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Introduction 

The Stiefel-Whitney classes of a real vector bundle are determined by the 
Thom isomorphism and the action of the Steenrod squares on the fundamental 
class of the bundle. With an analogous procedure, we introduce secondary 
characteristic classes using stable secondary cohomology operations acting on 
this fundamental class. These secondary classes satisfy properties which are 
similar to the well known properties of Stiefel-Whitney classes. They are in
variants of the stable fibre homotopy type of the vector bundle, and, under 
suitable hypotheses, they satisfy a Whitney type product formula. For the 
tangent bundle of a differentiable manifold M, they satisfy a Wu type formula 
which, in many cases, determines them by means of the action of cohomology 
operations on a suitable class of H* ( M X M). 

We compute secondary characteristic classes for the tangent and normal 
bundles of the complex and real projective spaces and use them to obtain some 
non-immersion results. In particular, we show that the real projective space 
RPn cannot be immersed in R2n-9 if n = 2r + 2• + 3 and r > s ~ 2. In this case, 
according to Sanderson in [13], RPn can be immersed in R2n-s_ Also, comb1ning 
this non-immersion result with the results of James ([6]), it follows that RPn 
cannot be immersed in Rn+ln/21 for all n ~ 32. 

I. Secondary characteristic classes* 

Unless otherwise stated, throughout this paper we will use singular cohomology 
with coefficients Z2 , the cyclic group of order 2, and in general we will omit the 
coefficient group; thus Hq(B) will stand for Hq(B; Z2). 

Let ~ = (E, B, 1r) be an n-vector bundle with base B, a paracompact and 
connected space, projection 1r: E - B, and fibre Rn, an n-dimensional vector 
space over the reals. Let Eo c Ebe the subspace of non-zero vectors of E. As in 
[9; p. 34), we define the Thom isomorphism, 

T: Hq(B) - Hn+q(E, Eo), 

by the composition, 

Hq(B) ~ Hq(E) ~ Hn+q(E, Eo), 

where U E Hn(E, Eo) is the fundamental class of ~- Explicitly, if x E Hq(B), 
T(x) = (1r*x) .___, U. 

* Our secondary characteristic classes are different from the ones defined by Peterson 
and Stein in "Secondary Characteristic Classes," Ann. of Math., 76 (1962), 510-23. 
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We denote by A the Steenrod algebra over Z2 . For each n-vector bundle 
/;, we define a Zrhomomorphism, 

/;*: A - H*(B) 

by /;*(0) = T- 10(U), or equivalently 0(U) = [7r*/;*(0)] '-../ U, for every 0 EA. 
This homomorphism is natural with respect to bundle maps. 

In general 1;*(0) is a primary characteristic class of /;, and in particular, 
1;*(Sq;) = W;(/;) is the ith Stiefel-Whitney class. If Sq = L;:o Sq\ ~*(Sq) = 
W(/;) is the total Stiefel-Whitney class of/;. 

The characteristic ring of /; is the subring G*(/;) c H*(B) generated by 
Wo(O, • • • , Wn(/:). The Wu formulae imply that G*(O is an A-module and that 
/;*A c C*(/;). Clearly, the subring of H*(B) generated by 1;*A coincides with 
c*co. 

In our notation, the Whitney product formula is given as follows. Let /;, ri 

be two vector bundles over the same base and /; E9 ri their Whitney sum, then 

C/; E9 ri)*(Sq) = /;*(Sq) '-../ ri*(Sq). 

The general considerations we have made on primary characteristic classes, 
indicate clearly the way to introduce secondary characteristic classes. These 
will be determined by the action of secondary cohomology operations in the 
class U. 

Let 

(1.1) . 

be a homogeneous relation of degree r + 1 in A, with Sk = degree ak > 0 and 
tk = degree f3k > 0. Following Adams ([1]), let if> be a stable secondary cohomol
ogy operation associated with the relation ( 1.1). For every space X and every 
q > 0, the operation cJ> is a homomorphism, 

cJ>: Kq( cJ>; X) - Hq+r(X)/Qq+r( cJ>; X), 

where 

( 1.2) Kq( if>; X) = nk!l [Ker(/3k : Hq(X) ------, Hq+tk(X) )], and 

(1.3) Qq+r(cJ>; X) = Lk!l akHq+tk-1 (X). 

If /; = (E, B, 11") is an n-vector bundle, suppose that /;*(/3k) = 0, or, equiva
lently, f3k( U) = 0, for k = 1, · • • , j. With these hypotheses, the secondary 
operation cJ> ( U) is defined and 

cJ>(U) E Hn+r(E, Eo)/Qn+r(cJ>; E, Eo). 

Using the inverse of the Thom isomorphism induced in the factor group, we 
obtain a secondary characteristic class /;* ( cJ>) defined by 

( 1.4) 
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where 

~*(cp) E Hr(B)/Qr('P; 0, 
with Qr('P; O = T- 1Qn+r(4>; E, Ea). The direct extension of the cup-product to 
cosets allows us to express ( 1 .4) in the following equivalent form: 

(1.5) 

The indeterminacy Qr(cp; 0 can be given explicitly in terms of H*(B) as follows. 
Let if;: A -. A ® A be the diagonal map, which turns A into a Hopf algebra. 
The composition 

A LA ® A 1 ® e A ® H*(B) 

defines 'P = (1 ® t)tJ;. Letµ: A ® H*(B) -. H*(B) be the homomorphism 
given by the standard action of A in H*(B), which makes H*(B) an A-module. 
Let r: H*(B) ® H*(B)-. H*(B) ® H*(B) be the homomorphism that inter
changes the factors, and, finally, let d*: H*(B) ® H*(B) -. H*(B) be the 
homomorphism induced by the diagonal map d: B-. B X B. With these homo
morphisms define>.: A ® H*(B) -. H*(B) to be the composition 

>. = d*(µ ® 1)(1 ® r)('P ® 1). 

PROPOSITION 1.6. The fallowing diagram is commutative: 

A® H*(B) ~ H*(B) 

'®''] IT 

A ® H*(E, Ea) _I!:__,, H*(E, Ea) 

Proof. If 0 E A, suppose t/;(0) = L 0; ® 0/. With x E H*(B) we have: 

T>.(0 ® x) = TL 0;(x) ...__, ~*(0/) = L 0;(7r*x) ...__, (7r*t(0/) ...__, U) 

= L 0;(7r*x) ...__, 0/(U) = 0(7r*x ...__, U) = µ(I ® T) (0 ® x). 

It follows from (1.6) that 0H*(E, Ea) = T>.(0 ® H*(B) ). Hence 

(1.7) Qr('P; 0 = Lk-/>.(ak ® Htr1(B)). 

The naturality of ~* and that of 4> imply the naturality of ~* ( cp) with respect 
to bundle maps. In particular, the secondary characteristic classes of a trivial 
bundle are zero. 

The operation cp associated with relation (I.I) in general is not unique. If 
cp' is another operation associated with (I.I), we have (fl; p. 70]): 

(1.8) 4>( U) - cp' ( U) = 0( U) 
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for some 0 E A. This implies that 

(1.9) i/(cp) - /;*(cJ?') = /;*(0); 

that is, two secondary characteristic classes determined by the same relation in 
A, differ by a primary characteristic class. 

2. Invariance under fibre homotopy type 

Let (E1 , B1, F1, 1r1) and (E2, B2 , F2, 1r2) be two fibre bundles in the sense 
of Steenrod, where the bases B1, B2 are finite CW-complexes and the fibres 
F1, F2 are locally compact spaces. A map f: E1 - E2 is an F-map if f sends fibres 
into fibres and f restricted to each fibre is a homotopy equivalence. Every 
F-map f induces a map J: B1 - B2 such that 1r'4 = J1r 1 • 

Let I; = (E1 , B, F, 1r1) and 7/ = (E2, B, F, 1r2) be two fibre bundles over the 
same base Band with same fibre F. The bundles /;, 71 are of the same fibre ho
motopy type, in symbols I; rv 7/, if there exist maps f: E1 - E2 and j': E2 - E1 
which preserve fibres and such that J/ ~ identity and J'J ~ identity, under 
homotopies which also preserve fibres. A theorem of Dold asserts that I; rv 71 
if and only if there exists an F-map g: E1 - E2 such that g = identity ([5; p. 
120]). 

Now let I; = (E, B, R", 1r) be a vector bundle over B. Choosing a riemannian 
metric on E, we determine E(l) as the subspace of E of vectors of length ~1, 
and .E(l) as the subspace of vectors of length 1. The bundle .E(l) - Bis essen
t~ally independent of the metric and is the orthogonal sphere bundle associated 
to I;, we denote it by (/;). 

Following Atiyah ([4; p. 292]), we say that two orthogonal sphere bundles 
(I;), ( 7/) over the same base B are of the same stable fibre homotopy type, in 
symbols (/;) ,z, (71), if there exist trivial vector bundles 0, o', over B, such that 
( I; EB 0) rv ( 7/ EB o'). The equivalence class of ( I;) under ~ is denoted by J (I;). 
The set of all classes forms the group J(B), introduced by Atiyah, where the 
group structure is induced by the Whitney sum for vector bundles. 

THEOREM 2.1. The primary and secondary characteristic classes areJ-invariants. 

The result for primary classes is well known, and· is due originally to Thom 
( [18; p. 166]). However we will give another proof using only the concepts 
Milnor introduces in his study of characteristic classes. 

Let I; = (E, B, Rm, 1r), 7/ = (E', B, R", 1r1
) be two vector bundles over the 

same base Band suppose J(I;) = J(71). This is equivalent with(/; EB 0) rv (71 EB 0'), 
where 0, o' are trivial vector bundles over B. The proof of (2.1) is an immedi
ate consequence of the following two lemmas. 

LEMMA 2.2. Theorem 2.1 holds for I; and 7/ = I; EB 0, where 0 is a trivial vector 
bundle over B. 

LEMMA 2.3. Theorem 2.1 holds for I; and 71 such that (/;) rv (71). 
Proof of 2.2. The Whitney product formula implies that: 

(/; EB 0)*(Sq) = 1;*(Sq)0*(Sq) = /;*(Sq); 
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and from this the result for primary characteristic classes follows readily. Also 
we obtain that for any stable secondary operation <I>, ( l EB O) * (<I>) is defined if 
and only if l* (<I>) is defined. 

Suppose that O has fibre Rk. Clearly we may suppose that O is a product 
bundle, and if E is the total space of l, we may consider E' = E X Rk as the 
total space of l EB 0. It then follows that (E', Eo') = (E, Eo) X (R\ Rk - 0). 
If U' E Hn+k(E', Eo'), U E Hn(E, Eo), and w E H"(R", Rk - 0) are the funda
mental classes, we have U' = U X w, and this in turn implies that, for all 
x E Hq ( B), T' ( x) = T ( x) X w, where T 1

, T are the Thom isomorphisms for 
l EB 0, and l respectively. This, together with the Cartan product formula, 
implies Q(<I>; 0 = Q(<I>; l EB 0). Finally, if l*(<I>) is defined, the stability of <I> 
implies that <I>( U X w) = <I>( U) X w, and then it follows that l*( <I>) = 

(l EB O)*(<I>). 

Proof of 2.3. For every vector bundle, ~ = (E, B, Rn, 1r) we have a natural 
isomorphism 

H*(E, E 0) ~ H*(E(l), E(l)) 

induced by the composition of the inclusions 

(E(l), E(l)) ~ (E(l), Eo(l)) L (E, E 0), 

where E 0(1) = Eo ,,...__ E(l). Since E(l) is a deformation retract of Eo(l), i 
induces an isomorphism. Also } induces an isomorphism, since it is an excision. 
Then, in the definition of characteristic classes we may replace the pair (E, E 0 ) 

by the pair (E(l), E(l)) and the class U E Hn(E, Eo) by its image 
U1 E Hn(E(l), E(l) ). If F ~ Rn is the fibre over the point b, F(l) = F ,,...__ E(l) 
and F(l) = F ,,...__ E(l) are the corresponding fibres over b of the associated 
bundles E(l) - B, E(l) - B. The inclusion i: (F(l), F(l)) - (E(l), E(l)) 
induces an isomorphism in dimension n, 

i*: Hn(E(l), E(l)) - Hn(F(l), F'(l)), 

such that i*U 1 is the generator of Hn(F(l), F'(l)). This property, for all b, 
characterizes U1([9; p. 34]). 

Now with ~ and 1/ consider the associated bundles 1r: E(l) - B and 
1r 1

: E' ( 1) - B. The hypothesis ( 0 ,__, ( 1/) implies the existence of a fibre ho
motopy equivalencef1: E(l) - E'(l). Letf: (E(l), E(l)) - (E 1 (l), E'(l)) 
be a radial extension of f1 . The commutative diagram 
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and the fact that fb = f I F ( 1) is a homotopy equivalence, implies f* Ui' = Ur . 
For every 0 E A, we have, 

1r*l*(0) ....., Ur = 6( Ur) = f*0( Ur') = J*(1r'*r,*(0) ....., Ur') = 1r*'l1*(0) ....., U1 

and hence l*(e) = '11*(0). Moreover l*(q,) is defined if and only if 'll*(q,) is 
defined, and, by (1.4), Qr(q,; l) = Qr(q,; '11), Finally, 

1r*l*(q,) ....., Ur= 4'(Ur) = f*q,(Ui') = 1r*'l1*(q,) ....., Ur; 

therefore, l*(q,) = '11*(4'). This ends the proof of (2.3), and hence that of (2.1). 

COROLLARY 2.4. The primary and secondary characteristic classes are natural 
with respect to F-maps. 

Proof. It follows from (2.1) and the fact that every F-map factorizes into a 
fibre homotopy equivalence followed by a bundle map (see [5; p. 120]). 

COROLLARY 2.5. Let M, N be two compact differentiable manifolds andf: M -N, 
a homotopy equivalence. Then the primary and secondary tangent and normal classes 
of M and N correspond under f*, the induced homomorphism in cohomology. 

Proof. Let l. '11 be the tangent bundles to M, N respectively; then a result of 
Atiyah ([4; Th. 3.6]) asserts that J(f*l) = J('I/). By (2.1) and naturality the 
result for the tangent bundles follows. Now if 11, pare the normal bundles to a 
given immersion of Mand N respectively, we clearly haveJ(f*p) = J(v), and 
by the same argument the result also follows for the normal characteristic classes. 

In particular (2.5) implies that the primary and secondary classes of the 
tangent bundle are independent of the differentiable structure, and for the normal 
bundle that they are also independent of the particular immersion. 

3. Bundles with trivial characteristic ring 

Let E(B) be the set of vector bundles with base B. E(B) is a commutative 
monoid under the Whitney sum. Let Eo(B)c E(B) be the subset of vector 
bundles with trivial characteristic ring. The Whitney product formula implies 
that Eo(B) is a submonoid of E(B). 

PROPOSITION 3.1. If q, is a stable secondary operation associated with a relation of 
type ( 1. 1), then for every l E Eo ( B), the secondary characteristic class l * ( 4') is 
defined. In this case the relation determines the class uniquely and 

Qr('P; 0 = Lk-/ akHtk-r(B). 

Proof. Since l E Eo(B), C*(O = 1; but this is equivalent to A(U) = U, 
so q,(U) is defined and, by (1.8), it is unique. Now, the homomorphism A 
of ( 1.7) coincides with the standard action of A in H*(B). Indeed, for x E H*(B), 
and 0 E A with y.,(0) = L 0i 0 0/ we have: 

A(0 0 x) = L 0i(x) ....., tee/) = 0(x) ....., 1 = 0(x) 

and this ends the proof of (3.1). 
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The Whitney product formula for secondary characteristic classes is given by 
the following : 

THEOREM 3.2. Let cf> be any stable cohomology operation of degree r. Then for 
every t, 7/ E Eo(B) we have 

(t EB TJ)*(cf>) = t*(cf>) + 7/*(cf>) 

in Hr (B)/Qr( cf>; B). 

Proof. It follows by the argument given in [9; p. 36] for the Stiefel-Whitney 
classes, except that instead of using squares and the Cartan formula, one uses 
secondary operations and the product formula of [3, ( 8.6)]. 

As a special case of (3.2) we obtain the following formulation of the Whitney 
duality for secondary characteristic classes: 

COROLLARY 3.3. Let M be a differentiable n-manifold, such that all the positive 
dimensional Stiefel-Whitney classes of M vanish. If T is the tangent bundle to M, 
and vis the normal bundle to an immersion of ld, then T, v E Eo(M), and 

T*(cp) = v*(cp) 

in Hr(M)/Qr(cf>; M), for every stable secondary operation cf> of degree r. 

4. Secondary characteristic classes of the tangent bundle 

Let T = (E, M, 1r) be the tangent bundle of a differentiable ri-manifold. The 
classes T * (cf>) are the secondary characteristic classes of M. In analogy with the 
Wu formulae for the Stiefel-Whitney classes of M, we will give a criterion to 
compute T * (cf>) using the action of cf> in H* ( M X M). This is our Theorem 
( 4.10). For this purpose, we will use the notation, definitions, and results given 
by Milnor in [9; p. 45]. Let 

if,,: H*(E, Eo) - H*(M X M, M X M - Li) 

be the natural isomorphism, where Li c M X M is the diagonal. We denote by 
lJ E Hn(M X M) the class defined by lJ = i*if,,( U), where U E Hn(E, Eo) is 
the fundamental class of T and 

i*: H*(M X M, M X M - Li) - H*(M X M) 

is the homomorphism induced by the inclusion. 

THEOREM 4.1. Let 8 E A be an element of the Steenrod algebra; then 
(i) 0(U) ~Oifandonlyif0(U) ~O 
(ii) 0(U) = (7*(0) X I) '---' lJ. 

Proof. If x E H*(M), the definition of if,, implies that i*if,,(1r*x '---' U) = 
(x X I) '---' lJ. On the other hand, the computation, by Milnor, of the class lJ 
in terms of the cohomology ring of M implies that (x X I) '---' lJ ~ 0 if and 
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only if x ~ 0. Now 0(U) = (7r*r*(0)) .___, U ~ 0 if and only if r*(0) ~ 0, and 
since 

0(U) = i*if;0(U) = i*if;(7r*r*(0) .___, U) = (r*(0) X 1) .___, lJ, 

(i) and (ii) of (4.1) follow immediately. 

In order to establish the analogue of ( 4.1) for secondary characteristic classes 
we need to study the homomorphism 

i*: Hn+r(M2, M2 _ A)/Qn+r(<I>; M2, M2 _ A) - Hn+r(M2)/Qn+r(<I>; M2), 

where M 2 = M X M, and <I> is a stable secondary operation of degree r. 
The cohomology exact sequence of the pair (M2, M 2 - A) breaks up into short 

exact sequences, 

0 - Hq(M2, M 2 - A) ~ Hq(M2) L Hq(M 2 - A) - 0. 

This follows from the fact that i* is a monomorphism, as is shown in the proof 
of ( 4.1). In turn, each of these short exact sequences splits under the homo
morphism 

(4.2) t: Hq(M 2) - Hq(M2, M 2 - A), 

defined by t(x X y) = (y, µ,)(x X 1) ,.__, u', where U' = if;( U), µ, E H,.(M) is the 
generator, and (y, µ,) is the Kronecker index. Indeed every v E Hq(M2, M 2 - A), 
with q :2: n, can be uniquely expressed as v = (x X 1) ,.__, U', for certain 
x E Hq-n(M); and on the other hand 

(4.3) ti*(v) = t((x X 1) ,__, U) = (x X 1) ,__, U' = v, 

since, according to [9; p. 48], lJ contains the term 1 X µ, where (µ, µ,) = 1. 
Then we have 

(4.4) 

with i*: H*(M2, M 2 - A) ~ Im(i*), j*: Ker(t) ~ H*(M 2 - A). 
Let us consider the action of the Steenrod algebra A on the decomposition 

(4.4). Clearly, Im(i*) is an A-module, and we need only to analyze the behaviour 
of Ker(t). If V = Li-o<n 12l V; is the total Wu class of M defined in [9; p. 55], 
then we have 

THEOREM 4.5. For every v E H*(M 2), the equality 

tSqv = Sqt((V- 1 XV) ,.__,v) 

holds, where v-1 is the inverse of Vin the sense of the cup-product. 

Proof. Obviously it is sufficient to consider an element of the form v = x X y. 
We have 

tSqv = t(Sqx X Sqy) = (Sqy,µ,)(Sqx X 1) ,.__, U'; 
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but, by the definition of V, (Sq y, µ) = (V '---' y, µ) and, therefore, 

t Sq v = (V '---' Y, µ)(Sq x x 1) '---' u'. 
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Using the antiautomorphism c: A----* A determined by Sq c(Sq) 
expression can be written as 

1, the above 

( 4.6) t Sq v = (V '---' y, µ,)Sq[(x X 1) '---' c(Sq)U']. 

Now, we will show that 

( 4.7) c(Sq)U' = (V- 1 X 1) '---' U'. 

By definition of r*(c(Sq) ), we have 

(4.8) c(Sq)U = 7l"*r*(c(Sq)) '---' U; 

and applying Sq to both members of ( 4.8), we obtain 

U = 71"* Sq r*(c(Sq)) '---' Sq U = 71"* Sq r*(c(Sq)) '---' 7l"*r*(Sq) '---' U; 

but 7l" * and the cup-product by U are isomorphisms, so 

1 = Sq r*(c(Sq)) '---' r*(Sq), 

and, since r*(Sq) = W = Sq V and Sq is an automorphism, it follows that 
r*(c(Sq)) = v-1. Substitution of this expression in (4.8) and application of 
if,, yields (4.7). With (4.7) in (4.6), we obtain 

t Sq (v) = (V '---' y, µ,)Sq[(x X 1) '---' (V- 1 X 1) '---' U'], 

and it is then easy to verify that 

t[(V- 1 X V) '---' (x X y)] = (V '---' y, µ)(x X 1) '---' (V- 1 X 1) '---' U'. 

This finishes the proof of ( 4.5). 

THEOREM 4.9. The direct sum decomposition H*(M 2 ) ~ Im(i*) EB Ker(t) 
is a decomposition as A-modules if and only if r E Eo(M), where r is the tangent 
bundle of M. 

Proof. The sufficiency is an immediate consequence of ( 4.5), since the 
hypothesis implies that V = 1. For the necessity, if q < n for every x E Hq(M), 
1 X x E Ker(t) and, by the hypothesis, 

t Sqn-q(l Xx) = t(l X Sqn-qx) = t(l X (Vn-q '---' x)) = <Vn-q '---' x, µ)U' = 0. 

Therefore, Vn-q = 0 and, consequently, W = 1. 

THEOREM 4.10. Let M be a differentiable n-manifold; U E Hn(E, Eo), the 
fundamental class of the tangent bundle r of M; and U E H 71(M 2), the image of 
U under i* if,,. Then, for every stable secondary operation <I> of degree r, we have 

(i) <I>( U) is defined if and only if <I>( U) is defined; 
(ii) <I>( U) ~ 0 implies <I>( U) ~ 0; 
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(iii) <P(U) = (r*(cp) X 1) ..__, U in Hn+r(M2 )/Qn+r(<P; M 2 ); and 
(iv) ifr E Eo(M), then, <P(U) ~ 0ifandonlyif<P(U) ~ 0. 

Proof. Statement (i) is a direct consequence of (4.1). The naturality of <P 
implies (ii), since <P(U) = i*y;<P(U). Again, (iii) is a consequence of the natu
rality of <P, since, by ( 1.5 ), <P( U) = 1r * r *( <P) ......, U in Hn+r(E, E 0)/Qn+r( <P; E, Eo). 
With respect to (iv), since r E Eo(M), it follows from (4.5) that t induces a 
homomorphism 

t: Hn+r(M2)/Qn+r(<P; M 2 ) --> Hn+"(M2, M 2 - A)/Qn+r(<P; M2, M 2 - A); 

and we assert that t<P(U) = <P(U'). In fact, using (iii), similarly to (4.3), we 
have 

(4.11) t<P(U) = t[(r*(cp) X 1) ......, U] = (r*(cp) X 1) ......, U' = <P(U'). 

But ( 4.11) implies (iv) since <P( U') = y;<P( U). 

5. Normal secondary characteristic classes 

Suppose X is a finite CW-complex imbedded in a t-sphere St, and let D1X 
beat-dual of X in the sense of Spanier-Whitehead ([16]). Under the Alexander
Pontrjagin duality, for every operation 0: Hq(X) --. Hq+r(X), with 0 E A, 
there corresponds its dual operation c(0): Ht-q-r-1(D 1X) --. Ht-q- 1(D 1X), 
where c: A --. A is the canonical antiautomorphism of A. The homomorphism 
0 is non-trivial if and only if the homomorphism c(0) is non-trivial ([12], [16; 
p: 271]). 

If cp is a stable secondary operation associated with the relation (1.1), there 
exists a stable secondary operation c( <P ), associated with the relation 
Lk=/ c(f31c)c(ak) = 0, such that, under the Alexander-Pontrjagin duality, an 
analogous result holds for <P and c( <P ), as the one we have above for primary 
operations ([7], [11]). Clearly, all these results remain valid when D1X is replaced 
by an S-equivalent space Y, if the proper shift in dimension is taken into ac
count. Applying these results to differentiable manifolds we obtain the following: 

THEOREM 5.1. Let v = (E, M, 1r) be the normal bundle to a compact differentiable 
manifold M immersed in R 1. Then for every 0 E A of degree r, 0: Hq(E, Eo) --. 
Hq+r (E, Eo) is non-trivial, if and only if c(0): Ht-q-r (M) --. Ht-q(M) is non
trivial. Similarly, for every stable secondary cohomology operation <P of degree r, 

<P: Kq(<P; E, Eo)--. Hq+r(E, Eo)/Qq+r(<P; E, Eo) 

is non-trivial, if and only if, 

c( <P): Kt-q-r (c( <P); M) --. H 1-q(M)/Q 1-q(c( <P); M) 

is non-trivial. 

Proof. According to [9; p. 100] there is a natural isomorphism in positive 
dimensions H*( T(v)) ~ H*(E, Eo), where T(v) is the Thom space of v. Now 
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if v, v' are normal bundles of M associated with two immersions, it follows from 
[4; (2.6 )] that T(v) and T(v') are S-equivalent. In particular, if v' is an im
bedding from [10], we have that T(v') is dual to the disjoint union of Mand a 
point. Therefore, for any immersion v, the Thom space T(v) is an S-dual of 
M ......, oo. Then (5.1) follows from the results mentioned at the beginning of this 
section. 

As an application of ( 5.1) we obtain the following generalization of a result 
of Massey [8; Th. 1]. 

COROLLARY 5.2. Let Mand v be as in (5.1) and 0 E A, an element of degree 
n - q. Then v*(o) ;zf O implies a(n) :S q, where a(n) is the number of non-zero 
terms in the dyadic expansion of n. 

Proof. According to §1, v*(o) ,zf 0 if and only if 0: Ht(E, Eo) -t Ht+n-q(E, Eo) 
is non-trivial. By (5.1), 0 is non-trivial if and only if there exists u E Hq(M) 
such that c(0)u ,zf 0. Now c(0)u ,zf 0 implies that there exists an admissible 
monomial Sqr of degree n - q, with Sq1u ;zf 0. But then formula (17.5) of Serre 
([15; p. 212]) implies q ~ a(n). 

6. A family of secondary cohomology operations 

In this section we construct and establish properties of a family of secondary 
cohomology operations, which will enable us to make some applications of 
secondary characteristic classes to the immersion problem of projective spaces. 

Let <I>2j , with j ~ 2, be a family of stable secondary cohomology operations 
associated, according to Adams ([1]), with the relations: 

(6.1) (Sq2Sq1)Sq4k + Sq4k+ 2Sq1 = 0, if 2j = 4k + 2, 

(6.2) (Sq2Sq1)Sq4k-2 + Sq4kSq1 + Sq1Sq4k = 0, if 2j = 4k. 

Thus, <I>4k+2 is an operation associated with (6.1), and is defined in the inter
section of the kernels of Sq1 and Sq4\ Similarly <I>4k is associated with ( 6.2). 
Clearly the degree of <l>2j is 2j. 

We now give a criterion which shows when <l>2j vanishes for dimensional 
reasons. In order to establish this criterion, we need to restrict the natural 
domain of definition of <I>2j , which rigorously means to consider another oper
ation. However, for simplicity, this restricted operation will be identified with 
<P2j • 

Let Ak C A be the vector subspace of homogeneous elements of A of degree k. 

THEOREM 6.3. Suppose <P2j(u) is defined for u E Hq(X). If A2j(u) = 0 and 
Sq3u = 0, then <P2j( u) = 0 for q :S 2j - 3. 

Proof. The stability of <l>2j and the stability of the hypotheses imply that (6.3) 
holds for all q :S 2j - 3 if it holds for q = 2j - 3. Hence we will give the proof 
for this particular dimension. Let f: X -t K(Z2, 2j - 3) be a map such that 
f*"'f = u, where "'f is the fundamental class of K(Z2, 2j - 3). Using the second 
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formula of Peterson-Stein, with the notation of [3; (5.2)], we have 

<I>2;( u) = a 1!3 ('y) 

in H41- 3(X)/Q 41-3(<I>21 ; X) + J*H41- 3(K(Z2, 2j - 3) ), where a{3 = 0 is the 
relation (6.1) or (6.2) according to the value of 22°, The hypotheses on u imply 
that f*H 41- 3(K(Z 2, 2j - 3)) = 0, since all admissible monomials in A2; vanish 
on u and the conditions Sq1 u = 0 and Sq3 u = 0 guarantee that all possible cup
products in the image of J* vanish. Consequently, <I>2;(u) = a 1f3('Y), with the 
natural indeterminacy of <I>2;. Now, by inspection of the relations (6.1) and 
( 6.2), one easily verifies that the hypotheses of [3; ( 6.6)] hold with q = 2j - 3. 
Then a1{3( -y) = 0, and this finishes the proof of (6.3). 

Let 11 c A be the two-sided ideal generated by Sq1. 

THEOREM 6.4. Let u E HP(X), v E Hq(X) be classes such that <I>2;(u), <I>2;(v) 

aredefined.Moreover,if Ak(u) = Oforalll :=; k :=; 2j,A2;(v) = O,and0(v) = 0 
for all 0 E 11 of degree :=; 2j, then 

( ) ,.._()+""' j-2,.._ () S2k 4'2j U '--' V = U '--' '±'2j V ~k-0 '±'2j-2k U '--' q V, 

modulo the total indeterminacy. 

Proof. Accordingly with [1; p. 80], it is sufficient to establish (6.4) for a single 
pair of dimensions (p, q) in the stable range. We will give here only a rough 
indication of the proof. Let R be the free Steenrod • algebra with Sq0 = 1 and R+ 
the .ideal of positive dimensional elements. Let p2; denote (6.1) or (6.2), ac
cording to the value of 2j, as an element of R. If I is the ideal of relations in R, 
then p2; E I. If if;: R ---, R 0 R is the diagonal map, one can verify by direct 
computation that 

,1,( ) 1 + ""' i-2 s 2k 'I' P2i = 0 P2J ~k-0 P2i-2k 0 q ' 

modulo the subspace (I 0 11 + R+ 0 1)2;. Now, using the functional repre
sentation of <I>2; and the methods of [3], the proof of ( 6.4) follows from the above 
formula. 

COROLLARY 6.5. If Ak(u) = 0, A1c(v) = 0 for 1 ::; k :=; 2j then 

<I>21(u ..__, v) = <I>21(u) ..__, v + u ..__, <I>21(v) 

COROLLARY 6.6. If Ak( u) = 0 for 1 ::; k :=; 2j, then for h > 0, 

<I>21(u") = huh-l ..__, <l>2J(u). 

7. Secondary classes of complex projective spaces 

In this and the next section we will work with GPm, the complex projective 
space of real dimension 2m, and with GP"', the infinite dimensional complex 
projective space. In order to avoid confusion, let w E H2( GPm) and w E H 2 ( GP"') 
denote the generators. The total Stiefel-Whitney class of GPm is given by 



SECONDARY CLASSES AND IMMERSION 65 

W(CPm) = (1 + wr+i. With (4.10) we can compute the secondary tangential 
classes T *(<I>) by determining the action of <I> in the class U E H 2m( CPm X CPm). 
The class O is explicitly given by the Poincare duality matrix ( (9; Th. 15]). 
For CPm we have 

(7.1) U- '°' m i m-i = ~i=D w X w ' 

where w1 is the jth power of the generator w. 
In this section we will consider only CPm with m = 2a - 1 where a = 2' and 

s ;::: 1. Then, for this case W( CPm) = 1 and the tangent bundle T of CPm belongs 
to Eo(CPm). If 'Y = w X 1 + 1 X w, the form of mallows us to express Oas a 
power of 'Y, explicitly 

(7.2) 

By (4.1), for 0 E A of positive degree, we have 0(0) 0. Then <J>(U) is 
defined for every stable secondary cohomology operation, and from ( 1.8) it 
follows that if>( U) is idependent of the particular operation if> associated with 
a relation of type (1.1). The computation of if>( U) is reduced to the computation 
of functional cohomology operations by means of the Peterson-Stein formula 
( (3; ( 5.2)]), as follows. Let 

(7.3) 

be a map such thatf*w ="(.By (7.1) and (7.2),f*wm = 'Ym = 0 andf*/3(wm) = 
/3( 0) = 0. Therefore, 

(7.4) 

in H 2m+r(CPm X CPm)/Q 2m+r(if?; CPm X CPm), since 

(7.5) f*H 2m+r(CP~) = 0, for all r > 0. 

This last statement follows from 'Ym+i = 0. Thus, if?( 0) admits a functional 
representation preserving its natural indeterminacy. 

Clearly, if the degree of if? is odd, if?( 0) = 0. Then it is sufficient to consider 
only secondary operations of even degree. For this case, we may express a1{3( wm) 
by means of the functional operations akf/Jk( wm), as indicated by the following 

PROPOSITION 7.6. Let a/3 = 0 be a relation of type (1.1), homogeneous of degree 
r + 1 in A, where r is even. Then, 

a1/3( Wm) = Lk=/ aki/Jk( wm) 

in H 2m+r(CPm X CPm)/L akH2m+tk-1(CP"' X CPm). 

Proof. Each term akf/Jk( wm) is defined. In fact, f*/3k( wm) = 0 and, since the 
degree of ak/Jk is odd, ak/Jk( wm) = 0. Using the definition of a functional oper
ation, it is easily verified that a sum of representatives of the terms in the right 
hand is a representative of a 1/3( wm). By (7.5 ), the common indeterminacy of the 
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functional operations is the one indicated in the proposition, and this finishes the 
proof. 

It follows from (7.6) that it is sufficient to study simple functional operations 
of the type 01a( wm), where 0 and a are homogeneous elements of A and 0a of 
odd degree. Obviously, if the degree of a is odd, then 01a( wm) = 0. Therefore 
we will suppose that the degree of a is even. Consequently, 0 is of odd degree 
and 0 E 11, the two sided ideal generated by Sq1. 

PROPOSITION 7.7. Let 0 E A be an element of odd degree and hence of the form 
0 = Lai Sq1 bi. Then, for every a E A of positive degree, 01a(wm) is defined, and 
with zero indeterminacy we have 

01a( wm) = L a; (Sq/bia( wm)). 

The proof is omitted since it is similar to that of (7.6). 
In conclusion, (7.4), (7.6) and (7.7) reduce the calculation of if!(O) to the 

computation of Sq/. In general, Sq/ can be computed using the following well 
known proposition, whose proof is also omitted. 

PROPOSITION 7.8. Letf: X - Y be a map andf*: Hq(Y; Z) - Hq(X; Z) the 
induced homomorphism in cohomology with integer coefficients. For u1 E Hq(Y; Z) 

suppose thatf*u1 = 2kv1 where k is an integer and V1 E Hq(X; Z). If u E Hq(Y), 
vl;E Hq(X) are the reductions modulo 2 of u1 and V1 respectively, then Sq/u is 
defined and has kv as a representative. 

Specializing (7.8) to the situation of (7.3) we obtain the following: 

Proposition 7.9. With zero indeterminacy, we have (q 2": 1), 

Sq/(wm+q) = 'Yq-1 -_; (wa X wa). 

Proof. Let w1 E H 2(CP""; Z) and w1 E H 2(CPm; Z) be integral generators, 
and set 'Yl = W1 X 1 + 1 X W1. Then f*w1m+q = 'Ylm+q = ,y/- 1 '-/ 'Ylm+t, but 
'Y1m+t = 2wt X wt mod 4. Therefore, f*w1m+q = 2,y/- 1 '-/ (wt X wt) mod 4. 
Now, by ( 7 .5) the indeterminacy is zero and from ( 7 .8) the proof of ( 7. 9) 
follows. 

vVe are now in the position to compute any operation if! in the class 0. In 
particular for the operations 'P2j of §6, we have 

THEOREM 7.10. If 2j ~ m + 1, then if!2J( 0) = 0. If 2j = m + 1, then the 
indeterminacy is zero and 

'Pm+1( 0) = (wa X 1) _..., 0. 

Proof. Using (7.4), (7.6) and (7.7) we obtain 

(7.11) 
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modulo Sq 4kH 2m( CPm X CPm), if 2j = 4k, and 

(7.12) 4'41c+2(U) = Sq2(Sq/Sq 4kwm), 

modulo Sq4wH 2m( CPm X CPm), if 2j = 4k + 2. 
By applying (7.9) to the last term in the right hand side of (7.11) we get 

Sq2(Sq/Sq4k-2wm) = Sq2(Sqlwm+2k-1) = Sq2( ,y21c-2 '--' (wa X wa)) = 0. 

Again, using (7.9), the relations (7.11) and (7.12) reduce to the single relation 

(7.13) 4>2;(U) = 'YH '--' (wa X wa), 

modulo Sq2;H2m(CPm X CPm). Now, using (4.11) in (7.13), we obtain 

t<I>2;( U) = 4>2;( U') = t( 'Yj-l '--' (wa X wa) ), 

modulo zero, since Sq2iU' = 0. On the other hand, i*<I>2;(U1) = <I>2;(U). There
fore, except for the indeterminacy, it is sufficient to show that 

. (0,if2j~m+l 
t( 'Y,-1 '--' ( wa X wa)) = i ' 

l (wa X 1) '--' U, if 2j = m + l 
(7.14) 

The definition of t gives 

t( 'Yj-1 '--' (wa X wb)) = C = D (wj X 1) '--' u'. 

(• - 1) (" - 1) If j < a, then : _ 1 = 0. If j > a and : _ 1 ~ 0 mod 2, 

then, since a = 28
, we havej = (k + l)a for some k ~ l, and in this case w; = 0. 

The case j = a follows directly, and this establishes (7.14). Finally, we need 
only to show that the indeterminacy of <I>m+1C U) is zero, but this follows by a 
straightforward calculation using the Cartan formula. 

THEOREM 7.15. Let T be the tangent bundle of CP2a-l, where a = 2· and s ~ l. 
Then, with zero indeterminacy, we have r*(<I>2;) = 0, if j ~ a, and r*(<I>2a) = wa. 

Proof. It is a direct consequence of ( 7 .10) and ( 4.10). 

THEOREM 7.16. Let v be the normal bundle to an immersion of CP 2a-i, where 
a = 2• and s ~ l. Then, with zero indeterminacy, we have v * ( <I>2;) = 0, if j ~ a, 
and v * ( <I>2a) = wa. 

Proof. It follows from (7.15) and (3.3). 

8. Cohomology operations in complex projective spaces 

In order to extend the preceding results on normal characteristic classes to 
other projective spaces, we will compute the operations <I>2; in H*(GF'''). As a 
preliminary we establish the following: 

LEMMA 8.1. Suppose H*(X) is a polynomial algebra over Z2 on a single generator 
x of dimension q = l or 2. Let qn = 2t' + · · · + 2t• be the dyadic expansion of 
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dim xn. Then A,.(xn) ~ 0 if and only if qn + r = 2k1 + · · · + 2k', where the 
k; are not necessarily distinct and k; 2: t;, for i = l, • • ·, s. 

( ) 2 t +k 2 t +1 2 t ( ) Proof. Set J k, t = Sq • • • Sq Sq , fork 2: 0 and t 2: 0, andJ - 1, t = 
Sq0, fort 2: 0. We will show that the condition is necessary by induction on a(qn ), 
the number of non-zero terms in the dyadic expansion of qn. If a(qn) = 1, 
then qn = 21, for some t, and in this case the only admissible monomials that act 
non-trivially on xn are of the formJ(k, t). Then, r + nq = dimJ(k, t)xn = 2t+k+1, 
for some k. Now suppose it is true for a(qn) < sand all r, and consider a(qn) = s. 
Write xn = x,,._2t ..___, x2t, where q2t is the last term of the dyadic expansion of qn. 
If 0 E A,. is such that B(xn) ~ 0 and if;(0) = _L 0; 18) 0/ under the diagonal map 
then, for some i, 8;(xn-2t) ~ 0 and 0/ (x2t) ~ 0. Let r1, r2 be the degrees of 0 

and 0/ respectively. Since r = r1 + r2 , the induction hypotheses on r1 + q( n - 2t) 
and r2 + q2t yield the result for r + qn. 

To prove that the condition is sufficient, with the notation of the lemma, we 
may clearly suppose that k1 ::s; k2 ::s; • • • ::s; k, . Then it is immediate to verify 
that J(k 1 - t1 - 1, ti) • • • J(k, - t, - l, t,)xn ~ 0, and that its dimension is 
qn + r. This finishes the proof. 

COROLLARY 8.2. If a(qn + r) > a(qn), then A,.(xn) = 0. 

Returning to our objective, we will first compute the operations <l>2j in some 
elements of H*(CP"'). 

• THEOREM 8.3. Let w E H2( CP"') be the generator, a = 2'" with r 2: 1 and h > 0. 
Then,for j < 2a - 1, <I>2;(w2ha) is defined and, with zero indeterminacy, we have 

<I>2a( w2ha) = hw(2h+l)a, and 

<I>2j( w2ha) = 0, if j ::s; 2a - 1 and j ~ a. 

Proof. Since a = 2,., it follows that Sq;w2ha = 0 for i = 1, · · ·, 4a - l. Then, 
if j < 2a - 1, by ( 6 .1 ) , ( 6 .2 ) <I>2j ( w2ha) is defined and has zero indeterminacy. 
Applying (6.6) we have <I>2j(W2ha) = hw<2h- 2)a '----' <I>2j(W2a). Therefore, for the 
proof of (8.3) it is enough to consider the case h = l. For this, choose an im
bedding of CP2a-i in Rsa-4, and let 11 = (E, CP2a-1, 1r) be the normal bundle of 
this imbedding. The pair (E, Eo) behaves like a dual of CP2a-i (see proof of 
( 5.1) ), and, if U E H 4a-·2(E, Eo) is the fundamental class of 11, we have Sq;U = 0 
for all i > 0. On the other hand the Atiyah-James duality for complex projective 
spaces ([4; p. 307]) asserts that an S-dual of CP2a-i is of the form X = 
CPm /CPn-1, for some value of n which depends on a, and m = 
n + 2a - 2. The identification map CPm--* X allows us to identify wn with the 
non-trivial element of H2n(X). Since the action of A in U is trivial, it is also 
trivial in wn as an element of H 2n(X). Then Sqiwn = 0, for i = 1, · · ·, 4a - 2. 
This, and the action of Sq; in H* ( C P"'), implies that the only possible values of 
n are those of the form n = 2ga. On the other hand, from (7.16) we 
have <I>2;( U) ~ 0 if and only if j = a. Consequently, in H*(X), <I>2;(w20a) ~ 0 if 
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and only if j = a. Naturality under the map CPm - X gives the same statement 
in H*(CPm). Here, applying (6.6), we obtain 

(8.4) 4>2j(W2ga) = gw(2g-2)a '--' <I>2;(w2a), for allj 2 2. 

From (8.4) with j = a, it follows that g is odd and that <I>2a(w2a) = w8a. In the 
same form, if j ;;,!= 0, then, since g is odd, we have <I>2;(w 2a) = 0. Now, under the 
inclusion CPm - CP"', these last statements translate into (8.3) for h = 1, and 
this ends the proof. 

THEOREM 8.5. Let w E H 2(CP"') be the generator, and let a = 2', b = 2', and 

c = 2t with r > s 2 t 2 0, h > O; then, with zero indeterminacy, we have 

;,.. ( (2h+I)a-b-c) h 2(ha+a-c) 
'±'2(a+b-c) W = W , 

Proof. The hypotheses of (6.4) hold for u = w2ha and v = wa-b-c. In fact, 
since Sqiw 2ha = 0 for O < i < 4a, we have Ai(w 2ha) = 0 for 1 :::; i:::; 2(a + b - c). 
Trivially I1(wa-b-c) = 0. To verify that A 2ca+b-c)(Wa-b-c) = 0, we apply (8.2), 
showing easily that a(4a - 4c) < a(2a - 2b - 2c). The total indeterminacy is 
zero. By (6.3) we have <I>2ca+b-c)(Wa-b-c) = 0. From (8.3), if k ;;,!= b - c, we have 
<I>2ca+b-c)-2k(w2ha) = 0. Therefore, the product formula (6.4) reduces to 

;,.. ( (2h+I)a-b-c) _ ;,.. ( 2ha) S 2(b-c) a-b-c 
'±'2(a+b-c) W - '±'2a W '--' q W , 

and, by applying (8.3) again, we obtain (8.5). 

THEOREM 8.6. Suppose a = 2', b = 2•, and c = 2t with r > s 2 t 2 o; ai:id 
let V = (E, CP 2a-I, 7r) be the normal bundle of an immersion of CP 2a-l in R4a-2+k. 

If U E Hk(E, Ea) is the fundamental class of v then, with zero indeterminacy, we 

have 

( * a-b-c U) * 2(a-c) U 
<P2(a+b-c) 7r W '--' = 'Ir W '--' , 

Proof. As in the proof of (8.3), it is clearly sufficient to compute the operation 
in the corresponding dimension of an S-dual of CP 2a-i_ This S-dual is of the 
form X = CP 2(ga+a-I) /CP 20a-l, with g an odd number. The fundamental class U 
corresponds to w2Y°, and the element 1r * wa-b-c '--' U corresponds to w<2Y+ila-b~c. 

The value of <I>2ca+b-c) in this class is given by (8.5), and since g is odd, the result 
of ( 8.6) follows. 

As an application of ( 8.6) we compute the dual operations c( <I>2ca+b-c)) on some 
elements of H*(CP"'). This may be regarded as a dual statement of (8.5). With 
a, b, c.as above, we have the following. 

THEOREM 8.7. If w E H2( CP"') is the generator, then with zero indeterminacy we 
have 

( ;,.. ) ( 2c-1) a+b+c-1 
C '±'2(a+b-c) W = W , 

Proof. It is a direct consequence of (5.1), (8.5) and naturality under the 
inclusion CP2a- 1 - CP"'. 
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Remarks. 
(1) If c = 1, we obtain c(cf>2(a-tb-l))(w) = wa+b. This gives a family. of 

stable secondary cohomology operations of arbitrarily high degree acting non
trivially on a two dimensional class. For a = 2 and b = 1, this formula specializes 
to c( cf>4) (w) = w8, which is Theorem 4.4.1 of [1]. 

(2) If a= 2b and b = c, we have c(cf>2a)(wa-i) = w2a-i. This implies that 
theiterationc(cf>2ma) •·· c(cf>4a)c(cf>2a)(w2a-l) = w2ka- 1 inH*(CP"'),forallk >0. 
Combining this with the action of the Steenrod algebra, it follows that any 
element ofH*(CP"') can be obtained, with zero indeterminacy, by means 0£.an 
iteration of squares and the operations c(<I?2r) applied to the fundamental .class w. 

9. Non-immersion of complex projective spaces 

JJsing the results of the preceding section we obtaint,lie following generali-
za,,ti()~ of (7.16).. . • • 

THEOREM 9.1. Let v be the normal bundle to an immersion of cpa+b+c-i; where 
a === 2', b = 2•, and c = 21 with r > s 2::: t 2::: 0. Then, with zero indeterminacy, we 
h * ·("" . . ) • a+lr-c ' ave V . •. '>'2(a+b-c) = W ' . 

Proof. It follows directly from (5.1), (8.7) and naturality. 

Similar to the u~e of normal Stiefel-Whitney classes, we will show how normal 
secondary classes can be applied to establish non-immersion results. 

THEOREM 9.2. The complex projective space cpn cannoi'be immersed in R4n~G if 
n'=-' 2' + .2• and r> s ··:?: o: • 

Proof. Suppose cpn admits such an immersion, and let v be the normal bundle. 
Then, from (9.1) with c, = 1, we have v*(cf>2n-2) ,=· 0. This is equivalent with 
cf>2n-2( U) ,= 0, where U E H2n- 5(E, Eo) is the fundamental class of v. On the 
,other hand, U satisfies the hypotheses of (6.3). In fact we need only to verify 
for 0 E·A2n~2 that 0(U) = 0. But, by (5.1), this is equivalent with c(0)(w) = 0, 
a11d this follows easily by (8.2}. Consequently cf>2n~2(U) = O; and the contra
diction establishes (9.2). 

Remarks. Using the associated sphere bundle we can improve (9.2) for s > 0, 
in one more unit (see proof of (12.3) ). However, as in the case of CP2r and 
Stiefel-Whitney classes, we cannot obtain directly the best possible non-immer
sion result. This has been obtained recently by Sanderson and Schwarzenberger 
(in [14]), who prove that CPn, with n = 2r + 2• ands > 0, cannot be immersed 
in R 4rd .. For the cases = 0, whether CPn can or cannot be immersed in R 4n-4 has . . 

not been settled. 

10. Multiple secondary cohomology operations 

Jn order to establish. results for the real projective spaces RPn similar to 
those obtained for CPn, we need to consider stable secondary operations which 
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act non-trivially in the cohomology of RP 00
• The operations <I>2; are not adequate 

for this purpose because of their indeterminacy. 
Adams in. [2] has indicated how to construct double secondary operations 

associated with a pair of relations and whose indeterminacy is the diagonal 
indeterminacy. He has shown that these operations act non-trivially in RP 00

• 

The construction of double operations extends automatically to n-tuple opei::,
ations, which are associated with n relations. In our applications we will consider 
only double and triple operations. 

To simplify the notation, we describe the general construction of these oper
ations and the formula of Peterson-Stein only in the case of double operations. 
The extension of these results to n-tqple operations is immediate. In the last 
part ofthis section we const;ruct for k > 0 a family of double operations '¥ak and 
another family of triple operations E>sk+4. For the triple operations we ·will use 
the direct generalization of the results which we establish only for double oper
ations. 

We now describe the form of constructing such operations. If G is an abelian 
group and G EB G is the direct sum of two-copies of G, the diagonal subgroup 
!:l.G c G EB G is defined as the image of the homomorphism 

(10.1) 

where A(g) 
Let 

(10.2) 

(10.3) 

!:l.:G-GEBG, 

(g, g), for all g E G. 

a/3 = Lk:'.1 akf3k = 0 and 

0{3 = Lk:1 0kf3k "'= Q 

be two homogeneous relations in A of degrees a+ 1, b + l, respectively. All the 
ak, 0k , f3k are of positive degree and, in general, some of the ak, 0; may be the· zero 
opera~ion. Set tk = degree /3k. Associated with the relations (10.2) and (10.3), a 
st~ble secondary cohomology operation '¥ is defined. For a space X, its domain 
of definition Kq('¥; X) ts the subgroup of Hq(X) formed by all the elements u 
such that f3(u) = O; i.e., f3k(u) = 0 fork = 1, • • ·, m. The value '¥(u) is a coset 
in the direct sum Hq+a(X) EB Hq+\X) modulo 

(10.4) Q('¥; X) = Lk:'.1(ak EB 0k)!:l.Hq+trl(X), 

where A is defined by (10.1). Thus 

(10.5) 

Briefly, the construction of'¥ is as follows. Let 1r: E - K(Z 2-, q) he'a fibre 
space determined by f3 and which is a universal example for s()conda,ry operations 
associated with relations of type (10.2), (10.3). It is sufficient to construct'¥ 
in the stable range. Then, with q > max ( a, b), as in [2l, we choose elements 
x E Hq+a(E) and y E Hq+\E) associated with (10.2) and (10.3) respectively. 
Now, given u E Hq(X), let .f: X - K(Z2, q) be a characteristic map for u. If 
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f3(u) = 0, there exists h: X -+ E such that 7f'h = f. Define \Jl(u) = 
{ h * ( x) EB h * ( y)}, where the parentheses indicate the coset of the direct sum 
modulo Q(\JI; X). One verifies that another choice of h does not alter the coset. 

Let <I>1, <I>2 be the simple secondary operations determined by x, y respectively. 
The indeterminacy of the direct sum [ <I>1 ( u), • <I>2 ( u)] is in general larger than that 
of \Jl(u). 

In order to establish the second formula of Peterson-Stein, we need to consider 
double functional cohomology operations. Consider the relations a/3 = 0, 0{3 = 0 
as the composition of operations of several variables (see [3; section 2]). Given 
an inclusion f: X -+ Y, with the cohomology sequence of the pair ( Y, X), we 
form the following commutative diagram: 

~ A[EBHq+tk(Y, X)] L A[EBHq+tk(Y)] L A[EBHq+tk(X)] ~ 

jaEB0 jaEi:)0 jaEi:)0 

~ Hc(Y, X) EB Hd(Y, X) L Hc(Y) EB Hd(Y) L Hc(X) EB Hd(X) ii -
where c = q + a + 1 and d = q + b + 1. The horizontal rows are exact sequences 
and the direct sums in the upper row run over 1 S k S m. The vertical operations 
are defined in the obvious way. Now, if u E Hq( Y), it follows that 
{3( u) E EB Hq+tk( Y) and that (a EB 0)fi.f3( u) = 0. Thus, if we suppose f*/3( u) = 0, 
in the usual form, using the above diagram, we define the functional operation. 

(10.6) 

which is a coset of Hq+a(X) EB Hq+b(X) modulo the subgroup 

(10.7) (a EB 0)A[EB Hq+tk-1(X)] + j*Hq+a(Y) EB j*Hq+b(Y). 

THEOREM 10.8. Let \JI be a double secondary operation associated with the pair of 
relations a{3 = 0, 0{3 = 0. If f: X-+ Y is a map and u E Hq( Y) is such thatf*/3( u) = 
0, then the operations w(f*u) and (a EB 0)1ti.{3(u) are defined, and we have 

w(f*u) = (a EB 0)1A{3(u), 

modulo the total indeterminacy 

Q(\JI; X) + f*Hq+a(Y) EB j*Hq+\Y). 

Proof. We give the proof in the universal example 7r; E -+ B, where B 
K(Z2, q) and q is in the stable range. Let F c Ebe the fibre over the point 
z E B, 7f'1 : (E, F) -+ (B, z) the map induced by 7f' and j: E-+ (E, F) the inclusion. 
We identify 7f' = 1cd. If 'YE Hq(B) is the fundamental class, thenj*ti.{3(7ri*'Y) = 
7r*fi.f3('Y) = Oand (a EB 0)A/3('Y) = 0. Using the naturali~y for functional coho
mology operations ( [17; 15.8]) we have 

(10.9) 
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modulo the common indeterminacy, which reduces to 

(10.10) 

because in the stable range 71"1 * is an isomorphism and we have j*Hq+a(E, F) 
7r*Hq+a(B), with a similar result for q + b. We now form the following commu
tative diagram: 

t..[ E8 Hq+t1c-l(E)] ~ 

t..[ E8 Hq+t"-1(F)] ~ t..[ E8 Hq+t"(B)] ~ t..[ E8 Hq+t"(E)] 

"" l /' o"'-- ,n* / j* 
~ / 

[E8 Hq+tk(E,F)] 

( 10.11) 

where r is the transgression. The horizontal sequence is exact and the broken 
sequence is that of the pafr (E, F). A representative of '1!( 7r *,,) is constructed as 
follows. Since 7r*t...B('Y) = 0, there exists t..w such that rt..w = t...B('Y)-Form 
(a EB 8)t..w; then, since r(a EB 8)t..w = (a EB 8).6..B('Y) = 0, there exists 
x EB y E Hq+a(E) EB Hq+b(E) such that 

(10.12) i*x EB i*y = (a EB 8)t..w. 

The element x EB y is a representative of '1!( 7r * 'Y). To show that this element is 
also a representative of (a EB 8);6.,6(7r/'Y) we make the following observation; 
every functionalization of a cohomology operation with respect to the inclusion 
j: E--+ (E, F) can be constructed using the cohomology exact sequence of the 
pair (E, F). Indeed, it can be verified that the sequence of [17; p. 978] constructed 
withj is term by term isomorphic in a natural way with that of the pair (E, F). 
Then, to compute (a EB 8)jt..,6(7r1 *,,),we may use the broken sequence of (10.11). 
From the commutativity of the diagram we have Mw = t..,6( 71"1 * 'Y). Then, by 
(10.12), it follows that x EB y is a representative of (a EB 8)jt..,6(7r/'Y); but, by 
( 10.9), x EB y is also a representative of (a EB 8)1rt..,B( 'Y ). Since the indeterminacy 
of '1!( 7r * 'Y) is smaller than that of ( a EB 8)1rt...B( 'Y ), we obtain 

'1! ( 7r * 'Y) = ( a EB 8) ~t..,6 ( 'Y), 

modulo the indeterminacy (10.10), and this finishes the proof. 
Consider now the family of double secondary operations '1!8k with k > 0, 

introduced by Adams in [2], which are associated with the following relations: 

(10.13) Sq1Sq8k + (Sq2Sql)Sq8k-2 + Sq8kSql = 0, 

(10.14) 

Consider also a family of triple secondary operations E>sk+4 with k > 0, associ
ated with the following triple of relations: 

(10.15) Sq1Sq8k+4 + (Sq2Sq1)Sq8k+2 + Sq8k+4Sq1 = o, 
(10.16) 

(10.17) 

SqsSq8k+2 + Sqsk+ssq2 = o, 
Sq4Sq8k+4 + Sq8k+6Sq2 + Sq8k+7Sql = 0. 
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The relations (10.13) and (10.15) are the relations (6.2) which were used to 
construct the simple operations 4'41,;. As an application of the Peterson-Stein 
formula ( 10.8) for double and triple operations, we give a criterion for Ws,, and 
E>sk-t-4 to vanish by dimensional reasons. 

THEOREM 10.18. Let u E Hq(X) be such that Wsk(u) is defined. If Ask(u) = 0, 
AsH1(u) = 0, and Sq4u = 0, then Wsk(u) = 0 for all q ,::; 8k - 3. 

THEOREM 10.19. Letu E Hq(X) be such that 0sk+4(u) is defined. If Ask+4(u) = 0, 
Ask+6(u) = 0, Ask+7(u) = 0, andSq 6u = 0, then 0sk+4(u) = Oforallq,::; 8k + 1. 

The proofs of (10.18) and (10.19) are entirely analogous to the proof of (6.3) 
and for this reason are omitted. 

11. Cohomology operations in real projective spaces 

We will compute the operations Wsk and E>sk-t-4 in H*(RP'°). If x E H1(RP'°) 
is the generator, the cases of interest are those in which Wsk(xm) is defined and its 
indeterminacy, 

Q(wsk ; RP'°) C sm+s\RP'°) EB sm+Sk+l(RP'°), 

determined by (10.4), is generated by the element [xm+s\ xm+sH1J-in symbols 

(11.1) Q(wsk; RP'°) = {[xm+sk, xm+Sk+l]}. 

Similarly, we consider the cases in which 08k+4(xm) is defined and its indetermi
nacy, 

, Q ( 0~~+4 ; RP'°) c sm+sH4( RP"') EB Hm+sH 5 (RP'°) EB Hm+sH 7 (RP'°), 

is generated by the elements [xm+Sk-t-4, xm+Sk+6, OJ and [xm+sk-t-4, 0, xm+sH7J. That is, 

(11.2) Q(E>sk+4; RP"') = {[xm+sk+4, Xm+sk+6, OJ, [xm+sk+4, 0, xm+sH 7Jl_ 

A direct verification establishes the following two propositions. 

PROPOSITION 11.3. The operation w8k(xm) is defined and its indeterminacy is 

(11.1) if and only if m = Sn and(;) = 0 modulo 2. 

PROPOSITION 11.4. The operation E>sk+ixm) is defined and its indeterminacy 

is (11.2) if and only if m = Sn+ 4 and(;) = 0 modulo 2. 

Following Adams ([2]), we compute Wsk(xm) and 08k+4(xm), using (8.5) and 
the naturality of the operations with respect to maps. 

THEOREM 11.5. Let a = 2', b = 2•, and c = 2\ where r > s ~ t ~ 2, or r ~ 2 
ands = t = 1; then, with indeterminacy of the form (11.1), for all h > 0 we have 

,Tr ( (2h+l)2a-2b-2c) _ h[ 4(ha+a-c) OJ 
"'2(a+b-c) X - X , • 
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Proof. The possible values of a, b, c, assure that the conditions of ( 11.3) are 
satisfied; then the indeterminacy is of the form (11.1). 

Let f: RP"' -t GP"' be a characteristic map for the generator of H2(RP"'; Z). 
Clearly, with Z2 coefficients we have f*w = x2, and f*: Hq(CP"') - Hq(RP"') 
is an isomorphism for q even. Let u = wczn,+l)a-b-c and d = a+ b - c. In H*(CP"'), 
by (8.5), with zero indeterminacy, we have 

'¥2d(u) = [P2d(u), O] = h[wZ(ha+a-c), O]. 

Applying f* and using the naturality of '¥2d the result follows. 

THEOREM 11.6. Let a = 2", b = 2•, with r > s 2 2; then, with indeterminacy 
of the form ( 11.2), for all h > 0, we have 

E>2ca+b-2)(X(2h+l)2a-2b-4)) = h[x4(ha+a-2i, 0, O]. 

Proof. As before, using (11.4) we verify that the indeterminacy is as in (11.2). 
Let Psk+4 , Psk+/, and Psk+7 be simple secondary cohomology operations asso

ciated with the relations (10.15), (10.16), and (10.17) respectively. Let u = 
wC2h+l)a-b-z and d a + b - 2. In H*(CP"'), with zero indeterminacy, we 
have 

E>2d(u) = [-I>2iu), 'P2d+z'(u), P2d+iu)]. 

The third component is zero, since 'P2d+a is of odd degree. For the second com
ponent, let Psk+5 be a simple secondary operation associated with the rela.tion 
Sq4Sq8k+2 + Sq8kHSq2 = 0. Using the method of [1; p. 75], it follows that Psk+/ = 

Sq1 Psk+5 , modulo primary operations. With (8.2) we check easily that 
A2d+2(u) = 0. Then P2d+z'(u) = Sq1 'P2d+1Cu) = 0. Therefore, by (8.5), 

E>2d(u) = [1>2d(u), 0, OJ = h[w2(ha+a-21, 0, 0]. 

With J* as above, the result follows from the naturality of 02d . 

12. Non-immersion of real projective spaces 

We now give some applications of the previous results to the immersion 
problem of RPn. We may introduce double and triple characteristic classes asso
ciated with the operations 'lrsk , E>skH ; however, for simplicity, we proceed 
directly, using the Atiyah-James duality for Rr. 

THEOREM 12.1 Let v = (E, RPn, 1r) be the normal bundle to an immersion of 
Rr in Rn+\ where n = 2r + 7 and r 2 3. If U E H\E, Eo) is the fundamental 
class of v, then A2r( U) = 0, A2,+1( U) = 0, Sq4 U = 0, and 'lrz,( U) ~ 0. 

Proof. If X is an S-dual of RPn, as in the proof of ( 8.3), it is sufficient to show 
that the conclusions of the theorem hold for the first non-vanishing class of 
X. The result of Atiyah ([4; p. 307]) allows us to take X as a reduced projective 
space. Explicitly, X = RP 2N_2/RP 2N-n-z, where N is a conveniently large 
integer, depending on n. The first non-trivial element of H*(X) appears in 
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dimension 2N - 2r - 8 = (2N-r - 1)2'" - 8 = (2h + 1)2r '- 8, with 
h = 2N-r-I - I. Then, under the natural projection RP 2N- 2 - X, this element 
may be identified with x<2h+iw-s_ Applying the criterion (8.2) to this class, we 
obtain the part of the theorem concerning the action of the Steenrod algebra 
on the class U. Using (11.5) with a = 2r-i, b = 2, and c = 2, we obtain 
'¥2r(x< 2h+IW-B) ~ 0. Therefore, '¥2r( U) ~ 0, and this ends the proof. 

THEOREM 12.2. Let v = (E, RPn, 'If") be the normal bundle to an immersion of 
RPn in Rn+\ where n = 2r + 2' + 3 and r > s ~ 3. If U E Hk(E, Eo) is the 
fundamental class of v, then An-1( U) = 0, An-s( U) = 0, An-i U) = 0, Sq6 U = 0, 
and '92r+2•-4( U) ~ 0. 

Proof. As in the proof of (12.1), if X is an S-dual of RPn, it is sufficient to 
verify the conclusions in the first non-vanishing class of X. In this case, X = 
RP 2N- 2/RP 2N- 2r- 2•- 5 and the first non-vanishing class of H*(X) is of dimension 
(2h + 1)2r - 2' - 4, where h = 2N-r-I - I. We identify this element with 
x<2h+iw-2•- 4l_ As before, applying (8.2) to this class, we obtain the conclusion of 
the theorem regarding the action of the Steenrod algebra on the class U. From 
(11.6), with a = 2r-l and b = 2·- 1, we obtain '92,·+2•-4(x<2h+l)2r-2'- 4) ~ 0, and 
this ends the proof. 

The conclusions of (12.1) and (12.2) together with (10.18) and (10.19) im
mediately give us non-immersion results. However, by considering the asso
ciated sphere bundle, we can improve these results in one more unit. 

THEOREM12.3. RPn cannot be immersed in R 2n-9 if n = 4k + 3, where k = 
2r + 2• and r > s ~ 0. 

Proof. Suppose that RPn admits an immersion in R 2n-9, and let v = (E, RPn, 7r) 
be the normal bundle to this immersion. If U E Hn- 9(E, Eo) is the fundamental 
class of v, then, by (12.1) and (12.2), we have 

( 12.4) 

(12.5) 

'Yn-1( U) ~ 0, if s = 0, 

@n-1( U) ~ 0, if s > 0. 

Now from v*(Sq1 ) 0 it follows that the bundle vis orientable. The Euler 
class X(v) E Hn- 9(RPn; Z), if different from zero, is of order 2. Its reduction 
modulo 2 is v*(Sqn-9 ) = 0. Consequently, X(v) = 0. Therefore, the integral 
and the modulo 2 cohomology exact sequences of the pair (E, Eo) break into 
short exact sequences (see [9; p. 60]): 

(12.6) 

(12.7) 

0 ----+ Hq(E; Z) ~ Hq(Eo; Z) ~ Hq+1(E, Eo ; Z) --+ 0, 

0 --➔ Hq(E) ~ Hq(Eo) __i___, Hq+1(E, Eo) ----, 0. 

If q = n - 10, thenHq(E; Z) = 0, and from (12.6) there exists u1 E Hn- 10(Eo; Z) 
such that ou1 = U1, where U1 E Hn- 9(E, Eo; Z), is the integral fundamental 
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class of v. Then, if u, U are the reductions modulo 2 of u1, U1 respectively, we 
have ou =· U. 

We will verify that u fulfills the conditions of ( 10.18) if s = 0 and those of 
(10.19) ifs > 0. By (12.1) and (12.2) we already know that the conditions 
regarding the action of A are automatically satisfied by U. 

In both cases we have Sq1 u = 0 and Sq2 u = 0. The first statement follows 
from the fact that u is the modulo 2 reduction of an integral class. For the 
second statement, if we suppose Sq2 u ~ 0, since o Sq2 u = Sq2 U = 0, by ( 12. 7) 
we have i* 1r * xn-s = Sq2 u; and the application of Sq2 to this last equality gives 
i*1r*xn-6 = Sq2Sq2 u = Sq3Sq1 u = 0, which is a contradiction. Also Sqn-7 u = 0 
and Sqn-9 = 0, since the dimension of u is n - 10. Therefore, '1Fn_7(u) is defined 
for s = 0, and E>n-1( u) is defined for s > 0. 

To verify the remaining conditions we consider the two cases separately. 
Ifs = 0, we need to show that Sq4 u = 0, An_7(u) = 0, and An_6(u) = 0. 
Suppose Sq4 u ~ O; then, since o Sq4 u = Sq4 U = 0, by (12.7) we have 
i*1r*xn-6 = Sq4 U, and, applying Sq1 to this equality, we obtain i*1r*xn-5 = 
Sq5 u = Sq4Sq1u + Sq2Sq3 u = 0, which is a contradiction. The verification 
of the other two conditions uses different arguments for n = 15 and for n > 15. 
If n = 15, we have dim u = 5 and, since Sq1 u = 0 and Sq2 u = 0, this implies 
that As(u) = 0 and A9(u) = 0. If n > 15, we have Hq(E),;:::;:, Hq(Rr) = 0 for 
q = 2n - 16, 2n - 17, and, since An-6(U) = 0 and An_7(U) = 0, from (12.7) 
it follows that An-6(u) = 0 and An-1(u) = 0. 

Now from o'1Fn-1(u) = '1Fn-1(U) and (12.4) it follows that '}n-lu) ~· 0, 
but this contradicts ( 10.18) and establishes the theorem for the case s = 0. • 

If s > 0, we need to show that Sq6 u = 0, An-i u) = 0, An-s( u) = 0, and 
An_7(u) = 0. Suppose Sq6 u ~ 0; then, since o Sq6 u = Sq6 U = 0, by (12.7) 
we have • i* 1r * xn-4 = Sq6 u, and the application of Sq2 to this equality gives 
i*1r*xn-2 = Sq2Sq6 u = Sq7Sq1 u = 0, which is a contradiction. Now, since 
Hq(E) ,;:::;:, Hq(Rr) = 0 for q = 2n - 14, 2n - 15, 2n - 17, An--4(u) = 0, 
An-s(u) = 0, and An-1(u) = 0 follow from (12.7) and the corresponding results 
for U, as in the case s = 0. 

Finally, from 0E>n-1(u) = E>n-1(U) and (12.5) it follows that E>n_7(u) ~ 0; 
but this contradicts (10.19) and establishes the theorem for the case s >· 0, 
and this ends the proof. 

Remark. Accordingly with recent results of Sanderson ([13]), if n = 4k + 3 
and k is not a power of 2, then RPn can be immersed in R2n-s_ Consequntly, this 
result combined with ( 12.3) settles the immersion problem for the case k = 
2r + 2·, r > s ~ 0. 

THEOREM 12.8. RPn cannot be immersed in Rn+[n/21 for all n ~ 32. 

Proof. The result is established by showing that it holds for all n with 
2,. ~ n ~ 2'+1 - 1 and all r ~ 5. Clearly, if RPm cannot be immersed in 
Rm+", then RPn cannot be immersed in Rm+k for all n ~ m. If 2r ~ n ~ 2•· + 6, 
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the result follows using Stiefel-Whitney classes. If 2r + 7 ~ n ~ 2r+i - 2, 
the result follows by the application of ( 12.3) to the cases 2r + 2• + 3 ~ n ~ 
2r + 2•+1 + 3 with s = 2, ... ' r - 2 and to 2r + 2r-l + 3 ~ n ~ 2r+l - 2. 
Finally, the case n = 2r+i - 1 follows from the results of James ([6]). 

CENTRO DE lNVESTIGACI0N DEL IPN, MEXICO, D.F. 
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