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VECTOR BUNDLE EPIMORPHISMS AND SUBMERSIONS
By TsuromMmuU YAsul

To the memory of professor José Adem

§1. Introduction

Given two vector bundles £ over X and ¢ over Y, a vector bundle epimor-
phism (hereafter, we call it an epimorphism) of £ to ¢ is a continuous fiber
preserving map of ¢ to ¢ such that its restriction to each fiber is a linear epi-
morphism. For a (continuous) map f: X — Y, the set Epi({,()s, endowed
with compact open topology, denotes the set consisting of all epimorphisms of
€ to ¢ covering f, and Epil¢, (1 denotes its homotopy set, that is, the set of
path components of Epi(¢, {)y.

In this note we first study the set Epi[¢, {17 and prove the following theorem
in §3:

THEOREM (A). Let £ be an m-plane bundle over a CW-complex X and
¢ an n-plane bundle over Y (m > n), both admitting Riemannian metrics
and let f:X — Y be a map. Then there exists a map F:Epil{, (] —
[X, BO(m — n); & — f*(1 such that it is surjective if dim X < m and is bijective
ifdimX <m— L

Here £ — f*(: X — BO stands for the classifying map of the stable bundle
& — f*¢ and [X, BO(k); g] means the homotopy set of liftings of g: X — BO to
BO(k), where BO(k) — BO is the universal O/O(k)-bundle.

Our interest in the study of epimorphisms of vector bundles is due to the
following fact. Foramap f: M — N between connected C*°-manifolds without
boundary, let S[M, N1¢ be the regular homotopy set of submersions homotopic
to f, and let Epi[rss, 7w ;s be the homotopy set of epimorphisms of 73, to 7
covering maps homotopic to f, where 1) for a manifold M means its tangent
bundle. Then Phillips [2] has shown that if M is open then the differential map
d induces a bijection d,: S[M, N1 — Epil7as, 7a]is;. On the other hand, there
existsam (NM, f)-action on Epi[7as, 751s such that Epil7as, T 15 /m (N M, f) =
Epiltas, 7ol f) (see Theorem (2.2)). Therefore studying epimorphisms will
play an important role in the investigation of submersions of open manifolds.
In fact, we will get a result concerning submersions of P™ — P5¥~1 to P™ in the
following theorem, where P" and &, denote the real projective r-space and its
canonical real line bundle, respectively. :

THEOREM (B). Assumethatm >k>n>1k>1 dnd that if k = n then
m + 1 < 2n. Then for a map f: P™ — P*~1 — P™, the cardinality of the set
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S[P™ — P*=1 Pr]; is given by

1 ifk>n, ‘
#S[P™ — P*" 1 P"); =4 00 ifk=n, m=n=0@)and f*¢, is trividl,
2  otherwise.

§2. Preliminaries

For an m-plane bundle ¢ over a CW-complex X, and an n-plane bundle ¢
over Y, and for a map f: X — Y, let Epil{, (] and Epil¢, (];s; denote the
homotopy sets of epimorphisms of £ to ¢ covering, respectively, f and maps
homotopic to f, and let B, {;n) = (¢ : B, ¢;n) — X x Y) denote the bundle
with fiber M*(n,m;n), the space consisting of all real n x m-matrices of rank n,
and let B (¢, ¢; n) denote the pull-back of B(¢,(;n) along (1x, f): X - X xY
(see [5, §1]1). We note that the fiber of B(&,({;n) at (z,y) is the space of all
epimorphisms of the fiber £, of £ at z to the fiber ¢, of ¢ at y (see also [5, §1]).
Given an epimorphism g:{ — ( covering f, let ¢;(g): X — B(£,(;n) be the
map defined by ¢;(g9)(x) = g|éz:€z — (f). Then in [5] we have shown the
following results:

PROPOSITION (2.1). ([5, Proposition 2.1]). Let [(®;(¢,¢;n)) be the ho-
motopy set of cross sections of By(&,(;n). Then, ¢5 induces a bijection
¢5,: Epil€, (1 — T(B5(€, ().

Given an epimorphism 19: £ — ¢ covering f and a self-homotopy f;: X — Y
of f, there exists a homotopy of epimorphisms v;: £ — { covering f;. We define
aright m (YX, f)—action on Epi[¢, ¢15 by [ol[f:] = [¢1].

THEOREM (2.2). ([5, Theorem 6.1]). The natural map Epil¢,{l; —
Epil¢, (It induces a bijection Epil€,(1;/m (Y, f) 2 Epil¢, (5.

Let 6% denote the trivial k-plane bundle over a space Z. Then the natural
inclusion induces a map Iy _: Epi[¢, {1y — Epil¢ @ 0%, ¢ & 6% ];.

THEOREM (2.3). ([5, Theorem 5.1]). The map Iy, has the following pro-
perties:
1. The map Iz, is m(YX, f)-equivariant,
2. Iy, is surjective if dim X < m and is bijective if dim X <m — 1.

§3. Proof of Theorem (A)

We assume that n and ( are, respectively, an (m + k)-plane bundle over a
CW-complex X and an n-plane bundle over Y (m > n), both of which admit
Riemannian metrics. For a map f: X — Y and any epimorphism f i — ¢
covering f, the kernel of f is an (m — n + k)-plane subbundle of n, which
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we denote by ker f. The bundle (ker f); means the orthonomal k-frame one

associated with ker f. )
We now define a bundle map J;: (ker f)r — B;(n,{ ® 0%;n + k) as follows:

For an element v = (v1,ve,...,v;) € (ker f); at z € X, we denote by L(v)
and L(v)*, respectively, the vector subspace spanned by v and its orthogonal
complement in the fiber (ker f), of ker f at z. Since n = ker f @ (ker f)-,
where the bundle (ker f)* is the orthogonal complement of ker 7 in 7, the
fiber 7, is expressed in the form 7, = L(v) ® L(v)" & (ker f)L. Let

JW):ny = () ® R

be the linear map given by

3.1) J() (Z; a;v; +a+ b) = (f(a),a1,...,ax)
for a € (ker f)i,b e L(v)* and a; € R < i < k).

The map J(v) is clearly an epimorphism and hence J(v) € B(n,{ ® 6%;n + k).
Thus the following map J can be defined:

J: (ker f)r, — B, ¢ @ 0%;n + k) covering 1lx x f.
This map J is continuous, for J can be expressed locally as
(3.2) J:UNFHV) X Vipntkpg = U XV X M*(n + k,m + k;n + k)

given by

(33) J(.’E, ’U) _ (((L‘,f(l?)), (hfg_l(fil)a 0 ) hfg—l(en) Ot)) ,

v

where (U, g) and (V, h) are charts of (ker f)1 at z and of ¢ at f(z), respectively,
{e1,-.-,en} is the standard basis of R™ and v* is the transpose of a matrix v.
Therefore we have a bundle map

Jri(ker ), — Br(n,C®OE;n+ k) covering Ix,

defined by (3.1), or equivalently by (3.3).
From (3.2)-(3.3), the restriction Jy , of J; to the fiber at z is a map

Jt 2 Vinn+kp = M*(n+ k,m + k;n + k)

given by
A 0
Jfz(v) = (O vt) )
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where A is nonsingular, because it is the matrix of the linear map f: (ker 7 F)L
— (s relative to some bases of (ker f)} and ¢ f@- Lherefore Jy ., and
hence J¢, is an (m — n + k — 1)-equivalence. If we write the homotopy set of
cross sections of (ker f); as I'((ker f)i), then we get amap Jy,: T'((ker i) —
T(B(n, ¢ ®6%;n + k) which is a bijection if dim X < m —n + k— 1. Regarding
the bijection qS .. Epiln, (@051 — T'(Bf(n,  ®6%;n + k)) of Proposition (2.1)
as an identity, we have the followmg ~

LEMMA (3.4). Let 1 and ( be, respectively, an (m + k)-plane bundle over
a CW-complex X and an n-plane bundle over Y (m > n), both of which admit
Riemannian metrics. Then for an epimorphism f:n — ¢ covering f: X — Y,
themap J; :T'((ker Hr) — Epiln, ¢Cob% 1 isabijectionif dim X < m—n+k—1.

Proof of Theorem (A). Take n to be £ © 6%, where ¢ is an m-plane bundle over
X admitting a Riemannian metric. For large enough k(k + m—n—1 > dim X),
the bundle R;(¢ @ 6%,¢;n) with fiber M*(n,m + k;n) has a cross section,
because M*(n, m + k;n)(= Vip4k,n) is (m —n + k — 1)-connected. Hence there
is an epimorphism fed 6% — ( covering f by Proposition (2.1). By means of
the epimorphism f, we have abijection Jy,: I'((ker Pr) — Epil¢ @ 0%, Cpot]
according to Lemma (3.4). It is obvious that there is a bijection I'((ker f) k) =
[X, BO(m — n);ker f1, the homotopy set of liftings, to BO(m — n), of the
classifying map X — BO(m — n + k) of the bundle ker /. We may describe
as ¢ — f*¢ both the stable class of the bundle ker f and its classifying map
X — BO. Then for large enough k, the natural inclusion BO(m—n+k) — BO
induces a bijection [X, BO(m —n); ker f] — [X, BO(m —n); £ — f*¢], by means
of which we regard these two sets as identical. Thus we have a bijection
Js [ X, BO(m — n); & — f*¢1 — Epil¢ @ 6%,¢ @ 6%15. The argument made
above, together with Theorem (2.3), shows Theorem (A).

§4. Submersions of open manifolds

Throughout this section, manifolds mean connected C°°-manifolds without
boundary, and 7, for a manifold M stands for its tangent bundle. For two
manifolds M and N, and a map f: M — N, we denote by S[M, N]; the set
of regular homotopy classes of submersions homotopic to f. Then Phillips [2,
Theorem A] has proved that the differential map d leads to a bijection

(4.1) d«: S[IM, N1 = Epilras, v 1ip if M is open.

This, together with Theorems (A) and (2.2), leads to the theorem of Phillips,
reworded by Thomas [3].

THEOREM (4.2) (Phillips and Thomas). Let M be an open manifold and N
a manifold, where dim M > dim N. Then a map f: M — N is homotopic to a
submersion if and only if Ta; — f*7N has geometric dimension < dim M —dim N.

Further we have the following
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PROPOSITION (4.3). Let M be an open manifold of dimension m and of
homotopy dim M < m — 1 and N a manifold of dimension n (m > n). If
the m(NM, f)-action is trivial on Epilta, 1y for a map fiM — N, then
SIM,N]; = [M,BO(m —n);Tp — f*7n].

In particular, if N is a 7-manifold, then the action of 7 (N¥, f) is trivial
on Epil7y, 7n]f and so we get S[M, N]; = [M, BO(m — n); T;] = S[M, R™],
where 737: M — BO is the classifying map of the stable tangent bundle of M
(see [5, §7]). This is an extension of Phillips’ result [2, Proposition 10. 4(a)].

In the rest of this note, we consider the submersions of P™ — pk—1
to P", where P™ means the real projective r-space and P™ — Pk-1 —
{[zo,71,--,Zm] € P™ | [Tm—k+1,---,ZTm] & P*¥1}. Let &, be the canonical
real line bundle of P and denote P™ — P*~! by M sometimes for a typo-
graphical reason. Then 1)y = 7p=|M and hence Tps ® 0}, = (m + Dén | M.
The natural inclusion i: P™~* — M is a homotopy equivalence, whose homo-
topy inverse r: M — P™ % is given by r[zy, ..., zm] = [azo,...,azm_x] where

~1/2
o= (Z?Lg%?) % (et 12, p. 200D).

Foramap f: M — P",themap I; : Epilty, Tp]f — Epil(m + Dén| M, (n +
1)¢,1; is surjection if £ > 1 by Theorem (2.3). On the other hand, f*¢,’is
isomorphic to &,,| M or the trivial bundle, because i: P™~* — M is a homotopy
equivalence. Using these facts, (4.1), Theorems (2.2-3), and Theorem (A), we
have the following '

. PROPOSITION (4.4). Assumethatk > 1,and m > n > 1, and let f: P™ —
Pk=1 _ P be a map.
1. If f*¢, is trivial, then f is homotopic to a submersion if and only if there
exists a submersion of P™ — P*~1 to R™.

2. Otherwise, f is always homotopic to a submersion. ' e

EXAMPLE. Incase m—k < n, let r: M(= P™— P*~1) —» P" be a map defined
by

@5)  rlzo, 31, .., 3] = [az0, 031, ., azn] (a = (Zn ’32)—1/2> .

i=0 ¢

Then r is a submersion. This map r is not homotopic to a constant map,
because r|P!: P! — P™ is the natural inclusion. In particular, r is the
retraction mentioned above if n = m — k.

Proof of Theorem (B). Because n < k, any map f: M — P" is homotopic to a
submersion. This follows immediately from Theorem (A), the obstruction
‘theory and the fact that i: P™~* C M is a homotopy equivalence. Since
m—k < m—1, themap i*I;_:Epi[ty, 7pn]; — Epil(m + l)fm_k, (n+ 1)l is
an z#-eqmvarlant bijection for any map f: M — P", where i/: m (P™)M, f)

m (PP ,fz) is an isomorphism (see [5, §3, §5]). The fiber O/O(m — n)
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of BO(m —n) — BO is (m — n — 1)-connected and 7,,_,(0/O(m —n)) = Z
or Zy according as m — n is even or odd. The theorem A, together with the
classification theorem of liftings (see [4, p. 302]), implies that

Epiltas, 7p=1s = Epil(m + 1)ém—i, (n + 1)&,15;
0 ifn <k,
H™™(P™"; Z[wi((m + Dém—n — (n + 1)(fi)*£,)])
ifn=£k m—-n=0(2),
Hm=—n(P™m—": Z5) ifn=k m-n=1(2).

Hence if n < k then the cardinality #S[M, P"]; = # Epilra, 7p=]15) = 1 by
Theorem (2.2) and (4.1). Here #5S denotes the cardinality of the set S. On the
other hand, if k£ = n then 4,

i*I¢, :Epiltas, 7pnly = Epil(m + 1)ém—n, (n + 1)&,15;

| Z form=n=02), f*, = 0um,
T 1Z, otherwise.

Here i*I;, is an ij-equivariant, where i4: 71 (P, f) — m((P™)P™ ", fi) is
an isomorphism.

From now on, we assumethatn = kandthatl <m — k < n — 1. Thenit fo-
llows from [1, Lemma 11(cf. [5,84]) that 7 (P™)™, f) = m(P™F™", fi) = Zs.

If m = n = 0(2) and f*¢, = 63},, then obviously # Epil7as, 7p=]; = 0o and
hence #S[M, P*]; = oo.

To prove that the action of m((P™)M, f) is trivial on Epi[ras,7pn]s in
the other cases, it is enough to show the fact that [¥1[f;] = [¢] for some
epimorphism ¢: Tas — 7pn~ covering f, or ¢: (m + 1)ép—n, — (n + 1)&, covering
fi, and a generator [f;] € 71 ((P™)M, f), or [f;] € T (P™)F™ "), respectively,-
for the set Epilras, 7pn]y = Z3 and i* I _ is i}-equivariant.

If n = 1(2), it follows from [5, Proposition 4.2] (c¢f. [1, Theorem 1])
that the 71 ((P™)M, f)-action is trivial on Epilr, 7p=1s. Therefore we have
#S[M, P*]; = 2 for n = 1(2).

Ifm = 12), n = 02), and if f*¢, = &,|M, then we may assume that
f|P: P — P"representsa generator of 71 (P") (see [5, Lemma 4.1]). Because
m = 1(2), there is a flow ®; on P™ such that ®; = ®;;; which is defined
in [5, §4] (cf.[1]). Its restriction (M to M is also a flow on M. Hence its
differential d®,|7s is a flow on 75s. For any epimorphism +: 7 — 7p» covering
f, the composition ¥d®|7ps: Tar — Tp» is a homotopy of epimorphism covering
f®:|M, while the homotopy f®;|M represents the generator of w1 (P™)M, f).
Hence [¢]1[f®¢|M] = [¢d®P1|M] = [¢]. This implies that the action is trivial
and therefore #S[M, P"]; = 2.

Next we consider the case where m = n = 0(2) and f*¢, = £,|M. Then
because of the assumption m — n < n — 1, we may assume that f: M — P™
is a submersion defined by (4.5) and hence fi: P~ — P" is the natural
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inclusion. Let N = P**! — Pl and let j: P™~™ C N be the natural inclusion.
Then I;,: Epi[7a|[P™ ™, 751; — Epil(m + 1)ém—n, (n +2)én+1| N1, is surjective
by Theorem (2.3), and further it follows easily that the latter set is not
empty. Therefore there exists an epimorphism : 73| P™~™ — 7y covering
j:P™™" C N. Because n + 1 = 1(2), there exists a flow ®; on P"*!, defined
in [5, §4] (cf.[1]), such that &, = &,,;. The restriction of this flow to N
becomes a flow on N. Here, let »: N — P™ be a submersion defined in (4.5).
Then dr d®; ¢: 7;|P™™™ — 7p= is a homotopy of epimorphisms covering the
homotopy r®,j. Now the class [r®,;] is a generator of 7, ((P™)F™ ", fi) by [5,
Lemma 4. 1]. Hence we have [dr ¥1[r®;j] = [dr dP14] = [dr+] and hence
#Epi[TMIPm—", Tpn][ﬁ] = #S[M, Pn]f = 2.

The investigation in the case where n = 0(2), m = 1(2) and f*¢, = 6},
remains. In this case, f can be regarded as a constant map. We notice that
there is an epimorphism v: (m + 1)¢,,_, — (n + 2)&,, covering constant map c.
In fact, the clagsifying map P™~" — BO of the stable class of (m+1)¢,,_,, hasa
lift to BO(m —n), because fow—n_1((m+ épm_y) € H(P™"; Z[wr((m +
1)¢,.—»)]) is a unique obstruction to lifting this map to BO(m—n), where G2 is a
Bockstein operator, and (2 = 0 in this case. Let f;: P™~"™ — P™ be a homotopy
representing a generator of 7 ((P™)*™ ", ¢). Since the action of this group on
Epil(m+1)ém_n, (n+2)¢,]. istrivial by [5, Lemma 4.2] because n+2 = 0(2), we
have a homotopy of epimorphisms 1, covering f; such that ¢ = ¢ and [¢1] =
[4] € Epil(m + 1)ém_n, (n + 2)6,].. Let w: (n + 2)¢, — (n + 1)§, be a natural
projection to the first (n + 1)-components. Then wi);: (m + 1){,—n — (n+ 1)&,
is a homotopy of epimorphism covering f; such that iy = 7 and [71] =
[xy] € Epil(m + 1)&,,_n, (n + 1)€,].. This shows that [7¥](f;] = [r¢] and that
71 ((P*)P™" ¢)-action on Epil(m + 1)ém_n, (n + 1)€,]. is trivial. Therefore
we have #S[M, P"]. = # Epil(m + 1){,,—n, (n + 1)€,];. = 2. Summing up the
above calculation, we get the Theorem (B).
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