
DIRECT DECOMPOSITIONS OF BANACH SPACES* 

By Nelson Dunford. 

I wish to present in ·-a general way two related problems which are 
among the important problems of spectral theory and which concern the 
direct decomposition of a linear vector space. I shall not attempt any general 
solution of these problems but shall endeavor to show how they form, in 
a sense, a unifying principle for such seemingly diverse problems as the 
existence and uniqueness of Haar measure, the general closure theorems 
in L ( - oo, oo) of Norbert Wiener, the mean ergodic theorem of von 
Neumann and Riesz, and its generalization to the case of n-parameter con­
tinuous semi-groups, and some expansion theorems in reflexive Banach 
spaces. 

The first of these decomposition problems concerns a single continuous 
linear operator T in a normed linear vector space X , and consists of 
determining conditions on T or X or both which will insure the validity 
of the decomposition. 

(1) X = M(T) EB N(T), 

where M(T) consists of those x e: X where Tx = 0 and N(T) is the 
closed linear manifold (c.1.m.) determined by the range TX of T. The 
equation ( 1) means that every vector x e: X has a unique decomposition 
x = y + z where ye: M(T) and z e: N(T) . If we define the operators 
E(T), E'(T) by writing y = E(T)x, z = E'(T)x it is readily seen 
that 
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( l') I = E(T) + E'(T), E2(T) = E(T) , 
E(T)X = M(T) , E'(T)X = N(T) . 
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Conversely if an operator E(T) in X exists which satisfies ( l') then 
T satisfies ( 1) so that the problem is that of finding conditions on T and 
X which will insure the existence of a projection E(T) which projects 
the whole space onto M (T) and whose complement projects X onto 
N(T). 

The second problem is analogous and forms a generalization of the 
first by considering a family G of operators in X instead of a single oper..: 
ator. If by M(G) is understood the set of all x in X for which Tx = 0 
for every T in G and by N ( G) the closed linear manifold determined 
by the union of all the ranges TX, T £ G, the problem is that of deter­
mining conditions on G and X such that 

(2) X = M(G) E9 N(G). 

As in the case of the first problem equation (2) is equivalent to the exis­
tence of a projection operator E(G) which projects X onto M(G) and 
whose complement E'(G) = I - E(G) maps X onto N(G) . Thus the 
second problem is that of determining the families G of operators on 
the space X for which there exists an operator E ( G) satisfying 

(2') I= E(G) + E'(G), E2(G) = E(G), 

E(G)X = M(G), E'(G)X = N(G). 

There is a lattice theoretic relation between the two problems which 
I should like to mention at this point and return to in more detail later. 
Suppose that ( 1) holds for each T in a family G of operators in X and 
that the corresponding projections commute. The product E(T) E(U) 
where T, U £ G is readily seen to be a projection of X onto the mani­
fold M(T) • M(U) . If the projections in a commutative family of pro­
jections are ordered according to the customary convention of saying that 
A C B if and only if AB = A , i. e., if and only if AX C BX , then 
E(T) E(U) is the greatest lower bound (g.l.b.) of E(T) and E(U) 
and is sometimes written E(T) /\ E(U) . Now the passage from (1) to 
(2) requires the existence of a projection E(G) with E(G)X = M(G) 
= II M (T) where the product is taken oyer all T in G. Such a projection 
is clearly the greatest lower bound of all the projections E(T) with T £ G. 
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While a commutative family of projections in X generates a Boolean al­
gebra of projections in X under the operations 

Al\ B=AB, A V B = ( A'B')' , 

(where A'= I-A) in which crosscuts (g.l.b.) and unions (l.u.b.) exist 
for any finite number of elements, it is not in general true that to an arbi- ~ 
trary set of elements in such a Boolean algebra corresponds a projection 
in X which is the crosscut or greatest lavyer bound of the given set. Here 
and elsewhere wh~n we speak of a projection or an operator in X we mean 
a continuous and linear transformation of X into all or part of itself. Thus 
the passage from ( 1) to (2) is related, in the commutative case, to the 
problem of determining which Boolean algebras of projections in a Banach 
space X may be embedded in a complete Boolean algebra of projections -
in X , i. e., in a Boolean algebra which contains crosscuts and unions of 
arbitrarily_ many of its elements. Later I shall outline one solution of this 
problem in the case that X is a reflexive space. 

Before proceeding to the problem and the relations to analysis men­
tion~d above I shall discuss briefly the first decomposition problem in the 
case where X is finite dimensional and point out some· of the similarities 
and difference_s between this case and the general one. Suppose for the 
present then that X is finite dimensional and that T is a linear operator 
'in X . If (1) holds then clearly we have 

( l") M(T) • N(T)= 0. 

Conversely (1") implies (1). For (1") shows that T is 1-1 on N(T) 
and since this space is of finite dimension T is a 1-1 map of N ( T) into 
all of itself. Also since N(T) is finite dimensional TX = N(T) and 
hence for every x € X there is a z € N (T) with Tx = Tz . Therefore 
if y = x-z we have y € M (T) and hence ( 1") implies ( 1) and the 
three conditions ( 1), ( 1'), ( l") are equivalent. 

A fourth condition which is also equivalent to any one of these is the 
statement that 'J... = 0 is a root of multiplicity O or 1 of the minimal equa­
tion of T . This means that there is a polinomial P ('J...) with 

(1"') TP(T) = 0, P(O) =I= 0. 

To see that (1"') is equivalent to the other forms (1), (1') and (1") 
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suppose that ( 1") holds. This means, as we have seen, that T has an in­
verse when considered as an operator in N (T) and hence A = 0 is not 
a root of its minimal polynomial where it is considered as an operator in 
N(T) . Thus there is a polynomial P(A) with P(O) =I= 0 and such that 
P(T)E' = 0. Hence TP(T) = TP(T)E + TP(T)E' = 0 since 
TE = 0 . Conversely if ( 1 "' ) holds for some polynomial P (A) then 
since the two polynomials A, P (A) have no common root there are poly­
nomials R(A), Q(A) with 

A R('A) + P(A) Q(A) = 1, 

T R(T) + P(T) Q(T) =I. 

If we multiply by T and use de fact that T P(T) = 0 we see that 
R(T)T 2 = T and hence T 2 x = 0 implies Tx = 0. Hence M(T) • 
TX= 0 and since TX = N(T) we see that (l") is satisfied. Thus if 
X is finite dimensional ( 1 "' ) is equivalent to any one if the statements 
(1), (1'), and (1"). 

Finally it might be pointed out that the existence of projection E of 
X onto M (T) which commutes with T is also equivalent to ( 1). For if 
E 2 = E, EX= M(T), and ET= TE we have E'T = (I-E)T = 
T-ET=T-TE=T.Thus TX=N(T)CE'X andhence M(T) • 
N(T) C EXE' X = 0 and (1") is satisfied. 

An example of an operator which does not satisfy ( 1) and which 
illustrates nicely the various conditions ( 1), ... , ( 1"' ) is the following. 
Let X be two dimensional Euclidean space an T the operation which 
maps the point (t lJ) into the point (lJ, 0) . Geometrically T is the re­
sult of first projecting the point (t lJ) onto the lJ -axis and then rotating 
clockwise through an angle :rt/2 . Clearly T =I= 0 but T 2 = 0 so that (1 "' ) 
is not satisfied. Also M (T) = N (T) • the ~-axis so that ( 1) and ( 1") 
are false. There can be no projection E of X onto M (T) which com­
mutes with T for otherwise we would have O = TE = ET = E [ since 
TX = M(T) ]. Since a projection satisfies (1) and a rotation satisfies 
( 1) this example also shows that the product of two operators need not 
satisfy ( 1) even though the factors do. 

In the general case the question is not so elementary. While the exist­
ence of a projection E(T) satisfying (1') is still necessary and sufficient 
for ( 1) the condition ( l") is necessary but no longer sufficient and ( 1 "' ) 
is sufficient but not necessary for ( 1). No non-trivial conditions which are 
necessary and sufficient for ( 1) are known to me and the methods that 



de 1946] 5 

have been used to solve the various problems in analysis that come under 
.the heading of ( 1) or ( 2) have varied widely with the problem as well as 
with the mathematician solving it. I shall show how each of the problems 
mentioned at the beginning, i.e., the ergodic theorem, Haar measure, the 
closure theorems in L( - oo, oo) , etc .. , may be regarded as a problem of 
the type (1) or (2). 

Let us first consider the simplest case of the mean ergodic theorem. 

This concerns a single linear operator U with [ U [ = 1 and states, under 
n-1 

certain restrictions, that for each x E X the lim 1/n ~ Uix exists. 
n j=O 

Suppose that we have the decomposition (1) for the operator T = I-U, 
i.e., every x EX may be written as x = y+z where y = Uy and 

z E TX. Clearly 1/n ~ 1-Jiy = y for all n and for an element z1 ET X, 

say z1 = u-Uu, we have 1/n ~ Uiz 1 = 1/n(u-Unu) ➔ O. Thus 

the average 1/n ~ Ui converges to O on TX and hence on TX since 
its norm is bounded and we may say that the decomposition ( 1) implies 

n-1 
the convergence of the averages 1/n ~ Uix for each x E X. Conversely 

j~o 

it is not difficult to show that the convergence of the averages implies the 

decomposition ( 1), so that a proof of the mean ergodic theorem for the op­

erator U is equivalent to a proof of ( 1) for the operator T = I~ U . 

Next let us see how the mean ergodic theorem in the case of an n-para­
meter continuous group may be interpreted as a problem of type (2). For 
simplicity we shall take n = 1 . The theorem is concerned with a continu­
ous group of operators Ts , - oo < s < oo satisfying 

- 00 < s, t < 00 , 

and states, under suitable restrictions, that the lim A11x exists for each 
a a➔ co 

x EX where Aax = 1/a f T.x ds. Let us consider the family G of all 
0 

operators of the form I- T. , - oo < s < + oo , so that M ( G) consists 
' of all y for which y = T.y, -oo < s < +oo, and N(G) is the c.l.m. 

determined by all vectors of the form z- Ts z , z E X , - oo < s < + oo •. 
Suppose that the decomposition (2) holds for this family G. Clearly 
A 11y = y for y E M ( G) and for a vector of the form x= z- T. z we have 

rr s u+s 

Aax = 1/a f (Ttz - Tt+sz) dt = 1/a f Ttz dt - 1/a f Ttz dt, 
0 0 U 

and 



6 [Enero y abril 

J Aax J < 2 s J x J /a 

Thus Aax ➔ 0 for every vector of the form x = z- T 8 z and since 
J Aa J < 1 we must have Aax ➔ 0 por every vector in the c.l.m. deter­
mined by such vectors i. e., for every vector in N ( G) . Thus the decom­
position (2) implies the mean ergodic teorem in the continuous case. Con­
versely it is not difficult to show that the existence of the lim Aax for 

a 
x EX implies the decomposition (2). 

Next let us consider an abstract set of points S and a family <I> of 
functions cp which map S into all or part of itself. Suppose that there are 
sufficiently many cp E <P to distinguish between the points in S . That is 
£or s, t E S there is a cp € <I> with cps = t . Let F be the family of all 
subsets of S and consider the problem of determining whether or not 
there exists uniquely a set function m which sutisfies 

(a) m is finitely additive and bounded on F 

(~) m(S) = 1 

(y) m(E) = m(cp- 1E), E C S, cp E <I>, 

where by cp- 1 E we mean the set of all s E S such that cps EE. If the func­
tions cp E <I> are 1-1 maps of S into all of itself then the condition ( y) 
is equivalent to 

( y') m(E) = m(cpE) EC s, cp E<l>. 

I shall merely point out here that an affirmative answer to the question is 
equivalent to the statement (2) where G is constructed as follows. Let X 
be the Banach space of all bounded real functions defined on S with J f I = 
l.u.b. I f(s) 1- Let Tcpf = g where g(s) =£(cps). Let G be the family 
of all I- Tep where cp E <I> . Thus M ( G) consists of all f E X for which 
f ( s) = f (cps) , cp E <I> . Since the points in S may be distinguished by the 
members of <I> the manifold M ( G) is one dimensional and consists of the 
constants. Thus if ( 2) holds N ( G) is a hyperplane and there is therefore 
one and only one linear functional ( except for constant multiples) x* =/= 0 
which vanishes on N(G) . To say that x* vanishes on N(G) is equiv­
alent to the statement 

( y") x*f = x* T cp f , 
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Now the linear functional on X is given by an integral with respect to a 

finitely additive measure which is defined and bounded on F. Thus ( y") 

gives us such a measure m with f f ( s) dm = f £ (cps) dm for every 
s s 

f £ X and every cp £ <I> . By taking f the characteristic function of an arbi-

trary set E C S we obtain ( y). Since x* does not vanish on M ( G) we 

have x*fo # 0 where £0 is the constant function f(s) = 1 and so it may 

be assum~d (by multiplying x* by a constant if necessary) that 

1 = x*fo = f dm = m(S) 
s 

and hence (a), ( ~), ( y) are all satisfied. Conversely if a unique measure 
m exists which satisfies (a),(~), (y) then clearly a unique x* exists 
which satisfies ( y"). This means that the number of linearly independent 
x* for which x* N ( G) = 0 is 1 . Hence N ( G) 'is a hyperplane. In view 
of ( ~) we have for the function f0 ( s) = 1 and the functional x * f = 
f f(s) dm 
s 

1 = m(S) = J fo(s) dm = x*(fo) 
s 

and so f0 ;; N ( G) . For an arbitrary f € X we may write 

f= (x*f)f 0 + [f-(x*f)fo] 

which establishes the decomposition (2). 

An example quite analogous to the preceding concerns a bicompact 
Hausdorff space S and a family <I> of continuous functions cp which map S 
into all or part of itself. Suppose as before that there are sufficiently many 
cp £ <I> to distinguish between points in S. The question is that of determining 
when there exists uniquely a completely additive measure m defined for at 
least the Borel sets in S with m(S) . 1 and m(E) = m(cp- 1 E) for every 
q:> £ <I> and every Borel set E CS . It may be shown in a fashion similar to 
that of the preceding example that the answer is in the affirmative if and 
only if (2) holds where the family G is constructed as follows. Let X be the 
Banach space of all real continuous functions on S. Let Tep£ = g be defined 
by the relation f ( cpS) = g ( S) and let G consist of all operators of the form 
I-T<p where cp £ <I>. The chief difference between this example and the 
last is the representation of the linear functional on X . In case S is a 
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metric space the general linear functional on X is given by a Lebesgue in­
tegral f f ( s) dm with respect to a completely additive. measure m which 

s 
is defined for all Borel sets in S . This result was proved by Saks and has 
been generalized by Kakutani to the case where S is a bicompact Haus­
dorff space. In case S is a group and ([) consists of all functions of the 
form cps = a s where a E S it is seen therefore th~t the problem of es­
tablishing the existence and uniqueness of the Haar measure is equivalent 
to proving the decomposition (2). It should be pointed out in connection 
with the two preceding examples that in the case where G is a family of 
commutative operators ( as it will be if, for example, S . is an Abelian 
group) it is quite elementary to show that an invariant measure exists. 
The existence of such a measure in either case was a consequence of the 
fact that N ( G) ¥= X . Since M ( G) contains ail constant functions, to 
show the existence of an invariant measure it suffices therefore to show that 
M(G) N(G) = 0. This may be done as follows. 

Let y E M(G) and z = (I-U 1 )x1+ ... + (I-Us)Xs be an arbi­
trary element of ~ T X where the ~ is taken over all TE G. Let ( n, U) = 

n-1 

1/n ~ Ui, Wn = (n, U1) (n, U2) ... (n, Us), so that 
j=O 

Since (n, U) (I-U) = 1/n(I-Un) V\:e see that I Wnz I < k/n and 
since I Wn I < 1 we have 

Letting n ➔ oo we have 

From this it follows that the same inequality holds for z E N ( G) , and hence 
M(G) • N(G) = 0. 

Finally let us consider the \;Viener closure theorem in L ( - oo , oo ) 
which asserts that linear combinations of the translations f ( x + A) of a 
function which is integrable in the sense of Lebesgue on - oo < x < oo , 
are dense in this space L ( - oo, oo ) of such functions if and only if the 
Fourier transform F(f, u) of f has no real zeros. This theorem is equi­
valent to the decomposition ( 1) where T is defined as follows. Suppose 
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f EL ( - oo, oo) and that its Fourier transform has no real zeros. Let 
Tg = h be a transformation in X = L ( - oo, oo) defined by placing 
h = f* g where f* g is the convolution of £ and g . Let us recall that the 
Fourier transform has the properties 

(i) F(h*g, u) = F(h, u) • F(g, u), 

(ii) F(h,u) =0, -oo <u< oo ifandonlyif h=O. 

Also we note that if the range TX of T is dense in X, i.e., if the 
functions f* g , as g varies, are dense in L ( - oo , oo ) then. the linear 

n 

combinations ~ aif (x + Ai) are dense in L ( - oo, oo) . This is an ele-
i=1 

mentary consequence of the continuity of T and of the fact that step 

functions are dense in L ( - oo, oo ) . Now suppose that the decomposition 

(1) holds. Equations (i) and (ii) show that M(T) = 0 and hence 

N(T) = L(-oo, oo). This means that the range TX and hence the 

linear combinations of the translation of f are dense in L( - oo, oo) . Sim­

ilar arguments show that conversely Wiener's closure theorem implies the 

decomposition ( 1) for any f.:L( -oo, oo) whose Fourier transform F(f, u) 

has no real zeros. 

Wiener's general closure theorem in L ( - oo, oo ) conc~rns a class ~ 
of functions in L and asserts that the linear manifold determin~d by the 
translations of all the functions f E ~ is dense in L if and only if there is 
no real zero in common to all the Fourier transforms of functions in ~. 
This theorem we mention as a final example of a theorem illustrating the 
decomposition (2). The construction and proof are the same as for the pre­
ceding example with the exception that here we have the family G of all 
operators f* g where f ranges over ~ . • 

I should like now to indicate one solution of the problem of passing 
from the decomposition ( 1) to the decomposition (2). This problem, as 
was mentioned earlier, may be stated for the case of commutative opera­
tors as the question - wl~ich Boolean algebras of projections in a Banach 
space X may be embedded in a complete Boolean algebra of projections 
in X? 

Suppose that X is a reflexive Banach space and that B is a Boolean 
algebra of projections in X which satisfies the condition 
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JEJ<M, EEB 
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where M is some constant dependent upon B . Such a Boolean algebra we 
shall call a bounded Boolean algebra of projections with bound M . Now 
consider an arbitrary set a C B and let y E M (a) and z = E 1 x 1 + ... 

+ E. Xs E ~ EX = a X. If W = Ei' ... Es' where E' = I-E then 
EEo-

Wz = 0 and Wy=y sothat IYl=IW(y+z)l<Miy+zl.Since 
N (a) is by definition the closure of crX this last inequality shows that 

M(cr) • N(cr) = 0. If B* is. the Boolean algebra of all adjoints E* 
where E E B and if cr* consists of all E* EB* corresponding to an E E a 

then we have similarly that M (a*) • N ( cr*) = 0 . Using the reflexive 
1 

property of X some elementary calculations show, however, that M(cr) = 
1 1 

N (a*) , N (a) = M (a*) where the symbol r stands for the set of 
linear functionals which vanish on r . Since 

1 1 
M(cr*) N(cr*) = M(a) • N(a) = 0 

we see that no non-zero linear functional vanishes on both 

M(cr) and N(cr). 

Hence the fundamental Hahn-Banach extension theorem shows that 
M (a) E9 N ( cr) is dense in X . The inequality I y I < M I y+z I derived 
above allows us therefore to state the fundamental decomposition 

M(cr) EB N(cr) = X. 

The projection E(cr) of X onto M(a) is clearly the greatest lower 
bound of all E in a , i. e., E (a) = A a . A number of results may be 
readily obtained from this decomposition among them being the 

Teorem Every bounded Boolean algebra of profections in a reflexi·ve 
Banach space X may be embedded in a co111plete Boolean algebra of pro­
jections in X. 

Beside the method outlined above for the completion of a Boolean al­
gebra there are two other methods leading to the same result. One method 
is as follows. Consider an arbitrary directed set of elements a . Consider a 
function of a whose value E is an element of B . Then the family of all 

a 
E. H. Moore limits of the type 

lim E x = Ex, x E X 
a 

a. 
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constitute the same completion of B . One may also define a topology in the 
ring of all operators on X by defining a neighborhood of such an operator 
T as the set of all operators U such that 

J Tx1 - Ux; J < E , i = 1 , ... , n 

where E > 0 and x1 , ... , Xn are the quantities determining the neighbor­
hood. In terms of this topology the closure of B is again the complete 
Boolean algebra of projections determined by B. 

I should like to conclude by mentioning two corollaries of the theorem. 
The first is a theorem due to Kantorovitch and G. Birkhoff, and it asserts 
that in a space with finite Lebesgue measure the family of measurable sets 
is complete under the order relation A C: B if and only if measure 
( A- B) = 0 . The second application is concerned with integral equation 
theory. Suppose that T is a linear operator in a reflexive space X whose 
resolvent R(A, T) is a meromorphic function of 1/A. Suppose that the 
projections E(C) = .½ :rri f R(A, T) dA are bounded as the contour C 

C 

varies over the resolvent set of T. Under these conditions it follows that 
for every x E X the series ~ E "-ix is unconditionally convergent. Here 

we have used the symbol E"-· for the projection E(C) where C is a 
l 

contour containing A.1 but no other spectral point of T in its interior. The 
relation between this statement and the theorem is seen as follows. Since 
E E = 0 , i¥c j it is seen that the union 

"-1 "-j 

V (E, , ... , E, ) 
A.1 11.n 

l.u.b. 
l;§;i;§;n 

E,_ =E, + ... +E, 
Al Al An 

BJ: the theorem we have a projection E 111 X with 

E = l.u.b 
l;§;n<oo 

l.u.b 
l;§;n<oo 

This projection E may be shown to be (as indicated earlier) the E. H. 
Moore limit 
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Ex= lim ~ 
n iut 

where :re is an arbitrary finite set of integers. Thus the series 

is unconditionally convergent. 
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