A REVISION OF THE THEORY OF ELASTICITY *

"By F. D. Murnaghan, The Johns Hopkins University

The fundamental relation on which the whole theory of elasticity rests
is that which connects the two main, tensors of ‘the theory, namely, the
stress tensor and the strain tensor. This relationship may be derived from
the principle of the conservation of energy and it is known as Hooke’s Law
when the two basic simplifying hypotheses of the classical theory of elasti-
c1ty are granted. These are the following :

1. The strain is ‘infinitesimal, By this we mean simply that-the pro-
blem may be lincarized in the sense that a sufficiently small, i. e. infinitesi-
mal, part of a curve may be regarded as a line.

2. The initial position of the elastic medium, i. e. the position from
which the strain is measured, is that in which there is no applied stress. In
other words the stress tensor is granted to be zero when the strain tensor
is zero. -

The whole theory of structures and of the strength of materials is
based on the theory of elasticity (including these simplifying hypotheses)
and we can have nothting but admiration for the successes of these theories.
Nevertheless' the theory fails to predict the phenomena when the applied
stress is large, and this is becoming more and more important in technical
applications,

The first idea that comes ‘to the mind of anyone who tries to build a
theory of strains which are too large to be regarded as infinitesimal is the
following. Just as a portion of a curve which is too large to be treated
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as a line may, by inserting a suitable number of points of subdivision, be
‘regarded as a broken or polygonal line, so a strain which is too large to
be treated as infinitesimal may be regarded as a succession of small or.
infinitesimal strains by the insertion of a suitable number of new reference
positions of the medium from each of which one of the succession of
infinitesimal strains is measured. Why not use the classical theory of elas-
ticity for each of these infinitesimal strains and then by a process of inte-
gration, obtain the stress corresponding to the strain which was too large
to be regarded as infinitesimal? In other words, why not apply to the
problem the familiar methods of integral calculus? The first objection
to this proposal arises when we look at the second of the two main simplify-
ing hypotheses of the classical theory of elasticity : in none of the succession
of small trains, save the first, is the initial position of the medium, to which
the strain is referred, unstressed. We must, then, if we wish to apply the
integration method, revise the theory of elasticity so as to formulate Hooke’s
Law in such a way as to take care of a medium which is initially stressed
and to which an additional (infinitesimal) stress is applied. I propose to
consider this revision with you today. In doing so I am forced to use such
technical concepts as matrices, tensors, etc., but I trust that my use of
these will not hide the essential simplicity of the method. I shall apply the
method to two important instances of stress:

a) uniform hydrostatic pressure

b) uniform tension of an elastic cylinder.

The first of these is important in questions concerning the internal
‘constitution of the earth, and the second is fundamental in the theory of
structures. It is a sobering thought that we yet know very little about the
interior. of this earth on which we live; what little we know (or, rather,
gueSs) derives largely from the theory of wave propagation (which theory
is based on the classical theory of elasticity) and its apphcatlon to obser-
vations on earthquakes, The pressures in the interior of the eath are so
‘enormous that predictions based on the classical .inifinitesimal theory of
elasticity must be regarded with some skepticism.

Let us first briefly recall the way in wich the strain of an elastic me-
dium is specified. Let x = (x, y, z) be the rectangular Cartesian coordi-
nates of a typical particle of the medium when in the position to which
the strain is being referred, and let § = (§, m, ¢) be the coordinates of
this same particle when the medium is strained from this position. Denote
by J the Jacobian matrix
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and by J* the matrix obtained from J by interchanging its rows and co-
lumns, Then the strain is described by means of the symmetric matrix
J*J. When the displacement x — E is a mere rigid motion, so that no
strain is involved, the matrix J is orthogonal and J*J is the unit matrix.
In a non rigid displacement the strain is measured by the difference bet-
ween J*J and the unit matrix; we write

1 0 O
e=1% (J*]—E); E = ( 0 1 0 )
» 0 0 1

and we term the symmetric matrix e the strain tensor. If we write E=x4
. | a . .
+ 3x and agree that the elements of the matrix — dx are infinitesimal,
ox ,
i. €., so small that their squares and higher powers are negligible, we readily
find the well-known expressions of the classical theory of elasticity:

0 0 0
Cxx = —0X;... ep=Y% | —d 4+ —3dy ).
ox ‘ \ 9y 0z

However it is not necessary to adopt at the very beginnig this linearization ;
we can get along quite well with the exact formula e = 14 (J*] — E).

- So much for the strain tensor; what about the stress tensor? This is
simply a symmetric matrix which acts as a linear operator or machine. If
we use it to operate on any unit vector, i.e. direction, at any point of the
medium the result of this operation is simply the stress, or force per unit
area, across an element of area perpendicular to the given direction. In
particular if the element of area belongs to the bounding surface of the
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elastic medium the resujt of the operation by the stress tensor on the unit
vector normal to the surface is the force per unit area acting on the surface
of the medium. We denote the stress tensor by T (the first letter of the
word tension) and we denote the elements of T by Txx, ..., Tyz ... A
particularly simple and important case occurs when T'is a scalar matrix,
i.e. a multiple of the unit matrix. This happens in the case of hydrostatic
pressure; in this case T = —pE and p is termed simply the pressure.
The negative sign is due to the fact that the stress is a pressure rather than
a tension. - ) ’

‘When an elastic medium is strained under the action of applied forces
these forces do work upon the medium and we assume that this work is
stored up in the medium in the form of energy of deformation.” We denote
by ¢ the energy of deformation per unit mass and we assume that @ is
a function of the strain tensor e. This assumption enables us to find a con-
nection between the stress tensor and the strain tensor. We confine our
attention to the case where the deformation takes place adiabatically so that
we do not have to allow for heat transfer in the energy equation. Let ¢ de-
note the density of the medium in the unstrained position x and @ + d¢
the density’in the strained position &€ = x + dx. Then

o0
T+0T = (¢ +de) J—J*
.o oe
o9 . . . - .
where — is the matrix obtained by differentiating ¢ with respect to each
oe

component of the strain tensor.’ This is the basic relation which must take
the place of Hooke’s Law and which is valid whether or not the strain is
small and whether or not the initial position from which the strain is measu-
red is free from stress (provided always that we are willing to accept the
hypothesis that ¢ is a function of e).

Let us suppose the function @ developed as a power series in the com-
ponents of the strain tensor: '

Q=P + Q1+ P2+ ...

where @, is a homogeneous function of the first degree, and @, a homoge-
neous function of the second degree, in the components of e. When e =0
both J and J* reduce to the unit matrix and 8T and dp are zero so that
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Hence ¢, = 0 if, and only if, T =0, i.e. if the medium is initially free
from stress. In this case the lowest order terms in the expression for 8T
are given by setting @ = @2, 8¢ =0, J =J* =T so that we obtain

_O%2. 0O ‘
T=e—=—1(092)
e 2e
This is the familiar expression of Hooke’s Law : The stress 3T correspond-
ing to an infinitesimal strain e from an unstressed position is the gradient
whit respect to. e of the elastic-energy-per-unit-volume oga. It is clear;
however, that this ptinciple is no longer valid when the initial position is

a stressed one. In this case — starts off with terms which are not zero
’ : oe ;
when e = 0 and so it is not legitimate, when setting down the first order

terms in the expression (o + d¢) ]—EJ*, to merely set 80 =0 and to
replace J and J* each by the unit magiex. To see, without getting involved
in technical calculations, what must be done we shall treat the simple and
important case of hydrostatic pressure.

Since the invariants of the product of two matrices are insentitive to
an interchange of the order in which the two matrices are written down,
the invariants of the new stress matrix T -4 8T are the same as the in-

o o9 .
variants of (o + 8¢) J*J — = (o + d0) (E + 2e) — so that these inv-
oe e
ariants are functions of e. When the stress is a hydrostatic pressure the
first invariant of T 48 T is —3 (p + 8p) and so dp is a function of p
and e.

For any strain we have .
o o \? [v+o\?
det (E + 2e) =det J*] = (—— =

o+ de v

where v = 1/p is the specific volume'of the medium. It follows that
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2\
(——'6v)= (e +30) (E+2e)
oe

and so the invariants of T 4 8T are the same as the invariants of
/2 \ L N
— | — v . For the case of an isotropic medium, i.e. one in which

oe \ oe

no direction is privileged, from the elastic point of view, over any other ¢
is a function of the invariants of the strain matrix e and when e is a scalar
matrix (as is the case when a uniform hydrostatic pressure is applied)’
this implies that ¢ is a function of dv and that.

. o9
T+ T=—.
odv
. P
In order that T = —p the first order terms in ¢ must be — — I, where

0
I, is the first invariant of the strain tensor; adopting the notation of the
classical theory of elasticity. we write the second order terms in @ as

1 (A42p 3
— —-1;2—2ul, }
0 2

so that up to the terms of the second order

A4 2n

0 = 0o — pl1 + I,2-—2ul,
where
. €yy €y €z Cax €xx Cxy
Ii=exxdepy €45 Io= o
€y €az €xz €xx €yx Cyy

are the first two invariants of the strain tensor. Conversely it is important
“to observe that if the initial stress is not scalar the first order temrs in ¢
are not a multiple of I, so that the medium is not elastically isotropic: in
other words a non-scalar stress introduces privileged directions, which is
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quite natural since the principal axes of the stress tensor are privileged. On .
writing e = ¢E we have

e {0

ot dv\ /8
22 (3)
dv 3v v

A simple calculation shows that

-2 1 Y dv
—dp = JL(7t+——u)+'—o —
3 3

so that

: v
so that , v
dp 2 1
—V—=@A+—u) +—0p.
dv 3 3
dp .o . _
The quantity —v—— is the reciprocal of the compressibility coefficient
dv

and so we see that even when we make the drastic hypothesis that A + 2/3 p
is independent of p the compressbility coefficient depends on p, its recipro-

cal being a linear function of p. If we adopt the more reasonable point of
2
view that A 4 —p varies with p and treat it, to a first approximation

as a linear function of p we may write

dp
—V ——=Cc -+ ap
dv

where ¢ has the dimensions of a pressure and « is a dimensionless constant.
On integrating this equation we obtain

‘o Vo \ ® () a
c v Qe

where @, is the density when p=0. This simple formula agrees reason-
ably well with experimental results even to such high pressures as 105 -
“atmospheres. For lithium a is approximately 2 and for sodium aproximately -
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3. The value a =2 yields a famous formula proposed by Laplace connec-
ting the density and pressure in the interior of the earth.

Let us now turn to the theory underlyin the Young’s-modulus experi-
ment. Here we have a cylinder (whose axis we choose as the z-axis) sub-
jected to a uniform tension parallel to its axis. All components of the stress
tensor save T, are zero and we know that the medium is not elastically
isotropic (even if it were originally isotropic, i.e. if it had no privileged
directions before the application of the non-scalar stress). It is reasonable
to suppose that the medium remains elastically insensitive to rotations
around the axis of the cylinder, and this assumption implies that the second
order terms in g@ are of the form )

= {(A + 2u) 1,2 —4pl; + ae,® 4- 48 (ex—xen' — eglyx)
+ 2ve, (e_xx -+ eyy) ]

Thus five elastic constants (instead of the two constants which are sufficient
in the case of an isotropic medium) are involved. A straightforward calcu-
lation yields

{ : Q+Y)Q+Y—Jh)}
0. Tu= (l+2‘lt+a+ Tn)—‘

A-p+p
)
and since e;; = — we obtain
z
z ; (M) AT
log—=-f :
Lo JOtutB) G+2utatD—@+7) G+r—1).

where L is the length of the cylinder when it is free from traction and z
is its length when the tension is T,,. If we assume that the elastic constants.
are independent of T,, we must set a, B, y all zero (since they are zero
when the applied tension is zero) and we ebtain the formula '

z : Tes 1
N {1 + (L4 20) —-—} 1+2¢
L E
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A . (3h42p)
where 0 == ———— is Poisson’s ratio and E = ———————— is Young’s
2004p) Mt
modulus. This replaces the familiar formula
z ‘ Tzz
—=14

L E

If we make the more realistic hypothesis that the five elastic constants
A u, o, B, y vary with T,, and approximate them by linear functions of
T the integrand of the integral for log z/L is the quotient of a linear func-

tion of T by a quadratic function of T. If this quadratic function of T
has a positive root Ty, z—> ® as T — Ty, In other words, the cylinder

cannot support a tension as great as Tn. This may serve as a qualitative
explanation of the passage under great stress of a medium from the elastic
to the plastic stage. No real understanding of plastic flow can be had if
one adheres to the point of view that the medium remains isotropic; it is
in the very existente of privileged directions that we must search for the
secret laws that govern the plastic behavior of materials.

In closing this lecture, let me express my appreciation of the high
honor you have done me in asking me to address you. I like to think that
this Congress is but an indication of many future efforts of cooperation
between the scientists of Mexico and the scientists of the United States. In
selecting for my lecture to a congress of mathematicians a topic in applied.
mathematics, I have been led by the hope that some amongst you may feel,
as I do, that the study of nature is a congenial occupation for a mathe-
matician.





