VECTOR BUNDLE EPIMORPHISMS AND SUBMERSIONS

By TSUTOMU YASUI

To the memory of professor José Adem

§1. Introduction

Given two vector bundles ξ over X and ζ over Y, a vector bundle epimorphism (hereafter, we call it an epimorphism) of ξ to ζ is a continuous fiber preserving map of ξ to ζ such that its restriction to each fiber is a linear epimorphism. For a (continuous) map $f: X \to Y$, the set $\text{Epi}(\xi, \zeta)_f$, endowed with compact open topology, denotes the set consisting of all epimorphisms of ξ to ζ covering f, and $\text{Epi}[\xi, \zeta]_f$ denotes its homotopy set, that is, the set of path components of $\text{Epi}(\xi, \zeta)_f$.

In this note we first study the set $\text{Epi}[\xi, \zeta]_f$ and prove the following theorem in §3:

THEOREM (A). Let ξ be an m-plane bundle over a CW-complex X and ζ an n-plane bundle over Y (m > n), both admitting Riemannian metrics and let $f: X \to Y$ be a map. Then there exists a map $F: \operatorname{Epi}[\xi, \zeta]_f \to [X, BO(m-n); \xi - f^*\zeta]$ such that it is surjective if dim X < m and is bijective if dim X < m - 1.

Here $\xi - f^*\zeta: X \to BO$ stands for the classifying map of the stable bundle $\xi - f^*\zeta$ and [X, BO(k); g] means the homotopy set of liftings of $g: X \to BO$ to BO(k), where $BO(k) \to BO$ is the universal O/O(k)-bundle.

Our interest in the study of epimorphisms of vector bundles is due to the following fact. For a map $f: M \to N$ between connected C^{∞} -manifolds without boundary, let $S[M, N]_f$ be the regular homotopy set of submersions homotopic to f, and let $\operatorname{Epi}[\tau_M, \tau_N]_{[f]}$ be the homotopy set of epimorphisms of τ_M to τ_N covering maps homotopic to f, where τ_M for a manifold M means its tangent bundle. Then Phillips [2] has shown that if M is open then the differential map d induces a bijection $d_*: S[M, N]_f \to \operatorname{Epi}[\tau_M, \tau_N]_{[f]}$. On the other hand, there exists a $\pi_1(N^M, f)$ -action on $\operatorname{Epi}[\tau_M, \tau_N]_f$ such that $\operatorname{Epi}[\tau_M, \tau_N]_f/\pi_1(N^M, f) = \operatorname{Epi}[\tau_M, \tau_N]_{[f]}$ (see Theorem (2.2)). Therefore studying epimorphisms will play an important role in the investigation of submersions of open manifolds. In fact, we will get a result concerning submersions of $P^m - P^{k-1}$ to P^n in the following theorem, where P^r and ξ_r denote the real projective r-space and its canonical real line bundle, respectively.

THEOREM (B). Assume that $m > k \ge n \ge 1$, k > 1 and that if k = n then m + 1 < 2n. Then for a map $f: P^m - P^{k-1} \to P^n$, the cardinality of the set

 $S[P^m - P^{k-1}, P^n]_f$ is given by

$$#S[P^m - P^{k-1}, P^n]_f = \begin{cases} 1 & \text{if } k > n, \\ \infty & \text{if } k = n, m \equiv n \equiv 0(2) \text{ and } f^*\xi_n \text{ is trivial,} \\ 2 & \text{otherwise.} \end{cases}$$

§2. Preliminaries

For an *m*-plane bundle ξ over a CW-complex X, and an *n*-plane bundle ζ over Y, and for a map $f: X \to Y$, let $\operatorname{Epi}[\xi, \zeta]_f$ and $\operatorname{Epi}[\xi, \zeta]_{[f]}$ denote the homotopy sets of epimorphisms of ξ to ζ covering, respectively, f and maps homotopic to f, and let $\mathfrak{B}(\xi, \zeta; n) = (q: B(\xi, \zeta; n) \to X \times Y)$ denote the bundle with fiber $M^*(n, m; n)$, the space consisting of all real $n \times m$ -matrices of rank n, and let $\mathfrak{B}_f(\xi, \zeta; n)$ denote the pull-back of $\mathfrak{B}(\xi, \zeta; n)$ along $(\mathbf{1}_X, f): X \to X \times Y$ (see [5, §1]). We note that the fiber of $\mathfrak{B}(\xi, \zeta; n)$ at (x, y) is the space of all epimorphisms of the fiber ξ_x of ξ at x to the fiber ζ_y of ζ at y (see also [5, §1]). Given an epimorphism $g: \xi \to \zeta$ covering f, let $\phi_f(g): X \to B(\xi, \zeta; n)$ be the map defined by $\phi_f(g)(x) = g|\xi_x: \xi_x \to \zeta_{f(x)}$. Then in [5] we have shown the following results:

PROPOSITION (2.1). ([5, Proposition 2.1]). Let $\Gamma(\mathfrak{B}_f(\xi,\zeta;n))$ be the homotopy set of cross sections of $\mathfrak{B}_f(\xi,\zeta;n)$. Then, ϕ_f induces a bijection ϕ_{f_*} : Epi $[\xi,\zeta]_f \to \Gamma(\mathfrak{B}_f(\xi,\zeta;n))$.

Given an epimorphism $\psi_0: \xi \to \zeta$ covering f and a self-homotopy $f_t: X \to Y$ of f, there exists a homotopy of epimorphisms $\psi_t: \xi \to \zeta$ covering f_t . We define a right $\pi_1(Y^X, f)$ -action on $\operatorname{Epi}[\xi, \zeta]_f$ by $[\psi_0][f_t] = [\psi_1]$.

THEOREM (2.2). ([5, Theorem 6.1]). The natural map $\operatorname{Epi}[\xi, \zeta]_f \to \operatorname{Epi}[\xi, \zeta]_{[f]}$ induces a bijection $\operatorname{Epi}[\xi, \zeta]_f/\pi_1(Y^X, f) \cong \operatorname{Epi}[\xi, \zeta]_{[f]}$.

Let θ_Z^k denote the trivial k-plane bundle over a space Z. Then the natural inclusion induces a map I_{f_*} : Epi $[\xi, \zeta]_f \to$ Epi $[\xi \oplus \theta_X^k, \zeta \oplus \theta_Y^k]_f$.

THEOREM (2.3). ([5, Theorem 5.1]). The map I_{f_*} has the following properties:

1. The map I_{f_*} is $\pi_1(Y^X, f)$ -equivariant,

2. I_{f_*} is surjective if dim X < m and is bijective if dim X < m - 1.

§3. Proof of Theorem (A)

We assume that η and ζ are, respectively, an (m + k)-plane bundle over a CW-complex X and an *n*-plane bundle over Y(m > n), both of which admit Riemannian metrics. For a map $f: X \to Y$ and any epimorphism $\tilde{f}: \eta \to \zeta$ covering f, the kernel of \tilde{f} is an (m - n + k)-plane subbundle of η , which

we denote by ker \tilde{f} . The bundle $(\ker \tilde{f})_k$ means the orthonomal k-frame one associated with ker \tilde{f} .

We now define a bundle map $J_f: (\ker \tilde{f})_k \to \mathfrak{B}_f(\eta, \zeta \oplus \theta_Y^k; n+k)$ as follows: For an element $v = (v_1, v_2, \ldots, v_k) \in (\ker \tilde{f})_k$ at $x \in X$, we denote by L(v) and $L(v)^{\perp}$, respectively, the vector subspace spanned by v and its orthogonal complement in the fiber $(\ker \tilde{f})_x$ of ker \tilde{f} at x. Since $\eta = \ker \tilde{f} \oplus (\ker \tilde{f})^{\perp}$, where the bundle $(\ker \tilde{f})^{\perp}$ is the orthogonal complement of ker \tilde{f} in η , the fiber η_x is expressed in the form $\eta_x = L(v) \oplus L(v)^{\perp} \oplus (\ker \tilde{f})^{\perp}_x$. Let

$$J(v): \eta_x \to \zeta_{f(x)} \oplus R^k$$

be the linear map given by

(3.1)
$$J(v)\left(\sum_{i=1}^{k}a_{i}v_{i}+a+b\right) = (\tilde{f}(a),a_{1},\ldots,a_{k})$$
for $a \in (\ker \tilde{f})_{k}^{\perp}, b \in L(v)^{\perp}$ and $a_{i} \in R(1 \le i \le k)$.

The map J(v) is clearly an epimorphism and hence $J(v) \in B(\eta, \zeta \oplus \theta_Y^k; n + k)$. Thus the following map J can be defined:

 $J: (\ker \tilde{f})_k \to \mathfrak{B}(\eta, \zeta \oplus \theta_Y^k; n+k) \quad \text{covering} \quad \mathbf{1}_X \times f.$

This map J is continuous, for J can be expressed locally as

$$(3.2) J: U \cap f^{-1}(V) \times V_{m-n+k,k} \to U \times V \times M^*(n+k,m+k;n+k)$$

given by

(3.3)
$$J(x,v) = \left((x,f(x)), \begin{pmatrix} hfg^{-1}(e_1), \dots, hfg^{-1}(e_n) & 0\\ 0 & v^t \end{pmatrix} \right),$$

where (U, g) and (V, h) are charts of $(\ker \tilde{f})^{\perp}$ at x and of ζ at f(x), respectively, $\{e_1, \ldots, e_n\}$ is the standard basis of \mathbb{R}^n and v^t is the transpose of a matrix v. Therefore we have a bundle map

$$J_f: (\ker \bar{f})_k \to \mathfrak{B}_f(\eta, \zeta \oplus \theta_Y^k; n+k) \quad \text{covering } \mathbf{1}_X,$$

defined by (3.1), or equivalently by (3.3).

From (3.2)–(3.3), the restriction $J_{f,x}$ of J_f to the fiber at x is a map

$$J_{f,x}: V_{m-n+k,k} \to M^*(n+k,m+k;n+k)$$

given by

$$J_{f,x}(v) = \begin{pmatrix} A & 0 \\ 0 & v^t \end{pmatrix},$$

TSUTOMU YASUI

where A is nonsingular, because it is the matrix of the linear map \tilde{f} : $(\ker \tilde{f})_x^{\perp} \rightarrow \zeta_{f(x)}$ relative to some bases of $(\ker \tilde{f})_x^{\perp}$ and $\zeta_{f(x)}$. Therefore $J_{f,x}$, and hence J_f , is an (m - n + k - 1)-equivalence. If we write the homotopy set of cross sections of $(\ker \tilde{f})_k$ as $\Gamma((\ker \tilde{f})_k)$, then we get a map $J_{f_*}: \Gamma((\ker \tilde{f})_k) \rightarrow \Gamma(\mathfrak{B}_f(\eta, \zeta \oplus \theta_Y^k; n + k))$ which is a bijection if $\dim X < m - n + k - 1$. Regarding the bijection $\phi_{f_*}: \operatorname{Epi}[\eta, \zeta \oplus \theta_Y^k]_f \rightarrow \Gamma(\mathfrak{B}_f(\eta, \zeta \oplus \theta_Y^k; n + k))$ of Proposition (2.1) as an identity, we have the following

LEMMA (3.4). Let η and ζ be, respectively, an (m + k)-plane bundle over a CW-complex X and an n-plane bundle over Y(m > n), both of which admit Riemannian metrics. Then for an epimorphism $\tilde{f}: \eta \to \zeta$ covering $f: X \to Y$, the map $J_{f_*}: \Gamma((\ker \tilde{f})_k) \to \operatorname{Epi}[\eta, \zeta \oplus \theta_Y^k]_f$ is a bijection if dim X < m-n+k-1.

Proof of Theorem (A). Take η to be $\xi \oplus \theta_X^k$, where ξ is an *m*-plane bundle over X admitting a Riemannian metric. For large enough $k(k+m-n-1) > \dim X$), the bundle $\mathfrak{B}_f(\xi \oplus \theta_X^k, \zeta; n)$ with fiber $M^*(n, m+k; n)$ has a cross section, because $M^*(n, m+k; n) (\simeq V_{m+k,n})$ is (m-n+k-1)-connected. Hence there is an epimorphism $\overline{f}: \xi \oplus \theta_X^k \to \zeta$ covering f by Proposition (2.1). By means of the epimorphism \overline{f} , we have a bijection $J_{f_*}: \Gamma((\ker \overline{f})_k) \to \operatorname{Epi}[\xi \oplus \theta_X^k, \zeta \oplus \theta_Y^k]_f$ according to Lemma (3.4). It is obvious that there is a bijection $\Gamma((\ker \overline{f})_k) = [X, BO(m-n); \ker \overline{f}]$, the homotopy set of liftings, to BO(m-n), of the classifying map $X \to BO(m-n+k)$ of the bundle ker \overline{f} and its classifying map $X \to BO(m-n+k)$ of the bundle ker \overline{f} and its classifying map $X \to BO(m-n); \ker \overline{f}] \to [X, BO(m-n); \xi - f^*\zeta]$, by means of which we regard these two sets as identical. Thus we have a bijection $J_{f_*}: [X, BO(m-n); \xi - f^*\zeta] \to \operatorname{Epi}[\xi \oplus \theta_X^k, \zeta \oplus \theta_Y^k]_f$. The argument made above, together with Theorem (2.3), shows Theorem (A).

§4. Submersions of open manifolds

Throughout this section, manifolds mean connected C^{∞} -manifolds without boundary, and τ_M for a manifold M stands for its tangent bundle. For two manifolds M and N, and a map $f: M \to N$, we denote by $S[M, N]_f$ the set of regular homotopy classes of submersions homotopic to f. Then Phillips [2, Theorem A] has proved that the differential map d leads to a bijection

(4.1)
$$d_*: S[M, N]_f \cong \operatorname{Epi}[\tau_M, \tau_N]_{[f]}$$
 if M is open.

This, together with Theorems (A) and (2.2), leads to the theorem of Phillips, reworded by Thomas [3].

THEOREM (4.2) (Phillips and Thomas). Let M be an open manifold and Na manifold, where dim $M > \dim N$. Then a map $f: M \to N$ is homotopic to a submersion if and only if $\tau_M - f^* \tau_N$ has geometric dimension $\leq \dim M - \dim N$.

Further we have the following

 $\mathbf{582}$

PROPOSITION (4.3). Let M be an open manifold of dimension m and of homotopy dim M < m - 1 and N a manifold of dimension n (m > n). If the $\pi_1(N^M, f)$ -action is trivial on $\text{Epi}[\tau_M, \tau_N]_f$ for a map $f: M \to N$, then $S[M, N]_f = [M, BO(m - n); \tau_M - f^*\tau_N].$

In particular, if N is a π -manifold, then the action of $\pi_1(N^M, f)$ is trivial on Epi $[\tau_M, \tau_N]_f$ and so we get $S[M, N]_f = [M, BO(m-n); \tau_M] = S[M, R^n]$, where $\tau_M \colon M \to BO$ is the classifying map of the stable tangent bundle of M (see [5, §7]). This is an extension of Phillips' result [2, Proposition 10, 4(a)].

In the rest of this note, we consider the submersions of $P^m - P^{k-1}$ to P^n , where P^r means the real projective *r*-space and $P^m - P^{k-1} = \{ [x_0, x_1, \ldots, x_m] \in P^m \mid [x_{m-k+1}, \ldots, x_m] \notin P^{k-1} \}$. Let ξ_r be the canonical real line bundle of P^r and denote $P^m - P^{k-1}$ by M sometimes for a typographical reason. Then $\tau_M = \tau_{P^m} | M$ and hence $\tau_M \oplus \theta^1_M = (m+1)\xi_m | M$. The natural inclusion $i: P^{m-k} \to M$ is a homotopy equivalence, whose homotopy inverse $r: M \to P^{m-k}$ is given by $r[x_0, \ldots, x_m] = [ax_0, \ldots, ax_{m-k}]$ where $a = \left(\sum_{i=0}^{m-k} x_i^2\right)^{-1/2}$ (cf. [2, p. 200]).

For a map $f: M \to P^n$, the map I_{f_*} : $\operatorname{Epi}[\tau_M, \tau_{P^n}]_f \to \operatorname{Epi}[(m+1)\xi_m|M, (n+1)\xi_n]_f$ is surjection if $k \geq 1$ by Theorem (2.3). On the other hand, $f^*\xi_n$ is isomorphic to $\xi_m|M$ or the trivial bundle, because $i: P^{m-k} \to M$ is a homotopy equivalence. Using these facts, (4.1), Theorems (2.2–3), and Theorem (A), we have the following

PROPOSITION (4.4). Assume that $k \ge 1$, and $m > n \ge 1$, and let $f: P^m - P^{k-1} \rightarrow P^n$ be a map.

- 1. If $f^*\xi_n$ is trivial, then f is homotopic to a submersion if and only if there exists a submersion of $P^m P^{k-1}$ to \mathbb{R}^n .
- 2. Otherwise, f is always homotopic to a submersion.

EXAMPLE. In case $m-k \leq n$, let $r: M (= P^m - P^{k-1}) \to P^n$ be a map defined by

(4.5)
$$r[x_0, x_1, \ldots, x_m] = [ax_0, ax_1, \ldots, ax_n] \qquad \left(a = \left(\sum_{i=0}^n x_i^2\right)^{-1/2}\right).$$

Then r is a submersion. This map r is not homotopic to a constant map, because $r|P^1: P^1 \to P^n$ is the natural inclusion. In particular, r is the retraction mentioned above if n = m - k.

Proof of Theorem (B). Because $n \leq k$, any map $f: M \to P^n$ is homotopic to a submersion. This follows immediately from Theorem (A), the obstruction theory and the fact that $i: P^{m-k} \subset M$ is a homotopy equivalence. Since m-k < m-1, the map $i^*I_{f_*}: \operatorname{Epi}[\tau_M, \tau_{P^n}]_f \to \operatorname{Epi}[(m+1)\xi_{m-k}, (n+1)\xi_n]_{f_i}$ is an $i''_{\#}$ -equivariant bijection for any map $f: M \to P^n$, where $i''_{\#}: \pi_1((P^n)^M, f) \to \pi_1((P^n)^{P^{m-k}}, f_i)$ is an isomorphism (see [5, §3, §5]). The fiber O/O(m-n)

of $BO(m-n) \to BO$ is (m-n-1)-connected and $\pi_{m-n}(O/O(m-n)) = Z$ or Z_2 according as m-n is even or odd. The theorem A, together with the classification theorem of liftings (see [4, p. 302]), implies that

$$\begin{split} \operatorname{Epi}[\tau_{M},\tau_{P^{n}}]_{f} &= \operatorname{Epi}[(m+1)\xi_{m-k},(n+1)\xi_{n}]_{fi} \\ &= \begin{cases} 0 & \text{if } n < k, \\ H^{m-n}(P^{m-n};Z[w_{1}((m+1)\xi_{m-n}-(n+1)(fi)^{*}\xi_{n})]) \\ & \text{if } n = k, \, m-n \equiv 0(2), \\ H^{m-n}(P^{m-n};Z_{2}) & \text{if } n = k, \, m-n \equiv 1(2). \end{cases} \end{split}$$

Hence if n < k then the cardinality $\#S[M, P^n]_f = \#\operatorname{Epi}[\tau_M, \tau_{P^n}]_{[f]} = 1$ by Theorem (2.2) and (4.1). Here #S denotes the cardinality of the set S. On the other hand, if k = n then

$$i^*I_{f_*}$$
: Epi $[au_M, au_{P^n}]_f =$ Epi $[(m+1)\xi_{m-n}, (n+1)\xi_n]_{fi}$
= $\begin{cases} Z & \text{for } m \equiv n \equiv 0(2), f^*\xi_n = heta_M, \\ Z_2 & \text{otherwise.} \end{cases}$

Here $i^*I_{f_*}$ is an $i''_{\#}$ -equivariant, where $i''_{\#}: \pi_1((P^n)^M, f) \to \pi_1((P^n)^{P^{m-n}}, f_i)$ is an isomorphism.

From now on, we assume that n = k and that $1 \le m - k < n - 1$. Then it follows from [1, Lemma 1](cf. [5,§4]) that $\pi_1((P^n)^M, f) = \pi_1((P^n)^{P^{m-k}}, fi) = Z_2$.

If $m \equiv n \equiv 0(2)$ and $f^*\xi_n = \theta_M^1$, then obviously $\# \operatorname{Epi}[\tau_M, \tau_{P^n}]_f = \infty$ and hence $\#S[M, P^n]_f = \infty$.

To prove that the action of $\pi_1((P^n)^M, f)$ is trivial on $\operatorname{Epi}[\tau_M, \tau_{P^n}]_f$ in the other cases, it is enough to show the fact that $[\psi][f_t] = [\psi]$ for some epimorphism $\psi: \tau_M \to \tau_{P^n}$ covering f, or $\psi: (m+1)\xi_{m-n} \to (n+1)\xi_n$ covering f_i , and a generator $[f_t] \in \pi_1((P^n)^M, f)$, or $[f_t] \in \pi_1((P^n)^{P^{m-n}})$, respectively, for the set $\operatorname{Epi}[\tau_M, \tau_{P^n}]_f = Z_2$ and $i^*I_{f_*}$ is $i''_{\#}$ -equivariant.

If $n \equiv 1(2)$, it follows from [5, Proposition 4.2] (cf. [1, Theorem 1]) that the $\pi_1((P^n)^M, f)$ -action is trivial on $\text{Epi}[\tau_M, \tau_{P^n}]_f$. Therefore we have $\#S[M, P^n]_f = 2$ for $n \equiv 1(2)$.

If $m \equiv 1(2)$, $n \equiv 0(2)$, and if $f^*\xi_n = \xi_m | M$, then we may assume that $f|P^1: P^1 \to P^n$ represents a generator of $\pi_1(P^n)$ (see [5, Lemma 4.1]). Because $m \equiv 1(2)$, there is a flow Φ_t on P^m such that $\Phi_t = \Phi_{t+1}$ which is defined in [5, §4] (cf.[1]). Its restriction $\Phi_t | M$ to M is also a flow on M. Hence its differential $d\Phi_t | \tau_M$ is a flow on τ_M . For any epimorphism $\psi: \tau_M \to \tau_{P^n}$ covering f, the composition $\psi d\Phi | \tau_M: \tau_M \to \tau_{P^n}$ is a homotopy of epimorphism covering $f\Phi_t | M$, while the homotopy $f\Phi_t | M$ represents the generator of $\pi_1((P^n)^M, f)$. Hence $[\psi][f\Phi_t | M] = [\psi d\Phi_1 | M] = [\psi]$. This implies that the action is trivial and therefore $\#S[M, P^n]_f = 2$.

Next we consider the case where $m \equiv n \equiv 0(2)$ and $f^*\xi_n = \xi_m | M$. Then because of the assumption m - n < n - 1, we may assume that $f: M \to P^n$ is a submersion defined by (4.5) and hence $fi: P^{m-n} \to P^n$ is the natural inclusion. Let $N = P^{n+1} - P^1$ and let $j: P^{m-n} \subset N$ be the natural inclusion. Then $I_{j_*}: \operatorname{Epi}[\tau_M | P^{m-n}, \tau_N]_j \to \operatorname{Epi}[(m+1)\xi_{m-n}, (n+2)\xi_{n+1} | N]_j$ is surjective by Theorem (2.3), and further it follows easily that the latter set is not empty. Therefore there exists an epimorphism $\psi: \tau_M | P^{m-n} \to \tau_N$ covering $j: P^{m-n} \subset N$. Because $n+1 \equiv 1(2)$, there exists a flow Φ_t on P^{n+1} , defined in [5, §4] (cf.[1]), such that $\Phi_t = \Phi_{t+1}$. The restriction of this flow to Nbecomes a flow on N. Here, let $r: N \to P^n$ be a submersion defined in (4.5). Then $dr \, d\Phi_t \, \psi: \tau_M | P^{m-n} \to \tau_{P^n}$ is a homotopy of epimorphisms covering the homotopy $r\Phi_t j$. Now the class $[r\Phi_t j]$ is a generator of $\pi_1((P^n)^{P^{m-n}}, fi)$ by [5, Lemma 4. 1]. Hence we have $[dr \, \psi][r\Phi_t j] = [dr \, d\Phi_1 \psi] = [dr \, \psi]$ and hence $\# \operatorname{Epi}[\tau_M | P^{m-n}, \tau_{P^n}]_{fil} = \# S[M, P^n]_f = 2$.

The investigation in the case where $n \equiv 0(2)$, $m \equiv 1(2)$ and $f^*\xi_n = \theta_M^1$ remains. In this case, f can be regarded as a constant map. We notice that there is an epimorphism $\psi: (m+1)\xi_{m-n} \to (n+2)\xi_n$ covering constant map c. In fact, the classifying map $P^{m-n} \to BO$ of the stable class of $(m+1)\xi_{m-n}$ has a lift to BO(m-n), because $\beta_2 w_{m-n-1}((m+1)\xi_{m-n}) \in H^{m-n}(P^{m-n}; Z[w_1((m+1)\xi_{m-n})))$ 1) ξ_{m-n}]) is a unique obstruction to lifting this map to BO(m-n), where β_2 is a Bockstein operator, and $\beta_2 = 0$ in this case. Let $f_t: P^{m-n} \to P^n$ be a homotopy representing a generator of $\pi_1((P^n)^{P^{m-n}}, c)$. Since the action of this group on $\operatorname{Epi}[(m+1)\xi_{m-n}, (n+2)\xi_n]_c$ is trivial by [5, Lemma 4.2] because $n+2 \equiv 0(2)$, we have a homotopy of epimorphisms ψ_t covering f_t such that $\psi_0 = \psi$ and $[\psi_1] =$ $[\psi] \in \operatorname{Epi}[(m+1)\xi_{m-n}, (n+2)\xi_n]_c$. Let $\pi: (n+2)\xi_n \to (n+1)\xi_n$ be a natural projection to the first (n + 1)-components. Then $\pi \psi_t: (m + 1)\xi_{m-n} \to (n + 1)\xi_n$ is a homotopy of epimorphism covering f_t such that $\pi \psi_0 = \pi \psi$ and $[\pi \psi_1] =$ $[\pi\psi] \in \operatorname{Epi}[(m+1)\xi_{m-n}, (n+1)\xi_n]_c$. This shows that $[\pi\psi][f_t] = [\pi\psi]$ and that $\pi_1((P^n)^{P^{m-n}}, c)$ -action on Epi $[(m+1)\xi_{m-n}, (n+1)\xi_n]_c$ is trivial. Therefore we have $\#S[M, P^n]_c = \#Epi[(m+1)\xi_{m-n}, (n+1)\xi_n]_c = 2$. Summing up the above calculation, we get the Theorem (B).

DEPARTMENT OF MATHEMATICS YAMAGATA UNIVERSITY YAMAGATA 990, JAPAN

REFERENCES

[1] LI BANGHE, On classification of immersions of n-manifolds in (2n - 1)-manifolds, Comment. Math. Helv., 57 (1982), 135-144.

[2] A. PHILLIPS, Submersions of open manifolds, Topology, 6 (1967), 171-206.

 [3] E. THOMAS, On the existence of immersions and submersions, Trans. Amer. Math. Soc., 132 (1968), 387-394.

[4] G.W. WHITEHEAD, Elements of Homotopy Theory, Graduate Texts in Math., 61, Springer-Verlag, New York-Heidelberg-Berlin, 1978.

[5] T.YASUI, k-mersions and k-morphisms, Bull. Yamagata Univ. Nat. Sci., 12 (1991), 307-317