VECTOR BUNDLE EPIMORPHISMS AND SUBMERSIONS

By Tsutomu Yasui
To the memory of professor José Adem

§1. Introduction

Given two vector bundles ξ over X and ζ over Y, a vector bundle epimorphism (hereafter, we call it an epimorphism) of ξ to ζ is a continuous fiber preserving map of ξ to ζ such that its restriction to each fiber is a linear epimorphism. For a (continuous) map $f: X \rightarrow Y$, the set $\operatorname{Epi}(\xi, \zeta)_{f}$, endowed with compact open topology, denotes the set consisting of all epimorphisms of ξ to ζ covering f, and $\operatorname{Epi}[\xi, \zeta]_{f}$ denotes its homotopy set, that is, the set of path components of $\operatorname{Epi}(\xi, \zeta)_{f}$.

In this note we first study the set $\mathrm{Epi}[\xi, \zeta]_{f}$ and prove the following theorem in §3:

Theorem (A). Let ξ be an m-plane bundle over a CW-complex X and ζ an n-plane bundle over $Y(m>n)$, both admitting Riemannian metrics and let $f: X \rightarrow Y$ be a map. Then there exists a map $F: \operatorname{Epi}[\xi, \zeta]_{f} \rightarrow$ $\left[X, B O(m-n) ; \xi-f^{*} \zeta\right]$ such that it is surjective if $\operatorname{dim} X<m$ and is bijective if $\operatorname{dim} X<m-1$.

Here $\xi-f^{*} \zeta: X \rightarrow B O$ stands for the classifying map of the stable bundle $\xi-f^{*} \zeta$ and $[X, B O(k) ; g]$ means the homotopy set of liftings of $g: X \rightarrow B O$ to $B O(k)$, where $B O(k) \rightarrow B O$ is the universal $O / O(k)$-bundle.

Our interest in the study of epimorphisms of vector bundles is due to the following fact. For a map $f: M \rightarrow N$ between connected C^{∞}-manifolds without boundary, let $S[M, N]_{f}$ be the regular homotopy set of submersions homotopic to f, and let Epi $\left[\tau_{M}, \tau_{N}\right]_{[f]}$ be the homotopy set of epimorphisms of τ_{M} to τ_{N} covering maps homotopic to f, where τ_{M} for a manifold M means its tangent bundle. Then Phillips [2] has shown that if M is open then the differential map d induces a bijection $d_{*}: S[M, N]_{f} \rightarrow \operatorname{Epi}\left[\tau_{M}, \tau_{N}\right]_{[f]}$. On the other hand, there exists a $\pi_{1}\left(N^{M}, f\right)$-action on Epi $\left[\tau_{M}, \tau_{N}\right]_{f}$ such thatEpi $\left[\tau_{M}, \tau_{N}\right]_{f} / \pi_{1}\left(N^{M}, f\right)=$ $\operatorname{Epi}\left[\tau_{M}, \tau_{N}\right]_{[f]}$ (see Theorem (2.2)). Therefore studying epimorphisms will play an important role in the investigation of submersions of open manifolds. In fact, we will get a result concerning submersions of $P^{m}-P^{k-1}$ to P^{n} in the following theorem, where P^{r} and ξ_{r} denote the real projective r-space and its canonical real line bundle, respectively.

Theorem (B). Assume that $m>k \geq n \geq 1, k>1$ and that if $k=n$ then $m+1<2 n$. Then for a map $f: P^{m}-P^{k-1} \rightarrow P^{n}$, the cardinality of the set
$S\left[P^{m}-P^{k-1}, P^{n}\right]_{f}$ is given by

$$
\# S\left[P^{m}-P^{k-1}, P^{n}\right]_{f}= \begin{cases}1 & \text { if } k>n \\ \infty & \text { if } k=n, m \equiv n \equiv 0(2) \text { and } f^{*} \xi_{n} \text { is trivial } \\ 2 & \text { otherwise } .\end{cases}
$$

§2. Preliminaries

For an m-plane bundle ξ over a CW-complex X, and an n-plane bundle ζ over Y, and for a map $f: X \rightarrow Y$, let Epi $[\xi, \zeta]_{f}$ and Epi $[\xi, \zeta]_{[f]}$ denote the homotopy sets of epimorphisms of ξ to ζ covering, respectively, f and maps homotopic to f, and let $\mathscr{B}(\xi, \zeta ; n)=(q: B(\xi, \zeta ; n) \rightarrow X \times Y)$ denote the bundle with fiber $M^{*}(n, m ; n)$, the space consisting of all real $n \times m$-matrices of rank n, and let $\mathscr{B}_{f}(\xi, \zeta ; n)$ denote the pull-back of $\mathscr{B}(\xi, \zeta ; n)$ along $\left(1_{X}, f\right): X \rightarrow X \times Y$ (see [5, §1]). We note that the fiber of $\mathscr{B}(\xi, \zeta ; n)$ at (x, y) is the space of all epimorphisms of the fiber ξ_{x} of ξ at x to the fiber ζ_{y} of ζ at y (see also [5, §1]). Given an epimorphism $g: \xi \rightarrow \zeta$ covering f, let $\phi_{f}(g): X \rightarrow B(\xi, \zeta ; n)$ be the map defined by $\phi_{f}(g)(x)=g \mid \xi_{x}: \xi_{x} \rightarrow \zeta_{f(x)}$. Then in [5] we have shown the following results:

Proposition (2.1). ([5, Proposition 2.1]). Let $\Gamma\left(\mathscr{B}_{f}(\xi, \zeta ; n)\right.$) be the homotopy set of cross sections of $\mathscr{B}_{f}(\xi, \zeta ; n)$. Then, ϕ_{f} induces a bijection $\phi_{f_{*}}: \operatorname{Epi}[\xi, \zeta]_{f} \rightarrow \Gamma\left(\mathscr{P}_{f}(\xi, \zeta ; n)\right)$.

Given an epimorphism $\psi_{0}: \xi \rightarrow \zeta$ covering f and a self-homotopy $f_{t}: X \rightarrow Y$ of f, there exists a homotopy of epimorphisms $\psi_{t}: \xi \rightarrow \zeta$ covering f_{t}. We define a right $\pi_{1}\left(Y^{X}, f\right)$-action on $\operatorname{Epi}[\xi, \zeta]_{f}$ by $\left[\psi_{0}\right]\left[f_{t}\right]=\left[\psi_{1}\right]$.

Theorem (2.2). ([5, Theorem 6.1]). The natural map Epi[$\xi, \zeta]_{f} \rightarrow$ $\operatorname{Epi}[\xi, \zeta]_{[f]}$ induces a bijection $\operatorname{Epi}[\xi, \zeta]_{f} / \pi_{1}\left(Y^{X}, f\right) \cong \operatorname{Epi}[\xi, \zeta]_{[f]}$.

Let θ_{Z}^{k} denote the trivial k-plane bundle over a space Z. Then the natural inclusion induces a map $I_{f_{*}}: \operatorname{Epi}[\xi, \zeta]_{f} \rightarrow \operatorname{Epi}\left[\xi \oplus \theta_{X}^{k}, \zeta \oplus \theta_{Y}^{k}\right]_{f}$.

Theorem (2.3). ([5, Theorem 5.1]). The map $I_{f_{*}}$ has the following properties:

1. The $\operatorname{map} I_{f_{*}}$ is $\pi_{1}\left(Y^{X}, f\right)$-equivariant,
2. $I_{f_{*}}$ is surjective if $\operatorname{dim} X<m$ and is bijective if $\operatorname{dim} X<m-1$.

§3. Proof of Theorem (A)

We assume that η and ζ are, respectively, an $(m+k)$-plane bundle over a CW-complex X and an n-plane bundle over $Y(m>n)$, both of which admit Riemannian metrics. For a map $f: X \rightarrow Y$ and any epimorphism $\tilde{f}: \eta \rightarrow \zeta$ covering f, the kernel of \tilde{f} is an ($m-n+k$)-plane subbundle of η, which
we denote by $\operatorname{ker} \tilde{f}$. The bundle $(\operatorname{ker} \tilde{f})_{k}$ means the orthonomal k-frame one associated with $\operatorname{ker} \tilde{f}$.

We now define a bundle map $J_{f}:(\operatorname{ker} \tilde{f})_{k} \rightarrow \mathscr{B}_{f}\left(\eta, \zeta \oplus \theta_{Y}^{k} ; n+k\right)$ as follows: For an element $v=\left(v_{1}, v_{2}, \ldots, v_{k}\right) \in(\operatorname{ker} \tilde{f})_{k}$ at $x \in X$, we denote by $L(v)$ and $L(v)^{\perp}$, respectively, the vector subspace spanned by v and its orthogonal complement in the fiber $(\operatorname{ker} \tilde{f})_{x}$ of $\operatorname{ker} \tilde{f}$ at x. Since $\eta=\operatorname{ker} \tilde{f} \oplus(\operatorname{ker} \tilde{f})^{\perp}$, where the bundle $(\operatorname{ker} \tilde{f})^{\perp}$ is the orthogonal complement of $\operatorname{ker} \tilde{f}$ in η, the fiber η_{x} is expressed in the form $\eta_{x}=L(v) \oplus L(v)^{\perp} \oplus(\operatorname{ker} \tilde{f})_{x}^{\perp}$. Let

$$
J(v): \eta_{x} \rightarrow \zeta_{f(x)} \oplus R^{k}
$$

be the linear map given by

$$
\begin{gather*}
J(v)\left(\sum_{i=1}^{k} a_{i} v_{i}+a+b\right)=\left(\tilde{f}(a), a_{1}, \ldots, a_{k}\right) \tag{3.1}\\
\text { for } a \in(\operatorname{ker} \tilde{f})_{k}^{\perp}, b \in L(v)^{\perp} \text { and } a_{i} \in R(1 \leq i \leq k)
\end{gather*}
$$

The map $J(v)$ is clearly an epimorphism and hence $J(v) \in B\left(\eta, \zeta \oplus \theta_{Y}^{k} ; n+k\right)$. Thus the following map J can be defined:

$$
J:(\operatorname{ker} \tilde{f})_{k} \rightarrow \mathscr{B}\left(\eta, \zeta \oplus \theta_{Y}^{k} ; n+k\right) \quad \text { covering } \quad 1_{X} \times f
$$

This map J is continuous, for J can be expressed locally as

$$
\begin{equation*}
J: U \cap f^{-1}(V) \times V_{m-n+k, k} \rightarrow U \times V \times M^{*}(n+k, m+k ; n+k) \tag{3.2}
\end{equation*}
$$

given by

$$
J(x, v)=\left((x, f(x)),\left(\begin{array}{cc}
h f g^{-1}\left(e_{1}\right), \ldots, h f g^{-1}\left(e_{n}\right) & 0 \tag{3.3}\\
0 & v^{t}
\end{array}\right)\right)
$$

where (U, g) and (V, h) are charts of $(\operatorname{ker} \tilde{f})^{\perp}$ at x and of ζ at $f(x)$, respectively, $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of R^{n} and v^{t} is the transpose of a matrix v. Therefore we have a bundle map

$$
J_{f}:(\operatorname{ker} \tilde{f})_{k} \rightarrow \mathscr{B}_{f}\left(\eta, \zeta \oplus \theta_{Y}^{k} ; n+k\right) \quad \text { covering } 1_{\mathbf{X}}
$$

defined by (3.1), or equivalently by (3.3).
From (3.2)-(3.3), the restriction $J_{f, x}$ of J_{f} to the fiber at x is a map

$$
J_{f, x}: V_{m-n+k, k} \rightarrow M^{*}(n+k, m+k ; n+k)
$$

given by

$$
J_{f, x}(v)=\left(\begin{array}{cc}
A & 0 \\
0 & v^{t}
\end{array}\right)
$$

where A is nonsingular, because it is the matrix of the linear map $\tilde{f}:(\operatorname{ker} \tilde{f})_{x}^{\perp}$ $\rightarrow \zeta_{f(x)}$ relative to some bases of $(\operatorname{ker} \tilde{f})_{x}^{\perp}$ and $\zeta_{f(x)}$. Therefore $J_{f, x}$, and hence J_{f}, is an ($m-n+k-1$)-equivalence. If we write the homotopy set of cross sections of $(\operatorname{ker} \tilde{f})_{k}$ as $\Gamma\left((\operatorname{ker} \tilde{f})_{k}\right)$, then we gei a map $J_{f_{*}}: \Gamma\left((\operatorname{ker} \tilde{f})_{k}\right) \rightarrow$ $\Gamma\left(\mathscr{B}_{f}\left(\eta, \zeta \oplus \theta_{Y}^{k} ; n+k\right)\right)$ which is a bijection if $\operatorname{dim} X<m-n+k-1$. Regarding the bijection $\phi_{f_{*}}: \operatorname{Epi}\left[\eta, \zeta \oplus \theta_{Y}^{k}\right]_{f} \rightarrow \Gamma\left(\mathscr{B}_{f}\left(\eta, \zeta \oplus \theta_{Y}^{k} ; n+k\right)\right)$ of Proposition (2.1) as an identity, we have the following

Lemma (3.4). Let η and ζ be, respectively, an $(m+k)$-plane bundle over a CW-complex X and an n-plane bundle over $Y(m>n)$, both of which admit Riemannian metrics. Then for an epimorphism $\bar{f}: \eta \rightarrow \zeta$ covering $f: X \rightarrow Y$, the map $J_{f_{*}}: \Gamma\left((\operatorname{ker} \tilde{f})_{k}\right) \rightarrow \operatorname{Epi}\left[\eta, \zeta \oplus \theta_{Y}^{k}\right]_{f}$ is a bijection if $\operatorname{dim} X<m-n+k-1$.

Proof of Theorem (A). Take η to be $\xi \oplus \theta_{X}^{k}$, where ξ is an m-plane bundle over X admitting a Riemannian metric. For large enough $k(k+m-n-1>\operatorname{dim} X)$, the bundle $\mathscr{G}_{f}\left(\xi \oplus \theta_{X}^{k}, \zeta ; n\right)$ with fiber $M^{*}(n, m+k ; n)$ has a cross section, because $M^{*}(n, m+k ; n)\left(\simeq V_{m+k, n}\right)$ is $(m-n+k-1)$-connected. Hence there is an epimorphism $\tilde{f}: \xi \oplus \theta_{X}^{k} \rightarrow \zeta$ covering f by Proposition (2.1). By means of the epimorphism \tilde{f}, we have a bijection $J_{f_{*}}: \Gamma\left((\operatorname{ker} \tilde{f})_{k}\right) \rightarrow \operatorname{Epi}\left[\xi \oplus \theta_{X}^{k}, \zeta \oplus \theta_{Y}^{k}\right]_{f}$ according to Lemma (3.4). It is obvious that there is a bijection $\Gamma\left((\operatorname{ker} \tilde{f})_{k}\right)=$ $[X, B O(m-n)$; ker $\tilde{f}]$, the homotopy set of liftings, to $B O(m-n)$, of the classifying map $X \rightarrow B O(m-n+k)$ of the bundle ker \tilde{f}. We may describe as $\xi-f^{*} \zeta$ both the stable class of the bundle $\operatorname{ker} \tilde{f}$ and its classifying map $X \rightarrow B O$. Then for large enough k, the natural inclusion $B O(m-n+k) \rightarrow B O$ induces a bijection $[X, B O(m-n) ; \operatorname{ker} \bar{f}] \rightarrow\left[X, B O(m-n) ; \xi-f^{*} \zeta\right]$, by means of which we regard these two sets as identical. Thus we have a bijection $J_{f_{*}}:\left[X, B O(m-n) ; \xi-f^{*} \zeta\right] \rightarrow \operatorname{Epi}\left[\xi \oplus \theta_{X}^{k}, \zeta \oplus \theta_{Y}^{k}\right]_{f}$. The argument made above, together with Theorem (2.3), shows Theorem (A).

§4. Submersions of open manifolds

Throughout this section, manifolds mean connected C^{∞}-manifolds without boundary, and τ_{M} for a manifold M stands for its tangent bundle. For two manifolds M and N, and a map $f: M \rightarrow N$, we denote by $S[M, N]_{f}$ the set of regular homotopy classes of submersions homotopic to f. Then Phillips [2, Theorem A] has proved that the differential map d leads to a bijection

$$
\begin{equation*}
d_{*}: S[M, N]_{f} \cong \operatorname{Epi}\left[\tau_{M}, \tau_{N}\right]_{[f]} \quad \text { if } M \text { is open } \tag{4.1}
\end{equation*}
$$

This, together with Theorems (A) and (2.2), leads to the theorem of Phillips, reworded by Thomas [3].

Theorem (4.2) (Phillips and Thomas). Let M be an open manifold and N a manifold, where $\operatorname{dim} M>\operatorname{dim} N$. Then a map $f: M \rightarrow N$ is homotopic to a submersion if and only if $\tau_{M}-f^{*} \tau_{N}$ has geometric dimension $\leq \operatorname{dim} M-\operatorname{dim} N$.

Further we have the following

Proposition (4.3). Let M be an open manifold of dimension m and of homotopy $\operatorname{dim} M<m-1$ and N a manifold of dimension $n(m>n)$. If the $\pi_{1}\left(N^{M}, f\right)$-action is trivial on Epi $\left[\tau_{M}, \tau_{N}\right]_{f}$ for a map $f: M \rightarrow N$, then $S[M, N]_{f}=\left[M, B O(m-n) ; \tau_{M}-f^{*} \tau_{N}\right]$.

In particular, if N is a π-manifold, then the action of $\pi_{1}\left(N^{M}, f\right)$ is trivial on Epi $\left[\tau_{M}, \tau_{N}\right]_{f}$ and so we get $S[M, N]_{f}=\left[M, B O(m-n) ; \tau_{M}\right]=S\left[M, R^{n}\right]$, where $\tau_{M}: M \rightarrow B O$ is the classifying map of the stable tangent bundle of M (see [5, §7]). This is an extension of Phillips' result [2, Proposition 10.4(a)].

In the rest of this note, we consider the submersions of $P^{m}-P^{k-1}$ to P^{n}, where P^{r} means the real projective r-space and $P^{m}-P^{k-1}=$ $\left\{\left[x_{0}, x_{1}, \ldots, x_{m}\right] \in P^{m} \mid\left[x_{m-k+1}, \ldots, x_{m}\right] \notin P^{k-1}\right\}$. Let ξ_{r} be the canonical real line bundle of P^{r} and denote $P^{m}-P^{k-1}$ by M sometimes for a typographical reason. Then $\tau_{M}=\tau_{P^{m}} \mid M$ and hence $\tau_{M} \oplus \theta_{M}^{1}=(m+1) \xi_{m} \mid M$. The natural inclusion $i: P^{m-k} \rightarrow M$ is a homotopy equivalence, whose homotopy inverse $r: M \rightarrow P^{m-k}$ is given by $r\left[x_{0}, \ldots, x_{m}\right]=\left[a x_{0}, \ldots, a x_{m-k}\right]$ where $a=\left(\sum_{i=0}^{m-k} x_{i}^{2}\right)^{-1 / 2}$ (cf. [2, p. 200]).

For a map $f: M \rightarrow P^{n}$, the $\operatorname{map} I_{f_{*}}: \operatorname{Epi}\left[\tau_{M}, \tau_{P n}\right]_{f} \rightarrow \operatorname{Epi}\left[(m+1) \xi_{m} \mid M,(n+\right.$ 1) $\left.\xi_{n}\right]_{f}$ is surjection if $k \geq 1$ by Theorem (2.3). On the other hand, $f^{*} \xi_{n}$ is isomorphic to $\xi_{m} \mid M$ or the trivial bundle, because $i: P^{m-k} \rightarrow M$ is a homotopy equivalence. Using these facts, (4.1), Theorems (2.2-3), and Theorem (A), we have the following

Proposition (4.4). Assume that $k \geq 1$, and $m>n \geq 1$, and let $f: P^{m}-$ $P^{k-1} \rightarrow P^{n}$ be a map.

1. If $f^{*} \xi_{n}$ is trivial, then f is homotopic to a submersion if and only if there exists a submersion of $P^{m}-P^{k-1}$ to R^{n}.
2. Otherwise, f is always homotopic to a submersion.

EXAMPLE. In case $m-k \leq n$, let $r: M\left(=P^{m}-P^{k-1}\right) \rightarrow P^{n}$ be a map defined by

$$
\begin{equation*}
r\left[x_{0}, x_{1}, \ldots, x_{m}\right]=\left[a x_{0}, a x_{1}, \ldots, a x_{n}\right] \quad\left(a=\left(\sum_{i=0}^{n} x_{i}^{2}\right)^{-1 / 2}\right) \tag{4.5}
\end{equation*}
$$

Then r is a submersion. This map r is not homotopic to a constant map, because $r \mid P^{1}: P^{1} \rightarrow P^{n}$ is the natural inclusion. In particular, r is the retraction mentioned above if $n=m-k$.

Proof of Theorem (B). Because $n \leq k$, any map $f: M \rightarrow P^{n}$ is homotopic to a submersion. This follows immediately from Theorem (A), the obstruction theory and the fact that $i: P^{m-k} \subset M$ is a homotopy equivalence. Since $m-k<m-1$, the map $i^{*} I_{f_{*}}: \operatorname{Epi}\left[\tau_{M}, \tau_{P^{n}}\right]_{f} \rightarrow \operatorname{Epi}\left[(m+1) \xi_{m-k},(n+1) \xi_{n}\right]_{f i}$ is an $i_{\#}^{\prime \prime}$-equivariant bijection for any map $f: M \rightarrow P^{n}$, where $i_{\#}^{\prime \prime}: \pi_{1}\left(\left(P^{n}\right)^{M}, f\right) \rightarrow$ $\pi_{1}\left(\left(P^{n}\right)^{P^{m-k}}, f i\right)$ is an isomorphism (see [5, §3, §5]). The fiber $O / O(m-n)$
of $B O(m-n) \rightarrow B O$ is $(m-n-1)$-connected and $\pi_{m-n}(O / O(m-n))=Z$ or Z_{2} according as $m-n$ is even or odd. The theorem A, together with the classification theorem of liftings (see [4, p. 302]), implies that

$$
\begin{aligned}
& \operatorname{Epi}\left[\tau_{M}, \tau_{P^{n}}\right]_{f}=\operatorname{Epi}\left[(m+1) \xi_{m-k},(n+1) \xi_{n}\right]_{f i} \\
&= \begin{cases}0 & \text { if } n<k, \\
H^{m-n}\left(P^{m-n} ; Z\left[w_{1}\left((m+1) \xi_{m-n}-(n+1)(f i)^{*} \xi_{n}\right)\right]\right) \\
H^{m-n}\left(P^{m-n} ; Z_{2}\right) & \text { if } n=k, m-n \equiv 0(2),\end{cases} \\
& \text { if } n=k, m-n \equiv 1(2) .
\end{aligned}
$$

Hence if $n<k$ then the cardinality $\# S\left[M, P^{n}\right]_{f}=\# \mathrm{Epi}\left[\tau_{M}, \tau_{P n}\right]_{[f]}=1$ by Theorem (2.2) and (4.1). Here \#S denotes the cardinality of the set S. On the other hand, if $k=n$ then

$$
\begin{aligned}
i^{*} I_{f_{*}}: \operatorname{Epi}\left[\tau_{M}, \tau_{P^{n}}\right]_{f} & =\operatorname{Epi}\left[(m+1) \xi_{m-n},(n+1) \xi_{n}\right]_{f i} \\
& = \begin{cases}Z & \text { for } m \equiv n \equiv 0(2), f^{*} \xi_{n}=\theta_{M} \\
Z_{2} & \text { otherwise }\end{cases}
\end{aligned}
$$

Here $i^{*} I_{f_{*}}$ is an $i_{\#}^{\prime \prime}$-equivariant, where $i_{\#}^{\prime \prime}: \pi_{1}\left(\left(P^{n}\right)^{M}, f\right) \rightarrow \dot{\pi}_{1}\left(\left(P^{n}\right)^{P^{m-n}}, f i\right)$ is an isomorphism.

From now on, we assume that $n=k$ and that $1 \leq m-k<n-1$. Then it follows from [1, Lemma 1] (cf. [5,§4]) that $\pi_{1}\left(\left(P^{n}\right)^{M}, f\right)=\pi_{1}\left(\left(P^{n}\right)^{P^{m-k}}, f i\right)=Z_{2}$.

If $m \equiv n \equiv 0(2)$ and $f^{*} \xi_{n}=\theta_{M}^{1}$, then obviously \# Epi $\left[\tau_{M}, \tau_{P^{n}}\right]_{f}=\infty$ and hence $\# S\left[M, P^{n}\right]_{f}=\infty$.

To prove that the action of $\pi_{1}\left(\left(P^{n}\right)^{M}, f\right)$ is trivial on Epi $\left[\tau_{M}, \tau_{P^{n}}\right]_{f}$ in the other cases, it is enough to show the fact that $[\psi]\left[f_{t}\right]=[\psi]$ for some epimorphism $\psi: \tau_{M} \rightarrow \tau_{P^{n}}$ covering f, or $\psi:(m+1) \xi_{m-n} \rightarrow(n+1) \xi_{n}$ covering $f i$, and a generator $\left[\vec{f}_{t}\right] \in \pi_{1}\left(\left(P^{n}\right)^{M}, f\right)$, or $\left[f_{t}\right] \in \pi_{1}\left(\left(P^{n}\right)^{P^{m-n}}\right)$, respectively, for the set $\mathrm{Epi}\left[\tau_{M}, \tau_{P^{n}}\right]_{f}=Z_{2}$ and $i^{*} I_{f_{*}}$ is $i_{\#}^{\prime \prime}$-equivariant.

If $n \equiv 1(2)$, it follows from [5, Proposition 4.2] (cf. [1, Theorem 1]) that the $\pi_{1}\left(\left(P^{n}\right)^{M}, f\right)$-action is trivial on $\operatorname{Epi}\left[\tau_{M}, \tau_{P^{n}}\right]_{f}$. Therefore we have $\# S\left[M, P^{n}\right]_{f}=2$ for $n \equiv 1(2)$.

If $m \equiv 1(2), n \equiv 0(2)$, and if $f^{*} \xi_{n}=\xi_{m} \mid M$, then we may assume that $f \mid P^{1}: P^{1} \rightarrow P^{n}$ represents a generator of $\pi_{1}\left(P^{n}\right)$ (see [5, Lemma 4.1]). Because $m \equiv 1(2)$, there is a flow Φ_{t} on P^{m} such that $\Phi_{t}=\Phi_{t+1}$ which is defined in [5, §4] (cf.[1]). Its restriction $\Phi_{t} \mid M$ to M is also a flow on M. Hence its differential $d \Phi_{t} \mid \tau_{M}$ is a flow on τ_{M}. For any epimorphism $\psi: \tau_{M} \rightarrow \tau_{P^{n}}$ covering f, the composition $\psi d \Phi \mid \tau_{M}: \tau_{M} \rightarrow \tau_{P^{n}}$ is a homotopy of epimorphism covering $f \Phi_{t} \mid M$, while the homotopy $f \Phi_{t} \mid M$ represents the generator of $\pi_{1}\left(\left(P^{n}\right)^{M}, f\right)$. Hence $[\psi]\left[f \Phi_{t} \mid M\right]=\left[\psi d \Phi_{1} \mid M\right]=[\psi]$. This implies that the action is trivial and therefore $\# S\left[M, P^{n}\right]_{f}=2$.

Next we consider the case where $m \equiv n \equiv 0(2)$ and $f^{*} \xi_{n}=\xi_{m} \mid M$. Then because of the assumption $m-n<n-1$, we may assume that $f: M \rightarrow P^{n}$ is a submersion defined by (4.5) and hence $f i: P^{m-n} \rightarrow P^{n}$ is the natural
inclusion. Let $N=P^{n+1}-P^{1}$ and let $j: P^{m-n} \subset N$ be the natural inclusion. Then $I_{j_{*}}: \operatorname{Epi}\left[\tau_{M} \mid P^{m-n}, \tau_{N}\right]_{j} \rightarrow \operatorname{Epi}\left[(m+1) \xi_{m-n},(n+2) \xi_{n+1} \mid N\right]_{j}$ is surjective by Theorem (2.3), and further it follows easily that the latter set is not empty. Therefore there exists an epimorphism $\psi: \tau_{M} \mid P^{m-n} \rightarrow \tau_{N}$ covering $j: P^{m-n} \subset N$. Because $n+1 \equiv 1(2)$, there exists a flow Φ_{t} on P^{n+1}, defined in [5, §4] (cf.[1]), such that $\Phi_{t}=\Phi_{t+1}$. The restriction of this flow to N becomes a flow on N. Here, let $r: N \rightarrow P^{n}$ be a submersion defined in (4.5). Then $d r d \Phi_{t} \psi: \tau_{M} \mid P^{m-n} \rightarrow \tau_{P^{n}}$ is a homotopy of epimorphisms covering the homotopy $r \Phi_{t} j$. Now the class $\left[r \Phi_{t} j\right]$ is a generator of $\pi_{1}\left(\left(P^{n}\right)^{P^{m-n}}, f i\right)$ by [5, Lemma 4. 1]. Hence we have $[d r \psi]\left[r \Phi_{t} j\right]=\left[d r d \Phi_{1} \psi\right]=[d r \psi]$ and hence \# Epi $\left[\tau_{M} \mid P^{m-n}, \tau_{P^{n}}\right]_{[f i]}=\# S\left[M, P^{n}\right]_{f}=2$.

The investigation in the case where $n \equiv 0(2), m \equiv 1(2)$ and $f^{*} \xi_{n}=\theta_{M}^{1}$ remains. In this case, f can be regarded as a constant map. We notice that there is an epimorphism $\psi:(m+1) \xi_{m-n} \rightarrow(n+2) \xi_{n}$ covering constant map c. In fact, the clașsifying map $P^{m-n} \rightarrow B O$ of the stable class of $(m+1) \xi_{m-n}$ has a lift to $B O(m-n)$, because $\beta_{2} w_{m-n-1}\left((m+1) \xi_{m-n}\right) \in H^{m-n}\left(P^{m-n} ; Z\left[w_{1}((m+\right.\right.$ 1) $\left.\left.\xi_{m-n}\right)\right]$) is a unique obstruction to lifting this map to $B O(m-n)$, where β_{2} is a Bockstein operator, and $\beta_{2}=0$ in this case. Let $f_{t}: P^{m-n} \rightarrow P^{n}$ be a homotopy representing a generator of $\pi_{1}\left(\left(P^{n}\right)^{P^{m-n}}, c\right)$. Since the action of this group on $\operatorname{Epi}\left[(m+1) \xi_{m-n},(n+2) \xi_{n}\right]_{c}$ is trivial by [5, Lemma 4.2] because $n+2 \equiv 0(2)$, we have a homotopy of epimorphisms ψ_{t} covering f_{t} such that $\psi_{0}=\psi$ and $\left[\psi_{1}\right]=$ $[\psi] \in \operatorname{Epi}\left[(m+1) \xi_{m-n},(n+2) \xi_{n}\right]_{c}$. Let $\pi:(n+2) \xi_{n} \rightarrow(n+1) \xi_{n}$ be a natural projection to the first ($n+1$)-components. Then $\pi \psi_{t}:(m+1) \xi_{m-n} \rightarrow(n+1) \xi_{n}$ is a homotopy of epimorphism covering f_{t} such that $\pi \psi_{0}=\pi \psi$ and $\left[\pi \psi_{1}\right]=$ $[\pi \psi] \in \operatorname{Epi}\left[(m+1) \xi_{m-n},(n+1) \xi_{n}\right]_{c}$. This shows that $[\pi \psi]\left[f_{t}\right]=[\pi \psi]$ and that $\pi_{1}\left(\left(P^{n}\right)^{P^{m-n}}, c\right)$-action on $\operatorname{Epi}\left[(m+1) \xi_{m-n},(n+1) \xi_{n}\right]_{c}$ is trivial. Therefore we have $\# S\left[M, P^{n}\right]_{c}=\# \operatorname{Epi}\left[(m+1) \xi_{m-n},(n+1) \xi_{n}\right]_{c}=2$. Summing up the above calculation, we get the Theorem (B).

Department Of Mathematics
Yamagata University
Yamagata 990, Japan

References

[1] LI BANGHE, On classification of immersions of n-manifolds in $(2 n-1)$-manifolds, Comment. Math. Helv., 57 (1982), 135-144.
[2] A. Phillips, Submersions of open manifolds, Topology, 6 (1967), 171-206.
[3] E. Thomas, On the existence of immersions and submersions, Trans. Amer. Math. Soc., 132 (1968), 387-394.
[4] G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Math., 61, SpringerVerlag, New York-Heidelberg-Berlin, 1978.
[5] T.Yasui, k-mersions and k-morphisms, Bull. Yamagata Univ. Nat. Sci., 12 (1991), 307-317

