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THE BLOCH SPACE OF A HOMOGENEOUS TREE 
BY JOEL M. COHEN AND FLAVIA COLONNA 

Dedicated to the Memory of Professor Jose Adem * 

I.Introduction and basic definitions 

The classical theory of Bloch functions in the open unit disk A and the in­
teresting connections between the Bloch space 8 (A) and other function spaces 
has led to many new areas of research in the past two decades. An analytic 
function on A is called Bloch [10] if the growth of the modulus of its derivative 
is controlled by the density of the hyperbolic metric of the disk (the Bloch con­
dition). There are several equivalent characterizations of Bloch functions. As 
a consequence, Bloch functions arise in many different contexts. For a com­
prehensive treatise on Bloch functions cf. [3]. 

For complex-valued harmonic functions on A, analogous definitions yield a 
Bloch space which is essentially the product of two copies of 8 (A), since every 
harmonic function can be written uniquely up to additive constants as the 
sum of an analytic function and the conjugate of an analytic function. [8] 

In this work we consider a class of complex-valued harmonic functions on a 
homogeneous tree characterized by the property that the difference between 
the values of such functions at neighboring vertices (the analogue of deriva­
tive divided by density in the classical case) remains bounded throughout the 
tree. We shall show that this class is a complex Banach space which we shall 
call the Bloch space, in analogy with the classical case of analytic and har­
monic functions on the open unit disk. Subsequently we shall study its prop­
erties in relation to a proper subspace, the little Bloch space. Both of these 
spaces are very rich. For example, fixing a vertex and a positive integer n, we 
can preassign any values on the sphere ofradius n and get an extention which 
is in the little Bloch space. 

By a tree we mean a connected and simply-connected graph which is locally 
finite and contains more than two vertices. The vertices v and w are called 
neighbors if they are connected by an edge. We use the notation v - w for 
neighboring vertices v and w. 

A tree is called homogeneous if each vertex has the same number of neigh­
bors. This number is called the degree of the tree. 

A path [ ... , vk, vk+l, .. . ] is a finite, infinite or doubly infinite sequence of 
vertices vk such that vk ,.._, vk+l and vk-l -:f. vk+l, for each k. We define the 
length of a finite path [vo, ... , vk] to be k. 

For v and w vertices we define the tree distance d(v, w) between v and w 
to be the length of the path connecting v tow. An automorphism of a tree 

* The pioneering results of Prof. Adem in algebraic topology were very influential on the first 

author's work on stable homotopy. 
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Tis an isometry of T, that is, a bijective function from Tonto itself which 
sends edges to edges. When we consider T as a point set, we refer only to the 
vertices of T. 

Let~ be the equivalence relation generated by the unit shift: If [t10, t11, ... ] 

is an infinite path in a tree T, then [vo, vi, ... ] ~ [t11, t12 , .•. ]. An equivalence 
class of infinite paths under~ is called an end of T. Letting O denote the 
set of ends, there is a topology on T = T u O under which T is a compact 
Hausdorff space with T an open, discrete, and dense subset. We may think 
of O as the boundary of T. The main idea of the construction is to endow the 
set of vertices of T with a metric m defined as follows: fix one vertex t10 , and 
then define the length ofan edge [t11, v2] as n- 2, where n = ma.x;=1,2 d(t1;, t10 ). 

For any vertices u and t1 define m( u, t1) as the sum of the lengths of the edges 
joining u to t1. It is easy to see that the completion of the resulting bounded 
metric space is exactly T, that it is totally bounded, and hence compact. (Cf. 
[5] .) We use this topology to observe that any sequence of edges has a subse­
quence which lies along a single path, a result which shall be used to prove 
Theorem (1). 

The authors wish to thank John Horvath for many useful discussions. 

2. Bounded harmonic functions 

In this section we recall the definition of a harmonic function on a homo­
geneous tree as a complex-valued function whose value at any vertex is the 
average of its values at all its neighboring vertices. We shall then define Bloch 
functions and, noting that bounded harmonic functions are Bloch, show that 
the maximum value of their Bloch constants can be expressed in terms of the 
degree of homogeneity of the tree. We shall then analyze the extremal func­
tions. 

Definition. Let T be a homogeneous tree of degrees+ 1, withs EN, s ~ 2. 
1) A function / : T -+ C is harmonic if for every vertex t1 of T, J(t1) 

1 
s + 1 Lw~v J(w). 

2) A function/: T-+ C is Bloch if /JJ = supw~v l/(w) - /(v)I < oo. 

The number /J 1, called the Bloch constant of the function /, measures its 
maximum "stretch". We use this terminology because in the classical case it is 
related to the universal Bloch constant /J (cf. [13], p. 133). It is the same as the 
Lipschitz number of/, where the function is thought ofas a map between the 
metric spaces (T, d) and the Euclidean complex plane. Bloch functions have 
been studied in a variety of contexts, generally as analytic or harmonic func­
tions on some complex manifold satisfying a growth condition on the deriva­
tive. This Bloch condition in the case of a bounded homogeneous domain in 
en is analogous to the Lipschitz condition with respect to the Bergman metric 
on the domain and the Euclidean metric on (C (cf. e.g. [7,8,4]). 

In the case of the open unit disk Ll, if / is analytic on Ll, then / is a Bloch 
function if /31 = supzE6.(1- lzl2)1/'(z)I is finite. Let B(Ll) be the Bloch space 
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defined as the set of all Bloch functions on Ll. Then B ( Ll) is a complex Banach 
space under the norm II/II = 1/(0)I + /31 (cf. [1]) and is the double dual of its 
closed subspace Bo(Ll), the little Bloch space, which is the set of all/ E B(Ll) 
such that limlzl-+1(1- jzj2)l/'(z)I = 0 (cf. [11] or [14]). 

In [8] it is shown that a bounded harmonic function on the open unit disk 
has a maximum Bloch constant of 4/1r times its supremum norm. In [4] there 
are corresponding results for bounded holomorphic functions on bounded 
symmetric domains. These provi<:}e the impetus for the study of the Bloch 
constant of bounded harmonic functions on a homogeneous tree. 

Before stating the main result of this section, we introduce some notation 
and definitions. 

Let T be a homogeneous tree of degree s + 1. For neighboring vertices v0 
and v1 and for a positive integer n define the set 

Vn(vo, v1) = {v E Tjd(v, vo) = n, d(v, v1) = n -1}. 

Note that the collection {Vn(vo, v1), Vn(v1, vo)}~ 1 is a partition ofT, and that 
Vn(vo,vi) has cardinality sn-l. 

We now give an example of a bounded harmonic function on T which will 
be used frequently throughout the paper. 

Example (1). Fix an edge [vo, v1]. Define F: T --t (C as follows. 

F(v) = { 1- ,n-lt, i 1), 

-1+----
sn-:--1(s+l)' 

for v E Vn(v1, vo), n EN. 

Clearly F has image contained in (-1, 1) c Ll. It is straightforward to verify 
that Fis a harmonic function on T. Observe that if v E Vn(vo, v1) and u E 

Vn+1(vo,v1) (or v E Vn(v1,vo) and u E Vn+1(v1,vo)), then jF(v) - F(u)j = 
2((s - l)). Furthermore PF = 2(8 

- l) and this value is attained inside T. 
Bn 8 + 1 8 + 1 

Indeed IF(v1) - F(vo)I = 2(8 
- l). 

s+l 
Our main result, Theorem (1), is a direct analogue of the classical case for 

the unit disk. 

THEOREM (1). Let T be a honwgeneous tree of degrees+ 1 and let f : T --t (C 

be a bounded harmonic function with supremum norm II/ II 00 • Then f is Bloch 
2(s-1) 2(s-1) 

and /31 ~ ---11/lloo- Furthermore, if /31 = ---11/lloo, then this value 
s+l s+l 

is attained inside the tree (i.e. /3 I = maxv~w I/ ( v) - / ( w) I) if and only if there 
exist..\ E (C of modulus one and an edge [vo, v1] such that/= ..\llfll00 F, where 
F is the function in Example (1) for this edge. 

If /3 f = 2 
( 

8 
-

1
) II/ II 00 and this value is not attained inside the tree, then 

s+l 
for any edge [vo, v1] there exist an autonwrphism S of T, a sequence {nk} of 
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positive integers, and..\ E (C with I..\I = 1, such that 

lim / O sn1c = ..\ll!llooF, 
k-+oo 

where the limit is pointwise in T. (Here si is the i-fold composition product 
of S.) 

By normalizing the function f, we may assume that II/ II oo = 1, so through­
out this proof, we assume that the image of/ is in the unit disk. 

To prove Theorem (1) we introduce several lemmas. 
If/ is a function from T to (C, and Xis a finite subset ofT, denote byµ(!, X) 

the mean value off on X, that is, 

1 
µ(!, X) = IXI L f(v), 

vEX 

where IXI denotes the cardinality of X. 

LEMMA (1). Let T be a homogeneous tree of degrees+ 1 and let f : T ~ (C be 
a harmonic function. Then for any neighboring vertices vo, v1 ofT and n EN 
we have 

Bn -1 
µ(f,Vn( vo, v1)) = f (vo) + (!(vi) - f ( vo)) 

8
n-l(s _ l) 

Bn-1 - 1 
= f(v1) + (f(v1) - /(vo)) 

8
n-l(s _ l). 

Proof. Let Vn denote Vn(vo, v1). For any n ~ 2, a vertex v E Vn has exactly 
s neighbors in Vn+l and one neighbor in Vn-1· So by the harmonicity of/, 
(s+l)/(v) is the sum of the values of/ on a set of s elements in Vn+l, together 
with one element ofVn-1· The elements ofVn+l are uniquely determined by 
v, while each element ofVn-1 corresponds to s different values of v. So when 
we add all these up we get the equality 

(s + 1) L f(v) = L f(v) + s L f(v), for n ~ 2. 
Vn-1 

For n = 1, instead, we get that (s + 1)/ (v1) = Ev. f(v) + f(vo), 
Let us define an= Evn f(v), and ao = f(vo), Then we obtain the relations 

ao = f(vo), a1 = f(v1), a2 = (s + l)a1 - ao, 

an+l = (s + l)an - san-1, for n ~ 2. 

First let us consider the case f(vo) = 0 and /(v1) = 1. Using induction, it 

is easy to show that an= 
8
n -

1
. Since there are sn-l elements in the set Vn, 

s-1 
• · an Bn - 1 
1t follows thatµ(!, Vn) = ---=-1 = -l( )' sn sn s - 1 
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Now let / be any harmonic function on T such that / ( v0) f:. f ( v1). We may 

normalize/ by setting g(v) = :(~!) ~~\v:!), for all v E T. We see that g is 

harmonic, g(vo) = 0 and g(v1) = 1. From the preceding case it follows that 

µ(g, Vn) = ~;(-
1 

) . Since/= /(vo) + (!(vi)- f(vo))g, it then follows that 
sn 8 -1 

µ(!, Vn) = f(vo) + (/(v1) - f(vo))µ.(g, Vn), which yields the conclusion of the 
lemma. 

Next, in the case that f(vo) = /(v 1), we need only show that for each n E W, 
an= sn- 1/(vo). This follows by an easy inductive proof from the relations 
among the an given above. This proves thatµ(!, Vn) = f(vo) for all n E N. 
D 

LEMMA (2). Let f : T -+ d be a harmonic function. If vo and v1 are 
neighboring vertices, then 

(1) 

(2) 

1/(vo) + (/(vi) - f(vo)) -
8-1::;; 1, 

s-1 

1/(vo) - (/(v1) - /(vo)) -
1-1 ::;; 1. 

s-1 

Proof. Since the image of/ is contained in the unit disk, the mean value 
off on any finite subset of T must also be inside the unit disk. From Lemma 
(1) we obtain 

I 
sn 1 I I sn-1 1 I /(vo) + (/(v1) - f(vo)) 

8
n-l(~ _ l) = /(v1) +(/(vi)-/( vo)) 

8
n-l(s-=-- l) < 1. 

Since this must hold for all n, passing to the limit we obtain inequality (1). 
The second inequality can be derived from the first by interchanging the roles 
of v1 and vo. • 

In keeping with the notation established previously for mean values of 
functions defined on finite sets, we use the following notation when there is 
no danger of confusion: if 0 is a function with a domain of finite cardinality, 
then µ(0) is the mean value of 0 on that domain. 

LEMMA (3). Let 0 : {1, ... , N} -+ (C have image in the closure of the disk 
of radius 1 cent:ered at 1, where N E N. Then for all k = 1, ... , N, we have 
IO(k)I < J2Nlµ(0)1. 

Proof. Since IO(k) - 11::;; 1 for all k = 1, ... , N, we have Re(0) 2 0 and thus 

N 

l0(k)l2 ::;; 2Re0(k)::;; 2 LRe0(t) = 2NReµ(0)::;; 2Nlµ.(0)1, 
t=l 
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proving the assertion. • 

LEMMA ( 4). Let n be a positive integer, and let f : T -+ a be a harmonic 
function satisfying the inequality 

I 
2(a - 1) I (/(v1) - /(vo)) -

8 
+ 1 < €, 

for some vo, v1 E T with vo - v1. Assume that O < € < 4. Then for all 
v E Vn(vo, v1) U Vn(v1, vo) we have 

lf(v) - F( v)I < 10a(n-l)/ 2V€, 
where Fis the extremal function of Example (1) for the edge [vo, v1]. 

Proof. By symmetry, it suffices to prove the inequality for v E Vn = 

Vn( vo, v1). Set z = f ( v1) - / ( vo) -
2

~
8

; 
1
1
), so that lzl < €. Then from (1) 

and (2), respectively, we get the inequalities 

1(
/(vo)+ a-1) +l+z-a-1 ~ 1, 

a+l a-1 

I
- (/(vo) + 

8 
-

1
) + 1 + z-

1
-1 ::; 1. 

a+l a-1 

So /(vo) + 8 
-

1 
is in the intersection of the closed disks of radius 1 centered 

a+l 

at the points -1 - z-
8 

- and 1 + z-
1

-. Hence, by easy geometric consider-
8 - l a-1 

ations, we obtain 

(3) 
1
/(vo) + 8 -11 ~ 2lzl-a- < 2€-s- ~ 4€. 

s+l s-1 8-l 

2(8 - 1) 8 - 1 
Now /(v1) = f(vo) + --- + z, so letting ~1 = /(v1) - --, we obtain 

8+1 8+1 

(4) l~1I = 1/(vo) + 
8 

- l + zl < 5€ < 10,Je. 
a+l 

Notice that l/(v1) - F(v1)I = k1I < lOy'f, so the lemma is true for n = 1. 
Let us assume inductively that for all w E Vk we have IJ(w) - F(w)I ~ 

k-1 
l08_2_y'f. First from Lemma (1) we see that for any positive integer n 

µ(f,Vn) - ( 1 - •n-li + 1}) 

I (
2(8 - 1) ) Bn - 1 2 

= VQ + +z -1 + 
( ) 8 + 1 an- 1(a -1) 8n- 1 (s + 1) 

( 

8 - 1) 8n -1 
= /(vo)+- +z -l( )" 

s + 1 8n 8 -1 
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So, using (3) we obtain 

(5) Iµ(/, Vn) - ( 1- ,n-1(~ + 1)) I < 4€ + f ,n~;(~ ~ 1) < 6,. 

Now let a1 E Vk+l and ao E Vk be neighbors. Define tk and tk+1 by 

2 2 
~k = f(ao) -1 + k-l( ) and ~k+l = /(a1) - 1 + k( ) • 

s s+l s s+l 

Then /(a1) - f(ao) = ~(;-
1

\ + ~k+l - ~k· Applying (1) to the vertices 
8 8 + 1 

ao, a1 we get !1 + 8
~k+l - ~k I :s; 1. Thus 

8
~k+l - ~k is in the closed disk 

. s-1 a-1 
of radius 1 centered at 1. Now observe that for n = k + j we have ~n = 

f(a;) - ( 1 - ,n-l(~ + l)) where;= 0, 1. Thus by (5), the mean values of ~k 

and tk+1 over the sets Vk and Vk+l, respectively, have modulus less than 6e. 

Therefore for 8 = stk+1 - ~k we obtain lµ(8)l < 6e 
8 + 1 ~ 18e. So applying 

s-1 s-1 

Lemma (3), and noting that Vk+1 has cardinality sk, we get 1

8
~k+l - (k I < 

a-1 
✓2akl8e = 6sk/ 2vf"i and so 

By our inductive assumption, we have l(kl < 10a 
1

;
1 vfe. We then get 

l~k+l I < 6,k/2 v< + ~ 10.';;' v< = .6,k/2 v< ( 1 + i. -3/2) < 10. ½ ✓,-. 

This completes the proof. • 

LEMMA (5). Let { / n} nEN be a sequence of harmonic functions from T to A 
such that 

lim l/n(v1) - fn(vo)I = 2
(

8 
- l), 

n-+oo 8 + 1 

where vo and v1 are neighboring vertices of T. Then, for some ,\ E (C of modulus 
one, there exists a subsequence {/n 1 } converging pointwise to ..\F, where Fis 
the harmonic function of Example (1) for the edge [vo, v1]. 

Proof. For sufficiently large integers n we may choose a complex number 
An of modulus one such that An(/n(v1) - fn(vo)) is positive. Let {,\n1 } be a 
convergent subsequence with limit..\. Thus 
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By Lemma (4), for all v ET we obtain 

lim X/n1:(v) = F(v), 
k-+oo 

and so Un1:} converges pointwise to >..F. • 
We are now ready to prove Theorem ( 1). 
Proof. Let us assume that / : T --+ ~ is a harmonic function. Choose any 

neighboring vertices vo, v1 E T. Putting together relations (1) and (2) yields 
the inequality 

l(/(v1) - /(vo)) -
8
- + (J(v1) - /(vo)) -

1-1 ~.2. 
s-1 s-1 

Thus 
8 + 1 1/(vi) - /(vo)I ~ 2 yielding Pt~ 2

(
8 

- l). 
s-1 s+l 

Next suppose that Pt= 2
(

8 
- l) and that this value is attained in the tree. 

s+l 
That is, there exist neighboring vertices vo, v1 such that I/ ( v1) - / ( vo) I = 
2(a-1) 2(s-1) 
---. Hence /(v1) - /(vo) = ,\---, for some complex number>.. of 

s+l s+l 
modulus one. Letting g = XJ we see that g: T--+ ~ is harmonic and g(v1) -

g(vo) = -2(_s_-_l_). We are going to show that g = F. 
s+l 

Given n EN we prove that g(v) = F(v) for all v E Vn(vo, v1) U Vn(v1, vo): 
Letting€ be any positive constant with€< 4, and applying Lemma (4) to the 
function g, we obtain lg(v) - F(v)I < 10s(n-l)/ 2.J€, for all v E Vn(vo, v1) U 

Vn(v1, vo). Taking the limit as€ goes to 0, we obtain g(v) = F(v), completing 
the proof in the attainment case. 

Now assume that for each n E N there exist neighboring vertices Wn and 

Un such that limn-+oo 1/(wn) - /(un)I = 2
(
8 

- l). Without loss of generality 
s+l 

we may assume that d( wn, vo) = d(un, vo) + 1. Since T = TU O is compact, 
there exists a subsequence { w,,,1:} converging to some end w. Similarly corre­
sponding to { u,,,1:} there exists a subsequence { u,,,1:,} converging to some end 
w 1

• But if these ends were distinct, then for all l sufficiently large, the vertices 
w,,,1:, and u,,,1:, could not be neighbors. Sow must equal w'. 

There are two cases to consider. First assume that the path p from vo repre­
senting w contains v1: p = [ v0 , v1, v2 , ... ] . Then there exists a sequence { m;} 
of positive integers such that [vm,-, vm,-+1] = [uv1:., w,,,1:.]. Thus 

J J 

. 2(s - 1) 
_lim 1/(vm+i) - /(vm-)I = --. 

3-+oo ' ' 8 + 1 

Let S be any automorphism of T that moves right on the path p, that is, such 
that S(vn-1) = vn, n EN. Thus the preceding limit can be written as 

_lim I/ 0 sm;(v1) - / 0 sm;(vo)I = 2(s - l). 
3-+oo 8 + 1 
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Thus by Lemma (5) there is a constant,\ of modulus one and a subsequence 
{m;(k)hEN such that the sequence{/ o sm;(k)} converges pointwise to ,\F. 

In the case that the path p representing w is of the form [vi, vo, v2, .. . ] we 
may apply the same argument and get a sequence {/ o sm;(k)} converging 
pointwise to -,\F. Letting nk = m;(k), we obtain the assertion. • 

There is an alternate approach leading to the inequality P 1 ~ 
2 

~
8

; 
1

1
) II/ II 00 

in Theorem (1), which was pointed out to us by Mitchell Taibleson. It is a 
more elegant point of view which uses the Poisson integral representation of 
bounded harmonic functions on a homogeneous tree. Here is a sketch of his 
basic idea: For any vertex v, there is a measure dµv on the boundary O of the 
tree which may be thought of as the hitting measure, that is, the probability 
that an infinite path beginning at v ends in a subset A of n is the integral 
J A dµv ( w). Fixing a vertex vo, let dµ be dµv 0 • All the measures dµv are abso­
lutely continuous with respect to one another, so for each vertex v,there exist 
functions K ( v, w) defined for w E n, such that dµv ( w) = K ( v, w) dµ. This is the 
Poisson kernel, and K ( v, w) dµ( w) is the harmonic measure on !l relative to the 
point v. The value of K ( v, w) is gotten as follows: let u be the vertex where the 
paths from v tow and vo tow cross. Then K(v,w)dµ(w) = sd(vo,u)-d(v,u). In 
particular, every bounded harmonic function/ gives rise to a bounded mea­
surable function f on n such that for each vertex v 

f(v) = fn /(w)K(v,w)dµ(w). 

Then for vertices u, v ET we have 

/(u) - f(v) = l/(w)[K(u,w) - K(v,w)]dµ(w), 

hence l/(u) - /(v)I :-:; .11/lloollK(u, -) - K(v, -)IIL1(0)· But for u, v neighbors, 

a direct calculation shows that IIK(u, -) - K(v, -)IIP(O) = 2
(
8 

- l) µ(O) and 
s+l 

11/lloo = µ(O)ll/lloo• (Different authors use different scaling factors for the 
total measure of !l.) Thus we get 

2(s - 1) 
PJ = sup l/(u) - /(v)I ~ --11/lloo• 

u~v 8 + 1 

3. The Bloch space 

Let B be the space of all Bloch harmonic functions on a homogeneous tree 
T of degree a + 1. We first show that, in analogy with the classical case of the 
Bloch analytic functions on the hyperbolic disk, B is a complex Banach space, 
called the Bloch space. Fix a vertex vo E T. For / E B, define 

11111 = 1/(vo)I + Pi-
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THEOREM (2). B is a complex Banach space under the norm II II. 

Proof. Write 0:1 = l/(vo)I, Notice that II II is the sum of two semi-norms 
o: and /3. So II II is automatically a semi-norm which is actually a norm on B, 
because /31 = 0 implies that/ is a constant and 1/(vo)I = 0 means that this 
constant is zero. Thus to prove the theorem we need only show the complete­
ness property. 

Let Un} nEN be a Cauchy sequence in B. This implies that Un} is a Cauchy 
sequence with respect too: (which means that {/n(vo)} is a Cauchy sequence 
in (C) and is also a Cauchy sequence with respect to /3. We must prove that 
the sequence {/n} converges in norm to a function / E B. First we are going 
to show that the sequence is pointwise convergent. We use induction on the 
distance d{ v, v0 ) to show that { / n ( v)} is a convergent sequence for any vertex 
v ET. To begin the induction, we observe that since the sequence Un(v 0 )} is 
Cauchy, it converges to some complex number which we denote as /(v 0). 

Fix a non-negative integer k and assume that Un(w)} is convergent for all 
w E T with d(w, vo) S k. Let v be a vertex with d(v, vo) = k + 1 and w the 
neighbor of v closer to vo, By the inductive hypothesis, Un(w)} is convergent. 
Then 

lfn(v) - /m(v)I S l(fn(-v) - /m(v)) - Un(w) - /m{w))I 

+lfn(w) - /m(w)I S /3Jn-f- + lfn(w) - fm(w)I, 

The first term of this last sum converges to zero because Un} is a Cauchy 
sequence with respect to /3, and the second approaches zero by the inductive 
hypothesis. Thus the sequence Un(v)} is Cauchy in (C and hence has a limit, 
f(v). 

We now show that the limit function / is in B . To see that it is Bloch, 
observe that if v and w are neighbors and n E N, then 

(6) 1/(v) - /(w)I S 1/(v) - /n(v)I + lfn(v) - fn(w)I + lfn(w) - /(w)I, 

The first and third terms go to zero and the second term is bounded above by 
/3 In, which is Cauchy. We now show that the sequence {/31 n} is bounded. Since 
{ / n} is Cauchy with respect to /3, there exists N E N such that /31 m. _ f N < 1, 
for all m ~ N. In particular, l(fm(u) - /N(u)) - (/m(v) - fN(v))I S 1, for any 
pair of neighboring vertices u and v, so that 

l/m(u) - /m(v)I S 1 + I/N(u) - /N(v)I S 1 + /3/N' 

Since u, v were arbitrary neighbors, it follows that Pim. s 1 + /3JN' Thus the 
sequence {Pin} is bounded. 

From (6) we then obtain that l/(v) - /(w)I S liminfn-+oo Pin· Hence/ is 
Bloch and /3 f S lim inf n-+oo /3 Jn. 

Next we show that limn-+oo 11/n - /II = 0. We recall that 11/n - /II = 
l/n(vo) - /(vo)I + Ptn-f· Since /n(vo) -+ /{vo), we only need to prove that 
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/3Jn-f approaches 0. Arguing by contradiction, assume that there exist e > 0 

and a subsequence {/nAJkEN such that /3 '"k-f > e fork EN. 
For notational convenience we pass to the subsequence and assume that 

/3Jn-f > e for n E N. Then for each n E N we may choose Vn E T and a 
neighbor Un of Vn such that 

l(fn(vn) - f(vn)) - (/n(un) - f(un))l 2'.'. €. 

Since {In} is Cauchy with respect to /3, there exists NE N such that 

for all n 2:: N, p E N, v, u E T with v ,..., u. 
From the pointwise convergence of In to f we have that 

for all p sufficiently large. Therefore 

l(!N(vN) - f(vN)) - (/N(uN) - f(uN))I ~ 
1(/N(vN)-fN+p(vN))-(/N(uN)-fN+p(uN))I+ 

IUN+p(vN) - f(vN)) - (/N+p(uN) - f(uN)) I< e, 

contradicting our choice of VN and UN, Thus /3Jn-f-+ 0. 
Furthermore observe that l/3Jn - /311 ~ /3Jn-f, hence /31 = li.mn--+oo fJfn· 
Finally for any vertex v, note that 

f(v) = lim fn(v) = lim -
1
- ""fn(w) = -

1
- ""f(w), 

n--+oo n--+oo s. + 1 L B + 1 L 
w~v w~v 

since this is a finite sum. Thus the limit function is harmonic. The complete-
ness is thus established. • 

The following result is a precise analogue of the classical case of Bloch ana­
lytic functions on the open unit disk which shows how they can be character­
ized in terms of normal families. We recall that a family of functions between 
metric spaces is called normal if every sequence in the family has a subse­
quence which converges uniformly on compact subsets - which in the tree 
case means that it converges pointwise - to a function not necessarily in the 
family. Let us denote by A the group of all automorphisms of the tree. 

THEOREM (3). Let vo E T be a fixed vertex. A function f : T -+ (C is Bloch 
if and only if the family{/ o S - f(S(vo)): SE A} is normal. 

Proof. Assume first that/ is Bloch, and let {Sn} be a sequence of automor­
phisms ofT. Let gn = f o Sn - f(Sn(vo)). We shall define g: T-+ (Cat a vertex 
v by induction on d( v, vo) in such a way that g is the limit of a subsequence of 
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{gn}, Since 9n(vo) = 0 for all n EN, we set g(vo) = 0. Given a non-negative 
integer m, assume that we have constructed a subsequence {gn1 } such that 
for all v E T with d(v, vo) S m, the sequence {9n1: (v)} converges to the limit 
g(v). Letwbeavertexwithd(w,vo) = m+l. Letvbetheneighborofwsuch 
that d(v, vo) = m. Notice that Sn(v) - Sn(w) for all n EN. Since/ is Bloch, 
we have l9n(v) - 9n(w)I = lf(Sn(v)) - f(Sn(w))I S /31· From this inequal­
ity and the convergence of {gn1 ( v)} it follows that the sequence {gn1 ( w)} is 
bounded, hence some subsequence of it is convergent. Set the corresponding 
limit equal to g( w). Using a standard diagonalization procedure, we find a 
subsequence of the original sequence which converges pointwise tog. Thus 
the family{/ o S - f(S(vo)) : SE A} is normal. 

Conversely assume that/ is not Bloch. Then there exists a sequence of 
pairs of neighboring vertices { (Un, Vn)} such that limn-+oo I/ (Un) - / ( Vn) I = oo. 
Let u be any neighbor of v0 . For each n let Sn be any automorphism mapping 
vo to Vn and u to Un. Let 9n = f o Sn - / ( Sn ( vo)). Since I 9n ( u) I = I/ (Un) - / ( Vn) I, 
which diverges to infinity, no subsequence of {gn(u)} can converge. Thus the 
family {Io S - f(S(vo)): SE A} is not normal. • 

In analogy with the classical case of the unit disk, we now define the little 
Bloch space on a homogeneous tree. 

Definition. Let Bo be the subspace of B consisting of those functions / such 
that the set M(f, €) = {v ET: l/(v) - /(u)I ~€for some u - v} is finite for 
every positive number€. The set Bo is called the little Bloch space. 

First notice that/ E Bo if and only if, for any sequence of pairs of neighbor­
ing vertices {(un, vn)}nEN approaching the boundary 0, we have 
limn-+oo 1/(vn) - f(un)I = 0. Observe that this limit condition is the precise 
analogue of that used to define the little Bloch space of the unit disk. 

Next we see that Bo is a closed subspace of B. Given u and v neighboring 
vertices and/ and g Bloch functions, note that l/(u)- f(v)I S /31-u + lg(u) -
g(v)I, yielding the inclusion M(f, €) c M(g, € - /3 f-g) for any€ > 0. Now if/ 
is in the closure of Bo and€> O, there exists g E Bo such that {3 f-g < €. Then 
the set M(g, € - {31_9 ) is finite, hence M(f, €) is finite. Thus/ E Bo. 

We will prove that,just as in the classical case of the Rubel-Shields Theorem 
for the unit disk (cf. [11]), the double dual of Bo is isomorphic to B. 

We now give an example of a Bloch function which is not in the little Bloch 
space that will be used in the proof of Theorem (5). 

Example (2). Let p = [ ... , "-1, vo, v1, .. . ] be a doubly infinite path. For all 
v ET define f(v) = k E Z, where vk is the closest vertex ofp to v. Observe that 
for v fj. p the value of/ at v and all its neighbors is the same, so / satisfies the 
mean value property at v. If k E Z, the value of/ at vk and all its neighbors 
except "k-l and vk+l is k. At "k-l, vk+l it is k - 1, k + 1, respectively, so the 
mean value is equal to k. Thus / is harmonic. Clearly /31 = 1, but M(f, 1) = 

{ vk}~00 • Hence/ E 8\Bo. 
Notice that the function in Example (2) is unbounded. In fact there exist 
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bounded functions not in the little Bloch space. We give an example of such a 
function below. The construction is more complicated than that of Example 
(2) but is in the same spirit. 

Example (3). Let p = [ ... , v-1, vo, vi, ... ] be a doubly infinite path. Given 
v ET, assume that vk is the closest vertex of p to v and let n = d(vk, v). Define 
/: T-+ Chy 

- (s - 1)2 1 - s if k is even 

{ 

2s ( -n) 
f(v) = 2s 

1 + (s - 1)2 (1 - s-n) if k is odd 

Observe that for v ¢. p, the function / satisfies the mean value property at v 
because locally it has the form A+ Bs-n where n is the distance from some 
fixed vertex. We need only check harmonicity at each vk. If k is even so that 
f(vk) = 0, then /(vk_ 1) = /(vk+1) = 1, whereas the value of/ at the other 

neighbors of vk is --
2

-. Thus the ~ean value of/ at the neighbors ofvk is 
s-1 

0 = f(vk). If k is odd so that f(vk) = 1, then /(vk-1) = /(vkH) = 0, whereas 

the value of/ at the other neighbors of vk is 
8 + 1 . Thus the mean value of 
s-1 

/ at the neighbors of vk is 1 = f(vk). So f is harmonic. Now for all v ET we 

have 1/(•)I < 1 + (a ~•l)2, so/ is bounded, hence Bloch. On the other hand, 

for all k E Z we note that IJ(vk) - f(vk+i)I = 1, so/ is not in the little Bloch 
space. 

For the remainder of this section, we fix an end wo E n. This allows us 
to define an ordering between neighboring vertices as follows: if u and v are 
neighbors, then we write v -< u, u >- v, or v = u-, and say th~t v is the pre­
decessor of u, or u is the successor of v, in the case that the path representing 
wo and beginning with u contains v. Clearly, if u ,.., v, then either u -< v or 
u >- v. In a homogeneous tree of degrees+ 1, every vertex has exactly one 
predecessor and lJ successors, which constitute its s + 1 neighbors. 

Let qT] be the space of all complex-valued functions on T. We now define 
two operators on qT]. If/ E qT] define its derivative / 1

: T-+ (C by J'(v) = 
f(v) - f(v-) and <pf : T-+ (C by <pf(v) = f(v) - ~u>--v f(u). Notice that/ is 
harmonic if and only if <pf I is identically 0, and a harmonic function / is Bloch 
if and only /' is bounded. 

The first observation follows since 

<p !' ( V) = !' ( V) - L !' (ti,) = ( I ( V) - / ( V - ) ) - L ( I (ti,) - / ( V)) 
u>--v 

= (s + 1)/(v) - L f(u). 
u~v 

The second observation is an immediate consequence of the definition of 
Bloch function, noting that /3 I = II/' II oo. 
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We can also define the- definite integral over a finite path of any / E C[T] as 
follows: 

(i) If u ~ V define rv I = { I (Iv() ) ~ff u ~ V • Ju - u 1 u >-v 

(ii) If [u = v0 , v1, ... , vn = v] is the path from u to v, then define iu f = 

t [; f. (Of course, J; f = 0.) 
j=l u;-1 

It follows immediately that the Fundamental Theorem of Calculus holds, 
and in particular, fixing a vertex vo ET, we have 

f(v) = fu !' + f(vo), for all v ET. 
luo 

Thus the function € : C[T] -4 C[T] EB (C defined by €(/) = (!', /(vo)) is 
a vector space isomorphism. Furthermore, by the above remarks, if we let 
Jl(T) denote the set of all harmonic functions on T, the map e induces an 
isomorphism JI (T) -4 ker cp EB (C. In addition, let l 00 (T) be the set of bounded 
functions on T and e = ker cp n £00 (T). Then e also induces an isomorphism 
B -4 e EB C. Since for/EB the norm of/ is given by II/II= ll!'lloo + l/(vo)I, if 
we define 11 (g, .X) II = llglloo + I.XI, for (g, .X) E l 00 (T) EBC, this latter isomorphism 
is an isometry of Banach spaces. 

Let eo c e be the subset consisting of all functions / which vanish at in­
finity, that is, for which the set { v ET: I/( v)I 2 €} is finite for all€> 0. Then 
e also induces an isometry Bo -4 eo EB C. 

We can now prove the Rubel-Shields Theorem on trees: 

THEOREM (4). The double dual B0* of Bo is B. 

Proof. Using the isometries induced bye, it is sufficient to prove that,;• 
is isomorphic to e. Let co(T) be the subspace of C[T] of functions vanishing 
at infinity. Then eo is a closed subspace of co(T) and e is a closed subspace 
of l 00 (T), in fact in each case they are the intersections of the larger spaces 
with ker cp. There is a natural isometry between (co(T))** and l 00 (T), because 
(c0 (T))* is isometrically equivalent to the space l 1 (T) of absolutely summable 
functions on T, and (l 1(T))* is isometri"cally equivalent to l 00 (T) (cf. [9, pp. 
55-57]). 

For convenience, we shall use <po to represent cp considered as a map from 
c0 (T) to itself, and cp00 to represent cp considered as a map from l 00 (T) to 
itself. Thus eo = ker <po and e = ker 'Poo. We shall prove the result in two 
steps. First we shall use the following lemma to show that e;• = ker(cp0*), 
and then we shall verify directly that cp0* = 'Poo. 

LEMMA (6). If f : A -4 B is a continuous linear operator of Banach spaces, 
then (ker /) ** = ker(/**). 
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Proof. An easy application of the Closed Graph Theorem says that / factors 
as 

p ,p i 
A-+ A/ker /-+Im/-+ B, 

where p is the projection, ,p is an isomorphism of Banach spaces, and i is the 
inclusion map. Applying the transpose operator, we obtain that /* factors as 

i• ,µ• p• 

B*-+ (Im/)*-+ (A/ ker /)*-+A*. 

Note that p* is an injection, and by the Hahn-Banach Theorem, i* is a sur­
jection. Thus the image of/* is exactly ~A/ ker /)*, which is equal to (ker /)..L 
by Theorem (4.9(b)) of [12]. So (ker /)..L = (Im(/*))..L = ker(/**), where the 
latter equality follows from [12], Theorem (4.12). 

Finallyweshowthat (ker /)..l..l = (ker /)**. Now a E (ker /)_1__1_ ifandonlyif 
a E A** and a( (ker /)..L) = 0. But this is equivalent to saying that there exists 
a linear functional (3 : ker /* = A•/ (ker /)..L -+ (C such that i** (/3) = (3 o i* = a, 
i.e. a E i** (ker /) **. Since i** is just the inclusion of (ker /) ** in A**, this 
proves (ker /) .L..L = (ker /) ** . • 

We are now ready to show that cp0* is exactly cp00 • 

For any vertex v, let 8v : T-+ (C be the evaluation at v. Given any/ E co(T), 
we have cpof(v) = f(v) - Eu>-v f(u). Now let g E co(T)* = l 1 (T). By this 
identification, (cp0g)(v) is the same as cp0g applied to the evaluation 6v, But 
'Po9(5v) = g(cpo5v) = Ew g(w)(8v(w) - Eu>-w bv(u)) = g(v) - g(v-). Now let 
h E l 00 (T). Then 

(cpo*h)g = h(cpog) = L h(w)(g(w) - g(w-)) = L h(w)g(w) - L h(w)g(w-) 
w w w 

= L h(w)g(w) - LL h(u)g(w) = L[h(w) - L h(u)]g(w) 
w w u>-w w u>-w 

= L ipooh(w)g(w) = (cp00 h)g. 
w 

This shows that cp0* h = cp00 h, as promised. • 

In the classical case of the open unit disk, every analytic function/ on A can 
be expressed as the uniform limit on compact subsets of bounded functions in 
Bo(-6.). The construction is quite simple: for O ~ r < 1, define fr(z) = f (rz). 
Since each fr can be extended to a neighborhood of the disk, it is analytic 
at the boundary and is thus in Bo(-6.) n L00 (.6.). This construction is very 
useful for proving results in complex analysis. We observe here that a similar 
construction exists for harmonic functions on a homogeneous tree. 
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PROPOSITION (1). Fix vo E T. There is a sequence of transformations 
x n : }/ ( T) -4 Bo n l 00 

( T) such that for all v E T and f E }/ ( T), 

Xnf ( v) = f (v) for each n EN, with n 2: d( vo, v). 

In particular, the sequence {x n /} converges to f pointwise. 

Proof. Let n EN. Given/ E )((T) and v ET, define 

{

f(v) ifd(vo,v)sn 
Xnf ( v) = s - 8-p . , 

/(v1) + (/(v2) - /(v1)) -- 1f d(vo, v) = n + p, p 2: 1 
s-1 

where v1, v2 are the vertices on the path from vo to v such that d( vo, v1) = n-1 
and d(vo, v2) = n. 

Notice that the second formula for Xnf(v) agrees with the first also for 
p = -1, where v = vi, and for p = 0, where v = vz. 

By the construction Xnf satisfies the mean value property at v if d(v0 , v) s 
n - 1. Now for d(v0 , v) = n + p, p 2: 0, we note that v has s neighbors at 
distance n + p + 1 from vo and one neighbor at distance n + p - 1 from vo. Th us 
to complete the proof that Xnf is harmonic we need only observe that 

or equivalently, that (s + l)s-P = s • s-(p+l) + s-(p-l), which is obvious. 
So Xnf E )((T). For any neighbors u and v such that d(vo, v) = n + p and 

f ( v1) - f ( v2) 
d(vo, u) = n + p + 1, we see that Xnf(v) - Xnf(u) = sP+l so that 

Xnf E Bo. 
Finally notice that for each fixed n, there are only finitely many choices for 

v1 and v2. Thus it is easy to see from the definition that lxnf(v)I is bounded. 
Therefore Xnf E l 00 (T). • 

We can construct a rich family of elements of Bo as follows. Fixing a vertex 
vo and a positive integer n, we let An= { v E Tld(v, vo) = n}. Let g: An -4 (C 

be any function. By solving the Dirichlet problem (cf. [2], Lemma (4.3)) we 
extend g to a function h harmonic on Bn = { v E Tld( v, vo) s n}. Observing 
that the definition of Xnf depends only on f lBn, we can extend h to xnh, 

As an application of this construction, we obtain the following result which 
is an analogue of Theorem (2.1) of [1]: 
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THEOREM (5). For f E B we have f E Bo if and only if Xnl --+ Jin B. 
Furthermore Bo is a separable nowhere dense subspace of B. 

Proof. Fix vo E T and let / E B . Since Bo is closed in B, if x n f --+ J in B, 
then/ E Bo. 

Conversely, assume that/ E B0 • Given€ > O choose N E N so that v ¢ 
M(f, €/2) whenever d(vo, v) 2: N - 1. Let n EN, n 2: N. By definition of Xn, 
the functions Xnf and / agree at all vertices v within distance n of vo. In 
particular, setting In= Xnf- f we have II/nil= Pin· So to calculate the Bloch 
norm of Xnf - f it is sufficient to estimate the difference of the values of /n 
at neighboring vertices whose distance from vo is at least n. Let v and u be 
neighboring vertices such that d(vo, v) = n + p, d(vo, u) = n + p + 1, with pa 
non-negative integer. Let v1, v2 be as in the proof of Proposition (1). Then 

lxnf(v) - Xnf(u)I = I /(vi!P-:;_[(v2) I· 
Since v1 and v are not in M(/,€/2), we have l/(v1) - /(v2)I < €/2 and 

I/ ( v) - / ( u) I < € / 2. So 
€ € 

lfn(v) - /n(u)j ~ lxnf(v) - Xn/(u)j + 1/(v) - /(u)j < 
28

p+l + 2 < €. 

Thus llxn/ - /II < E, for n 2: N. Hence Xnf--+ fin B. 
For each n EN the set Sn,Q = {xnfl! E )((T), f(v) E Q + iQ for v E T} 

is countable since Xnf is determined by its values on the finite set Bn = { v E 
Tjd(vo, v) ~ n}. Furthermore Sn,Q is dense in {xn/l/ E Jl(T)}: let g = Xnf, 

with / E )( ( T) . For all v E Bn-1, let "v be a neighbor of v further away from 
vo,and let B~ = { uv Iv E Bn-il, a subset of Bn. Define h : Bn --+ (C as follows. 
Given€ > O, let h be an arbitrary €-approximation tog on the set Bn - B~ 
with values in Q + iQ. There is a unique definition of h on B~ which extends 
hlBn - B~ harmonically, so that h E Sn,Q· A simple combinatorial argument 
shows that his an as€-approximation tog, where a is the (n + l)st Fibonacci 
number. 

Thus UnEN Sn,Q is a countable dense subset of {xn/l/ E )((T), n E N}, 
which is dense in Bo by the first part. Hence Bo is separable. 

Next let/ be the function in Example (2) and let g E Bo be arbitrary. Then 
for any€> 0 we have g€ = g +€/¢.Bo but Ilg - g€11 =€.Thus Bo is nowhere 
dense in B. This completes the proof. • 

We wish to observe that Bo is not contained in l 00 (T), so the intersection of 
these spaces in not all of Bo. We show this as follows: 

Example ( 4). Fix an infinite path [ v1, v2 , .•. ] . If v E T is such that the closest 
vertex on this path to vis Vn and d(v, vn) = p 2: 0, we let 

I 
s(l - s-P) n2 

log n + ( ) 2 log - 2-- for n 2: 2 
/( v) = _ s - 1 n - 1 

1- 8 p 
- --- log 2 for n = 1 

s-1 
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By the similarity with the construction of Proposition (1) it is easy to see that 
/ is harmonic. 

Now if u and v are neighbors and the nearest vertex to v on the path is vn 
with n 2: 2 andp = d(v,vn), then 

( 
n

2 
) 1 1/(u) - f(v)I :s; log - 2- ( )" 

n - 1 sP s - 1 

For n = 1 the upper bound is s-P log 2. Since these upper bounds approach 
0 as either n or p approaches infinity, / E Bo. Since f ( vn) = log n, we obtain 
that/¢ l 00 (T). 

4. The non-homogeneous case 

Many of the results of this paper can be extended to non-homogeneous trees 
with a few modifications. Let T be an arbitrary tree with only the condition 
that each vertex has at least two neighbors. In addition, let P: T x T-+ [O, 1] 
be a nearest neighbor Markov operator (or stochastic operator); that is, for all 
v E T, the set { u E T : P( v, u) =I= O} coincides with the set of neighbors of v, 
and Lu P( v, u) = 1. For example, if Tis homogeneous of degrees+ 1, then 

P(v,u)={o!1 
defines a Markov operator on T. 

ifu ~ V 

otherwise 

Notice that a Markov operator P induces a convolution operator on (C[T] 
as follows: If/ : T -+ (C is any function, then define P * f : T -+ (C by 
P * f(v) = Lu P(v, u)/(u). We say that a function f on Tis harmonic if 
P* f = f, that is, the value of/ at any vertex is the weighted mean of its values 
at the neighboring vertices. Notice that in the homogeneous case, using the 
above Markov operator, this definition agrees with the earlier one. 

In this more general context, it is also necessary to generalize the definition 
of automorphism of a tree given in § 1. An automorphism of T is a bijection 
S : T-+ T such that P(Su, Sv) = P(u, v) for all u, v ET. Automorphisms of 
T necessarily carry edges to edges. 

Theorem (2) still holds in this generality. Let BI be the space of all func­
tions, not necessarily harmonic, satisfying the Bloch condition. Observe that 
the proof of Theorem (2) first shows that 8 1 is a Banach space, and then that 
the subspace of harmonic functions in BI is closed. In the general case, har­
monicity is also preserved under limits, since it is again a local condition re­
garding a finite sum at each vertex. 

In regard to Theorem (3), it is true also in the non-homogeneous case that 
/ Bloch implies that the family{/ o S - f(S(vo)) : SE A} is normal, where A 
is the group of automorphisms of T. But the converse is not true in general, 
because the group A may be too small to give any information. For example, it 
would not be hard to construct a tree with A trivial. It is easy to see, however, 
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that the following weaker version of homogeneity is sufficient to prove the 
converse. 

Definition. A tree Tis semi-homogeneous if there exists a finite set of pairs 
of neighbors {( '-'j, Vj n:=1 such that given any pair of neighboring vertices 
( u, v) there exist an integer n and an automorphism S of T such that S ( u) = 
Un, S(v) = Vn, 

Now Theorem (3) holds if Tis any semi-homogeneous tree. 
In order to extend Theorem (4) to the non-homogeneous case, we need to 

modify some more definitions. First define a function induced by the Markov 
operator: For v ET let P'(v) = P(v-, v). The modifications are now gotten 
by taking P' into account in several definitions. In this context we define the 
function <p: C[T]-+ (C[T] by <pf(v) = f(v) - EurvU(u) + /(v)). Notice that 
if we apply this formula to the homogeneous case, we get the earlier value 
of <p divided by the degree of homogeneity. Further we let e be the space of 
functions g E C(T] such that Pg is bounded and <pg= 0. A function/ E C(T] 
is harmonic if and only if <p/1 = 0, and we let /3J = IIP' f'lloo• This slightly 
changes the Bloch condition for harmonic functions to 

supP'(v)l/'(v)I < oo. 
V 

The proof of Theorem ( 4) proceeds in the non-homogeneous case exactly as 
before. 

Finally, the construction in Proposition (1) can be carried out easily, but it 
would be very complicated to write down an explicit general formula for the 
sequence {xn}. Theorem (5) ought to hold in this generality. 

We now turn to possible generalizations of Theorem (1). First note that 
if T is homogeneous of degree s + I, then our new definition of /31 yields the 
old definition divided by s + I. Except for this scaling factor there are no 
further changes in Theorem (1) for the homogeneous case. Even in the non­
homogeneous case a bounded harmonic function is always Bloch (clearly, if 
/ : T -+ .6., then /31 s; 2). The first interesting question, therefore, is how 
to calculate from tree data the uniform upper bound on the Bloch norms of 
functions with image in A. This will be a very difficult calculation in the most 
general case. Another question is: can this least upper bound be attained by 
some bounded harmonic function? We suspect that the answer to this ques­
tion is yes, but it will be very difficult to classify these extremal functions. 
Finally, assuming that extremal functions exist, do there necessarily exist ex­
tremal functions which realize this maximum value inside the tree? That is, 
given /3 = sup /31 taken over all harmonic functions / : T -+ A, does there 
exist a harmonic function F : T -+ A, and neighboring vertices vo, v1 in T 
such that /3 = P( vo, vi) IF( vo) - F( v1) I? We leave these as open questions. 
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