NOTA SOBRE LAS RAICES DE ALGUNAS ECUACIONES TRASCENDENTES

Por Manuel Sandoval Vallarta

En relación con ciertos problemas de física, el autor de la presente nota se ha visto obligado a encontrar las raíces de algunas ecuaciones trascendentes, que pueden ser de interés para otros investigadores.

Los ceros de las funciones del cilindro parabólico, Ψ_n

Las funciones del cilindro parabólico se definen así:

$$\Psi_{n}\left(x\right)=\frac{e^{-x^{2}/4}}{\sqrt{n!\sqrt{2\pi}}}H_{n}\left(x\right) \quad , \label{eq:psi_n}$$

donde $H_n(x)$ es el polinomio de Hermite de orden n. Las raíces, correctas a cuatro decimales, de las ecuaciones trascendentes $\Psi_n(x) = 0$, son las siguientes:

$\Psi_0(x)=0,$	no tiene
$\Psi_1(x)=0,$	no tiene
$\Psi_2(\mathbf{x}) = 0,$	$\mathbf{x}_1 = 1$
$\Psi_3(\mathbf{x})=0,$	$x_1 = 1.73205.$
$\Psi_4(x)=0,$	$x_1 = 0.74196, x_2 = 2.33442.$
$\Psi_5(\mathbf{x})=0,$	$x_1 = 1.35563, x_2 = 2.85696,$
$\Psi_{6}(\mathbf{x}) = 0,$	$x_1 = 0.61671,$ $x_2 = 1.88918,$ $x_3 = 3.32426.$
$\Psi_{7}(x)=0,$	$x_1 = 1.15440$, $x_2 = 2.36676$, $x_3 = 3.75044$.

A la vez, las cantidades citadas son las raíces reales y positivas de las siguientes ecuaciones respectivamente:

$$x^{2}-1=0$$
, $x^{3}-3x=0$, $x^{4}-6x^{2}+3=0$, $x^{5}-10x^{3}+15x=0$, $x^{6}-15x^{4}+45x^{2}-15=0$, $x^{7}-21x^{5}+105x^{3}-105x=0$,

Una raíz de la ecuación trascendente, $\Psi_4 = J_4$

La ecuación trascendente Ψ_4 (x) = J_4 (x), donde J_4 (x) es la función de Bessel, tiene la primera raíz

$$x_1 = 0.7410$$
.

Algunas raíces de la ecuación trascendente $Ci(x) = J_o(x)$

La ecuación trascendente ya citada tiene las dos primeras raíces

$$x_1 = 1.572, x_2 = 4.955.$$

La raiz de la ecuación trascendente $J_o(x) = M(1, 1/2, x) x$.

Si M (1, 1/2, x) es la función hipergeométrica definida por M (1, 1/2, x) = 1 + 2x + 4/3 x² + 4/3 2/5 x³ + 4/3 2/5 2/7 x⁴ \dotplus ... la raíz única de la ecuación citada es x = 0.43712.

México, D. F., Dic. 1944.

Instituto de Física, U. N. A.