [7]: 

THEOREM (1.1). Let k be a field and let A = k[[x1, ... , Xn]]/ I be a finite 
dimensional k-algebra. Assume dimk A is not divisible by the characteristic of 
k. Denote by J the Jacobian ideal of A. If A is a complete intersection then J 
generates the socle of A. Conversely, if k has characteristic zero and A is not a 
complete intersection then J = 0. 

By conveniently extending the notion of socles to generic socle generators, 
the following Nullstellensatz is given in [2] (see also [10], [11]): 
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THEOREM (1.2). Let I be an ideal whose primary components all have 
codimension m. Let {Ji, ... , f m} be a regular sequence in I, and let J0 be 
the Jacobian ideal of Io= CJ1, ... , fm). Then 

v'"i = Uo: Jo): ((Jo: Jo): I). 

Used repeatedly this result can pick out the isolated zeros of a set of 
equations by deleting the higher dimensional components, one at a time. But 
used with this purpose it is obviously very onerous since it will compute many 
unnecessary components. 

Partition of the unity 

This method to compute radicals requires an efficient mechanism to select 
regular sequences. Regular sequences can be found in generic combinations 
of the generators of an ideal. More precisely, if J = (f) = (f 1, ... , f m,) is an 
ideal of codimension g and cp = (cii) is a sufficiently generic m x g matrix with 
entries in k, then the entries of f • cp generate an ideal of codimension g. A 
drawback in this approach lies in the loss of whatever sparseness is present in 
the data, which is a resource which must be preserved. A much more effective 
approach in case of sparse data is given in [3]. 

Another source of regular sequences in ideals are some of the characteristic 
sets of Wu and Ritt (see [ 4]). But this aspect of the subject deserves additional 
examination. 

We discuss next a mechanism that calls on the algorithm above itself to 
generate its own regular sequences. Actually it only produces an ideal which 
is locally a· complete intersection; but this is obviously all that is required to 
use Theorem (1.2). It is more of an approach than an algorithm proper. It 
permits however a great deal of manual control. Its shape and usage are based 
on the following elementary observations. 

PROPOSITION (1.3). Let R be a reduced Noetherian ring with n minimal 
prime ideals. Let I be an ideal of codimension at least one. Then 

(a) For a EI there exists b E J n (0: a) such that a+ bis a regular element. 
(b) If a#- 0 for each 0 #- b E J n (0: a), (0: a) #- (0: (a+ b)). 
(c) Iteration leads to a regular element contained in I in at most n steps. 

Proof (a): Any prime ideal~ ~ (a, In (0: a)) either contains I, which has 
codimension at least one, or will contain (a, (0: a)). Since R is reduced the 
latter has also codimension at least 1. This means that there exists a regular 
element of the form ra + b, with b E J n (0: a). Again using that R is reduced, 
a + b is regular as well. 

(b): This is immediate since any annihilator of a+ b must annihilate both 
a and b. 
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(c): Let a1, a2, ... , ar be obtained by this process: in the notation above, 
we repeatedly set a= a1 + · · · + aj-1, b = ai. The descending chain of ideals 

gives rise to a similar sequence in the total ring of fractions S of R. Since S 
has a composition series of length n, the last ideal vanishes if r ~ n. • 

REMARK (1.4). In practice this runs as follows. Suppose Ji, ... , fs E I 
have been chosen so that they generate an ideal of codimension s < height I. 
Let L = ✓CJ1, ... , j 8 ). We follow the scheme above, but with colon ideals 
computed relative to L. We note by !s+1 the element of I obtained from the 
lift. 

The measure of manual control over the sparseness comes in because in 
selecting the ai 's we may also use reduction modulo the previously chosen ai 

for i < j. 

2. The top radical of an ideal 

Let I be an ideal of codimension m, minimally generated by m + r elements; 
r is the deviation of I. According to Krull's Theorem, any minimal prime of 
I has codimension at most m + r. We are going to key on those primes. (A 
cloud of ambiguity lies around the word minimal: this being· a local question, 
we take it to be the supremum of the least number of generators of I in all 
the localizations of R.) 

Given a primary decomposition of I, we collect into Ii those primary 
components of a given codimension m + i. 

Definition (2.1). In the representation 

I = Io n Ii n · · · n Ir n · · · , 

Ii is called the ith equi-dimensional component of I. 

This decomposition can be refined by breaking up each Ii into two pieces: 
II, corresponding to minimal primes of I, and If derived from the embedded 
primes of I. If one of these is not present, such as It or II, i > r, by abuse of 
notation we set it equal to R. 

The radical of I is then given by the expression 

./J=fron/rin•-•nPf.. 

It suggests that one focus on obtaining formulas for the ../fI's. 
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Definition (2.2). Given an ideal I of deviation r, -JI[. is the top radical of I 
(Notation: topradical(J) .) 

Conjecture (2.3). Let I be an ideal of codimension m and deviation r, and 
denote by L the ideal generated by the minors of size m + r of the Jacobian 
matrix of I. Then 

topradical (J) = I: L. 

The following provides a measure of support (assume from now on that k 
is a field of characteristic zero): 

THEOREM (2.4). This conjecture holds if every embedded prime of I has 
codimension at most m + r. In particular it holds if v(I) ~ proj dim R/ I. 

Proof We have 

I: L = Uo: L) n (If: L) n (If': L) n · · · n U;: L) n (J:: L), 

since by assumption I'/ = R for j > r. We claim that all the quotients on 
the right side, with the possible exception of 1;: L, are equal to R. This will 
suffice to establish the claim since at each minimal prime p of 1;, we have 
Ir.i = U;)r.i and Lr.i is nothing but the Jacobian ideal of U;)r.i; we may then 
apply Theorem (1.2). 

We begin by showing that 1::: L = R. If this is not so, any associated prime 
of the left-hand side has codimension m + r. Let p be then one of its primes 
and localize R (but keep the notation); denote also A = R/ I. (We warn the 
reader about a possible confusion: Sometimes we shall say that an ideal is 
zero when it would be more appropriate•to say it is zero mod J.) 

As before we may assume that A= k[[x 1, ... , xn]]/ I, and pis the maximal 
ideal of A. We conside~ the Jacobian ideals of the Artin algebras Bs = A/p 8

• 

Because A has dimension > 0, L will map into the Jacobian ideal of B s, for each 
s. If Bs is not a complete intersection, by Theorem (1.1), its Jacobian ideal 
vanishes and thus L c p 8

• On the other hand, if Bs is a complete intersection 
its socle must be ps-l Bs and LC ps- 1 . This means that 

which by Krull's intersection theorem implies L = 0. 
The case of a component such as 1;: L, for j < r, or 1;1 : L, 1 ::s; j < r, is 

easier to deal with. In fact, if p is a minimal prime of say 1; and (Ii) P is not 
a complete intersection, then already the-m + j-sized minors of the Jacobian 
matrix of (Jj)P vanish by Theorem (1.1). On the other hand, if U!i)r.i is a 
complete intersection, the rank of its Jacobian matrix ism+ j < m + r, so L 
vanishes at (Jj)P anyway. 
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The last assertion follows from the Auslander-Buchsbaum formula [6] and 
standard facts on depth. I 

The natural place to first examine Conjecture (2.3) is among almost com­
plete intersections. These must be considered with care in view of [9, Propo­
sition 4] asserting that many such ideals will satisfy the conditions of the 
previous theorem. 

3. The top of a system of equations 

One application of the previous result is the following explicit formula that 
retrieves exactly the isolated zeros of a set of polynomials. 

THEOREM (3.1). Let Ji, ... , f n E k[x1, ... , Xn] be a set of n polynomials, 
and let A be its Jacobian determinant. Then 

is the radical of the minimal primary components of dimension 0. 

To illustrate, suppose I= (f(x, y)g(x, y), f(x, y)h(x, y)), where f(x, y) is the 
gcd of I. Denote by A the Jacobian determinant of these two generators of I, 
and denote by Ao the Jacobian of g, h. A simple calculation shows that 

J: A= ((g, h): Ao): f, 

and therefore 
J:A=~:f, 

in agreement with the assertion of the theorem. 
Let us recall a result of Eisenbud-Evans [1] and Storch [8]: 

THEOREM (3.2). Let S be a Noetherian ring of dimension d - 1. Then the 
radical of any ideal I of R = S[x] is the radical of ad-generated ideal. 

Their proof is fairly constructive already. It is based on the notion of 
pseudo-division of polynomials and an appropriate induction argument on 
the dimension of S. We will just rewrite it in sketching out some moves to 
make it more amenable for a Grabner basis computation. 

We assume that S is a reduced ring. Let I = (f 1, ... , f m). In their proof it is 
argued that there exists a regular element u of S and an element h1 of J such 
that 

u ·I~ (h1). 

The issue is how u is to be found. We employ the argument of Proposition (1.3). 
Given two elements f, g of I, with deg f(x) 2:: deg g(x) (as polynomials in x), 
let a be the leading coefficient of g(x). For some power of a we have 

a 8 
• f = q · g + r, deg r < deg g. 
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Replace then f by r and keep processing the list of generators of I until we 
have a nonzero element a1 ES such that a1 ·I~ (g1), with 91 E J. 

Repeat this step on the generators of In (0: a1), if the latter is nonzero. 
This produces a sequence a1, ... , ar ES, with corresponding elements 9i E J 
such that 

ifi#j 
is regular on -S 

Set now 
u = a1 + a2 + · · · + ar 

h1 = a191 + a2g2 + · · · + ar9r, 

and consider the image I* of I in (S / J(u)) [x]. By induction select h2 , 

hd E J whose images generate an ideal with the same radical as I*. 
It suffices to verify 

Vf = ✓Chi, h2, ... , hd). 

... , 

Let p be a prime ideal with (h1, ... , hd) ~ p. If u E p, by hypothesis I ~ p. 
Assume otherwise; then ai (j. p for some i which implies that ai E p for j # i. 
Since h1 E p, this means that 9i E p which from the equation ai · I ~ (gi) 
finally implies I ~ p, as desired. 

REMARK (3.3). This arrangement leaves much to be desired: There is a 
great deal less of control than that afforded by Proposition (1.3). 
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