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ON THE WHITEHEAD SQUARE, CAYLEY-DICKSON ALGEBRAS, 
AND RATIONAL FUNCTIONS 

BY F. R. COHEN* 

Jose Adem was interested in certain algebras known as the Cayley-Dickson 
algebras [1,4,5,6,7]. Namely, given an algebra R with involution, there is a 
"doubling process" due to L.E. Dickson [ 4] which gives R EB R the structure of 
an algebra with involution. If R is specialized to the real numbers with trivial 
involution, then Dickson's doubling process provides an explicit multiplication 
on ~ 2

n which is, of course, not norm preserving if n 2:: 4. One feature of these 
algebras is that they are closely tied to a classical open problem in homotopy 
theory, the so-called strong form of the Kervaire invariant conjecture [2,9]. 
It is the purpose of this note to elaborate on this connection as described 
in [3]. There are explicit models for studying this last conjecture obtained 
by considering relations between the Cayley-Dickson algebras and spaces of 
rational functions. In particular, there are specific and elementary maps which 
are potentially useful in the study of this problem 

The motivation for writing this note is the interest expressed by several 
people even though this program is unfinished. A deeper analysis is joint 
work in progress with Wu-Teh Hsiang. We emphasize that the results in 
the current paper are both elementary and immediate; these results merely 
provide a framework for further study. 

1. Cayley-Dickson algebras 

We first recall a construction due to L.E. Dickson [ 4] and used by J. Adem to 
construct non-singular bilinear maps [1]. Let R be an algebra with involution 
X· Define CD(O, R) = R, and 

CD(l, R) = R EB R 

as a left R-module and give CD(l, R) the structure of a (possibly non­
associative) ring with conjugation x by the formulas 

(a, b) • (c, d) = (a• c - x(d) • b, da + b • x(c)) and 

x(a, b) = (xa, -b) 

for (a, b) and (c, d) in CD(l, R). Inductively, define CD(n, R) to be CD(l, R') 
where R' = CD(n - 1, R) if n > 1. 

*Partially supported by the NSF. 
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EXAMPLE (1.1) If R = IR, the real numbers with xa = a, then C D(l, IR) is 
isomorphic to the ring of complex numbers, CD(2, IR) is isomorphic to the ring 
of quaternions, and C D(3, IR) is isomorphic to the ring of Cayley numbers. 

In this note, we restrict attention to CD(n, IR). In Adem's paper [1], he 
studies a basis { eo, ... eq}, q = 2n - 1, for CD(n, IR). This basis satisfies the 
multiplicative properties 

(1) eo = 1 

(2) e7 = -1 if i > 0 

(3) if i, j > 0, then eiej = -ejei = a-(i, j)ek 

for a-(i, j) = ±1 and some k = J(i, j). Thus if a= ~i aiei and b = ~i biei, then 

a-b = (aobo- Laibi)eo+ L)aobk+akbo+ L a-(i,j)(aibj-ajbi)}ek. 
i>O k2:1 O<i<j,eiej=a(ij)ek 

We collect some consequences below. 
The following observation is useful as in [3]. 

LEMMA (1.2) If a is in CD(n, IR), then a2 = 0 if and only if a= 0. 

Proof By the formulas above, 

a2 = ( a~ - L a7) eo + L(2aoak)ek. 
i>O k2:l 

Thus, if a2 = 0, a~ - ~i>O a~ = 0 and 2aoak = 0 for k 2:: 1. Thus a = 0. 

Guillermo Moreno has pointed out that a more conceptual proof of Lemma 
(1.2) follows by decomposing a into its real and imaginary parts together with 
McCrimmon's formula given in the proof of Lemma (1.3) below. 

We are indebted to Ted Erickson for pointing out the next lemma which is 
based on work of K. McCrimmon [6]. 

LEMMA (1.3) (T.Erickson) If a · b = 0 in C D(n, IR), then ao = bo = 0. 

Proof Following McCrimmon [6], define N(a) = a · x(a) and T(a) = a + 
x(a) = a0 to obtain the formulas a2 -T(a)a + N(a)-1 = 0 and N(a 2 ) = (N(a))2. 
Further define N(a, b) = T(a · xb) to obtain the equations 

N(a · b, c) = N(a, c · xb), 

N(ab, a)= N(a)T(b) = (ba, a), and 

T((a · b) · c) = T(a · (b · c)). 
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Thus if a · b = 0 and a, b -/= 0, then 

0 = N(0, a) = N(a · b, a) = N(a)T(b). Hence b0 = T(b) = 0. 

A similar calculation gives ao = T(a) = 0 and the lemma follows. 

The next lemma follows immediately from the multiplicative properties of 
the ei and Lemma (1.3). Recall that a= Li aiei and b = Li biei with a and b 
in CD(n, IR). Write c = Li ciei =a· b. 

LEMMA (1.4) The following formulas hold in C D(n, IR): 

i>O 

(2) if k ?:. 1, 

(3) a· b = 0 if and only if 

(i)a 0 = b0 = 0, 

(ii) L aibi = 0, and 
i>O 

(iii) 

REMARK. Although (1.4) is an immediate consequence, the orthogonality 
relations in (1.4)(3) provide an elementary description of zero divisors in 
terms of simultaneously vanishing quadratic forms. A deeper' analysis of the 
properties of the Cayley-Dickson algebras are given by P. Eakin and A. Sathaye 
·in [5]. It follows quickly from their work that the space of ordered pairs (a, b) 

with (1) a, bin CD(4, IR), (2) llall = llbll = 1, and (3) a· b = 0 is homeomorphic 
to the Lie group G2 • Paul Yiu has discovered an independent proof of this fact 
[11]. We finish this remark with an example of (l.4)(3)(iii). Let k = I, then 
one has 

L(-l)1+a(j\a2i+1b2i - a2jb2j+1) = 0 
j2::1 

where a(j) denotes the number of ones in the dyadic expansion of j. 

2. Unimodular rows and rational functions 

Fix an integer q and let fi(z) be in the polynomial ring C[z] with fi(z) = 
LJ=o aj,izi. A row <I> = (Jo, ... , f n) is unimodular provided fo(z), ... , f nCz) 
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do not simultaneously vanish for any value of z. Any unimodular row cI> 
determines a continuous function 

given by cI>(z) = L where L is the line through the origin in en+ i containing 
(Jo(z), ... , J nCz)). In [8], G. Segal defined the space Ratq(CP'i) which is 
the space of unimodular rows (Jo, ... Jn) with aq,i = 1. There is a related 
continuous function 

S: Ratq(CPn) --+ a 2cpn 

defined by S(cI>)(z) = cI>(z). The space n2cpn is not connected; the map S 
takes values in azq) cpn corresponding to maps of degree q. Segal proved 
that S: Ratq(CPn) --+ azq)cpn is a homotopy equivalence through a range 
depending on n and increasing with q. 

Next, observe that if Ai is any element in the principal ideal generated by 
Jo (z), then (Jo, Ji+ )q, h + >.2, ... , J n + An) is again a unimodular row. Thus one 
obtains operations on the space of unimodular rows. If n 2: 1, let r: s2n+i --+ 

s2n+ i be any choice of orientation preserving homotopy equivalence such 
that r(x 0, xi, 0, ... , 0) = (1, 0, ... , 0) for all xi such that x~ + x~ = 1. An 
example of such an r which we shall use later is as follows. Let k 2: 3 and let 
sk-i = {(xo, ... , Xk-i) E JRk Ix~+ ... + xLi = l}. Definer by the formula 

r(x X ) = (2x2 + 1, >.xo, >.xi, ... , >.xk-2) if O 2 x2 2 -1 
{ 

(1, 0, ... , 0) if 1 2 X3 2 0 

O,···, k-i ~ 
with>.= 4x2 . 

x2-i 

· Let t denote the operation on unimodular rows given by 

t(Jo, • • •, J n) = (Jo, Ji - Jo, h - Jo,•••, J n - Jo). 

Define 
0: Ratq(CPn) --t il 2S2n+l 

as follows. Let z be a point in S2 = (C U { oo}. Then 

0(Jo, ... , J n)(z) = lltUoCz), ... ,fnCz))III z 00 

{ 
r [ t(fo(z), ... f nCz)) ] if =/ 

(1, 0, ... '0) if z = 00. 

We remark that composition with r is essential to obtain a continuous map 

1. t(Jo(z), · · · 'J nCz)) · 11 d fi d d d d h h . f as 1m II ( -t ( ) f ( )) II 1s not we - e ne an epen s on t e c 01ee o 
Z---+CXJ t JO Z , .•. , n Z 

path. 
Our main interest here lies with Rat 2(CPn), but much of the remainder 

applies to Ratq(CPn) for q 2: 2. We use Rat 2(CPn) in conjunction with the 
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natural multiplication in C D(m, JR). Thus it is necessary to give real analogues 
of Rat2 ( cpn). 

Here, let JR[x, y] denote the polynomial ring over JR with indeterminates x 
and y. Given c > 0, define 

K(n, c) = {(go(x, y), ... , 92n-1Cx, y)) I gi(x, y) satisfy conditions (1)-(6) below.} 

(1) go(x, y) = x 2 -y 2 + co 
(2) g1(x, y) = 2xy + c1 
(3) 92ix, y) = a2jX - b2jY + c2j,j ~ 1 

(4) 92j+1Cx,y) = b2j~ + a2iY + c2j+1,j ~ 1 

(5) lcol, lc1I < c, and 
(6) go(x, y), ... , 92n-1 (x, y) do not simultaneously vanish. 

The space K(n, c) is the natural real analog of Rat2(<CPn) with t operating 
on it. The parametrized version is useful in what follows. By high school 
algebra, we have 

LEMMA (2.1) If c > 0, the space K(n, c) is homotopy equivalent to 
Rat 2(CPn) and thus if n ~ 2, K(n, c) is homotopy equivalent to the (4n - !)­
skeleton of 0 2 s2n+ 1. 

Proof. Define H: I x Rat2(<CPn) --), Rat2(<CPn) by H(t, Jo, ... , Jrn))(z) = 
(f O (z + tA), ... , J n (z + tA)) where Ji (z) = z2 + Aiz + Bi and A = -t. Using the 
operation t, and the homotopy H, we see that the space of unimodular rows 
(Jo, ... J n) with Jo(z) = z2 + Do and J/z) = Eiz + Fi, i > 0, say Rat2(CPn), 
is homeomorphic to a strong deformation retract of Rat 2(<CPn). This suffices 
by [8]. 

3. On the divisibility of the Whitehead square 

Let wk denote the Whitehead product [ik, ik] where ik is a choice of funda­
mental cycle for the k-sphere Sk. The element wk is the Whitehead square; 
it has been known for many years(~ 35) that wk is not divisible by 2 if k is 
not one less than a power of 2. The strong form of the Kervaire invariant 
conjecture is that Wk is divisible by 2 if k = 2n - 1 [2, 9]. In this section, we 
use the structures in sections 1-2 to give a reformulation of this conjecture in 
terms of specific formulas. A naive attempt to solve the conjecture is shown to 
fail because of the geometry of the zero divisors described in Lemma (1.4)(3)). 

The ingredients here are two self-maps of 0 2Sk where k = 2n - 1. Thus Sk 
may be taken to be the unit sphere in CD(n, JR). The first self-map is induced 
,by Sq: CD(n, JR) --), CD(n, JR) given by Sq(x) = x · x. 
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LEMMA (3.1) The map Sq restricts to a self-map of the unit sphere Sk which 
preserves e0 = 1. Furthermore, Sq is of degree 2. 

Proof If x = LXiei, then Sq(x) = (x~ - Lxneo + L2xoxiei as in 
i2:0 i>O i>O 

the proof of (2.1). If x is in the unit sphere, then x5 + ... + xf = 1 and 
Sq(x) = (2x~ -1, 2xox1, ... , 2xoxk). Since k is odd, the antipodal map A on Sk 
is homotopic to the identity and A· Sq(x) = (1 - 2x5, -2xox 1, ... , -2x 0 xk+1) 
which is the map of degree 2 given in the proof of Lemma (5.4) [10, page 14]. 
Thus Lemma (3.1) follows. 

Thus one obtains a self-map of fl 2Sk given by fl 2(Sq). The second map is 
the H-space squaring map 2: fl 2Sk -+ fl 28k for which we given an explicit 
formula in terms of the product structure in CD(n, JR). 

Let 82 = C U { oo} and define H: J x 82 -+ S2 by the formula 

{ 

z if o ~ izl ~ 1;2 
(l- 2t+ 2tlzl) if 1/2 <_ izl <_ 1 and t < 1 H(t, z) = 1-t z 
1:_t if 1 ~ izl and t < 1, and 
oo otherwise. 

Next, let e = (1, 0) and define 

Hi(t z) = { H(t, z - e) + e if z-/= oo 
' oo if z = oo, and 

H
2
(t, z) = { H(J, z + e) - e ~f z-/= oo 

00 1f Z = 00. . 

Let 0 be an element of fl 2 3k. Thus 0 is a function from 8 2 to 3k with 
0(00) = (1, 0, ... , 0). Consider 

LEMMA(3.2) 

G(t, z)(0) = {0 o H1(t:, z)} · {0 o H2(t, z)}. 

(1) G(0, z)(0) = fl 2(Sq)(0). 

(2) G(l, z)(0) = 2(0). 

Proof. Since H(0, z) = z, G(0, z)(0) is by definition fl 2 (Sq)(0). Also, 
G(l, z)(0) is the definition of the H-space squaring map since 0 o Hi(l, z) = 
(1, 0, ... , 0) if 0 o Hi (1, z) -/= (1, 0, 0, ... , 0) if i -/= j. 

The next lemma was pointed out in [3, Prop. 11.2]. 
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LEMMA (3.3) If k = 2n - 1 and n ~ 3, then Wk is divisible by 2 provided 
the maps 

2 and o,2(Sq): n,2 sk -+ n,2 sk 

are homotopic when restricted to the ( 4k - 3)-skeleton. 

Indeed, the two statements in 3.3 are equivalent [3,9]. By 2.1 and 3.3, the 
following is immediate. 

PROPOSITION (3.4) If k = 2n -1, then Wk is divisible by 2 if and only if the 
composites 

K C ; 1, c) --+ 112 skn_:<~t 112 sk and 
KC; 1, c) --+ n 2sk_!_.n2sk 

are homotopic. 

The construction G(t, z) is a naive attempt to construct such a homotopy 
which, as expected, fails. 

PROPOSITION (3.5) If k = 2n - 1 and n ~ 4, then there are values for z and 
t such that G(t, z) = 0. 

Proof. It suffices to give elements 0 in K( k21, c:) such that 

0 · Hi(l/2, z) = e1 + e12 and 

0 · H2(1/2, z) = e7 - em 

as (e1 + e12)(e7-e10) is zero by (1.4). These are elementary and the proposition 
follows. 

We close with some remarks. Using (1.4), one can measure how the product 
homotopy fails. The methods here then suggest specific ways to remedy 
this failure. The product homotopy can be changed "locally" to avoid the 
zero divisors described in (1.4). It remains open whether there is a global 
modification of G(t, z) which satisfies (3.4). 
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