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M.Morse, G.Hedlund and E.Hopf' showed thet a torus with a
Riemannian metric wiihout conjﬁgate’ﬁoints has curvature O,
so tLat the metric is euclidean. The present note shows that
this theorem is of the non-extendable type: the geodesics of
a Finsler metric on the torus without conjugate points need not
be the straight lines, and for any metric without conjugate
points there are always many essentially different metrics with the
same geodesics. In fact, there is so much arbitrariness in the
choice of the metric when the geodesics are prescribed that.the
problem to determine all of them becomes uninteresting.

However, it turns out to be reasonable to ask which curve
systems on the torus con occur as geodesics in a metric without
conjugate points. The answer to this question --in therms of
the plane as the universal covering space of the torus--~ is the

main result of the present paper.

2. Let the (x,y)-plane P be the universal covering space of

a torus with the tramslations
(1) T(m,n) : x’' =x + m, y' =y +n, mn integers

as covering transformations. A system of geodesics on the torus
without conjugate points, yields a system S of curves in P
with the following properties:
I. Eoch curve is S is o topological image
4 p(t) = (x(t), y(t)), - o0 < t <® , of the real t-axis,
such that x2(t) + y2(t) » © for t » o,

"This Theorem was proved by M.Morse and G.Hedlund-in [3] under
the additional hypothesis that there are no focal points. In
this general form it is due to E.Hopf [4]. Numbers.in brackets
refer to the references cited at the end of the paper.



II., Any two points of P lse onm exactly one curve of S.

II1., The system S goes snto stself under the traaslations

T(m,n).

IV. If a curve L of S contains q and qT(m,n) then
it contoeins all points qT(vm,vm), v = ¢ |, £ 2, ...

V. The system S satisfies the parallel axiom: for a
given curve L in S and a given point p nmot om L
there is exactly one curve sn S through p which
does not intersect L,

The main result is

TREOREM |. If a metric in the plane P has a system S
with properties I and II as geodesics and is invariant under
the translations T(m,n) then S satisfies III, IV ana V.

Conversely, if in P a system S of curves with properties
I to V is given then a metric invariant under the T(m,n) exists
for which the curves in S are the geodesics.

First the necessity of the conditions IV and V will be
proved using freely the results and concepts of [I). Each
geodesic is congruent to a euclidean straight line [I, p.79
Theorem |]. Denote by U the unit square O € x € |, 0 sy < I,
For any T = T(m,n), where not both m and n vanish, there is
a point a in U for which

aaT=minpp T

pel

where ab denotes the distance of a and b in the given
metric. If q 1is any point in P then a T' = T(m’',n’)
exists such that qo = gqT’' ¢ U. Then

288T7<€g 9 T=q 7" g T T =go T'go I'T =qq T






foints all geodesic one-gons are closed geodesics. There is

exactly one closed geodesic in a given free homotopy class
through a given point and all geodesics in the class have the

same length.

3. It is considerably more difficult to prove V. For
brevity call rationsl a line which contains two points g and
qT(m,n), (m,n) # (0,0), and hence all points qT(vm,»n). It
is easy to establish the parallel axiom for the rational lines
by showing: if L contains the points pT, p # ! and q
does not lie on L then the line L'’ oontaining the points
qT" is the only lihe through q which does not intersect L.

If this were not so, the assymptote H (see [I, Chapter
III, 41) through gq to one of the orientations, say L', ot
L would bs different from L’'. Let the limit circle A with

L' as central ray (l.c.) intersect L at P. Then AT is
the limit cirele with L' as central ray through qT-' and
T ' ([1, p.200 (d)1). It was just shown that PPT ' = aql '

On the other hamd H intersects AT ' in a point £ which is
the unique foot of q on AT ([1, p.102, Theorem 5]) and
qf = iﬁT-'. But then qu-I = qf contradicts the uniqueness of
the foot. ’

By means of a topological transformation of the torus (or
the plane) on itself we can reach that the euclidean lines
x = const., and y = const. represent geodesics. Every other
geodesic has then because of II and the validity of the parallel
exiom for the lines x = const. and y = const., a represent-
ation of the form

y:f(x)' -2 < x <®



with f!{x) either strictly increasing or strictly decreasing
and |f(x)| » » for x » ® It will be shown that for every
such line the "slope”

(2) lim £(x)

X-+1®

2xists and is’'different from O and <,

Consider first the case where L 4is a rational line throug!
the origir 2z and the point (m,n) = 2T(m,n), m # 0, n # O.
Then f(vm) = vf(m) and if wvm € x < (v+|)m then because

f(x) is monotone
[£(x) - £(vm)| < [£[(v+1)m] = £(vm)| = £(m)
hence with 6, < |

fm) lim
33

m v

A rational line L, obtained from L by the translation
T(0,x) has the equation y = f(x) + « so that L, has the
same slope as L. If L' is any line parallel to L, with the
equation y = f'(x), then L' 1lies for a suitable « between
L and L, so that L’ also has this slope.

Now let y = f(x) represent an arbitrary line. If it did
not have a slope, then m and n different from 0 would
exist such that

f(x)

lim inf — &2 K lim sup
x n

f(x)
x






is parsllel to LT(0,!), which has the equation y = f(x)+I,

the line L' must intersect LT(0,!) for some x’' > xo.
Then for a suitable » > 0. the point pT(vm,vn) T(0,1)
lies on LT(0,!) and between L' and L. The line L~
vn+ |
> u and the

vm
slope of L' cannot be smaller than the slope of L”".

through p and pT(vm,vn+l) has slope

Let u now be irrational and assume for an indirect proof
that there are two different lines L, K through p with
slope u. We may assume that p is the origin and that the

two lines have equations of the form

L:y=f(x), K:y=g(x) with g(x) > f(x) for x > 0.
Trhen for integral n > 0
(8) 0 < g(n) -~ £(n) < |

because otherwise the segment S, connecting (n,f(n)) to
(n,g(n)) would contain a point of the form (n,m) with integral
v, and the rationsl line L  through p and (n,m) would
lie between L and K. By the first part of this proof the
slope L would be smaller, and the slope of K would be
greater, than n/m. Because the distance is invariant under
the T(m,n) it follows from [I, p.!03, Theorem 6] +that a

8 >0 exists such that

g(n) - £(n) > & for n > |

For a given integral « > 3 determine the integer m;, by



(7) m, 8 >+ | > (m, - 1) 3 .

Then C:? S, contains « + | points which represent the same
point ;n the torus, or two ordinates differ by integers. We
distinguish two cases

a) There are for some « four points p, no three of
which lie on the same geodesic, A familiar argument from
elliptic funct;ons shows that the convex closure of these 4
points in terms of S would then contain a "period parallel-
ogram” Q whose sides are formed by segments of curves in S.
Since the domain bbdunded by y = £(x) and y = g(x) for
x >0 4is convex Q would lie in this domain, on the other
hand Q would contain a point equivalent to p that is of the
form (m,n) which was already seen to be impossible.

b) At least x of the « + | points lie on a geodesic g,
Then H“ is rational and has a rational slope p,. Since no
two of the « points lie on the same S, the abscisas n:
of the « points are different. Let n: < n:,|. Then
n: - nf > x -1 hence because of (7) nT/n: € | =(x=1)/m,$ |-8/4,
Since

£(x1) - £(xe2) _ £(x)) , (xe/xy) [£(x1)/x0 = £(x2)/x5]
Xy —-’xv‘, X | -xg/x.

it follows that for x, + ® and 0 < xo/x; < 6 < |

f(x £ - f
lim |) = 1ip (!l) (Xz)
| 2 X X |0 X|; — X2

b 4

where x> may, or may not, be bounded.



Hence it follows in the present case from nf/n: $ 1 -38/4

that

1.4 XK .4
_ f(ny) - £(nf) g(ne) - g(n))
iz nk - nf It ny - nof B
and therefore from (6) that also
K K K K
f(n,) - g(n)) g(ne) - £(ny)
e — = = ME — o "
K e ~ W, # De = B
On the other hand
(x=1) m%n (n; - ns_l) <£ng-n; §€m - |

and by (7)

K

min (ny - ny.,) € (m - 1)/(c -1) < 2/8 .

Therefore the denominator of the slope p, of B (if reduced)

cannot surpass 2/6. Since u 1is irrational there is an >0,

independent of «, such that |p,-ul > e. But if y = h(x)

represents HK, since the « points lie between L and K,

gng) < £(n}) h(nd) - () £(ny) - g(nf)
K K > .4 .4 =pK .4 K
n, - n, n, - n; n, - n,

which in conjunction with (8) contradicts |p,-ul > e. This
completes the proof of V.






clearly dp, ,(p,a) = d, .(q,p) and

(10) d-,n(p,q) =0 if and only if L =1L
The arbitrariness of x, yields

() d"n(p,q) + dm‘n(q,r) = d-‘n(p,r) if and only if the
line Lq lies in the closed strip bounded by LP and
L -

r

(12) d.’n(p,q) + d"n(q,r) > dn,n(p'r) if Lq does not lie

in this strip.

Let & be the difference of the ordinates of p and g
and determine the integer « by «x - | € |8] < x. Then T(0,1«)
carries LP into a line L_ for which Lq (if different from
L,) 1lies between L, and L,. Then

(13) 4.9 <dy (p,7) = &y (2020, 1)) < (I81+1)ha,

where kn,n depends only on m and n. A distance which

satisfies our requirements will be

-m-|al

- n -1 .
(14) pqa = ' d, . (p,a) Ay . 2 ;

where the prime indicates that the summation is extended over
all pairs m,n with m > 0 and all n, but such that
n/m # n'/m’ for different pairs m,n and m’,n’.

If p and q are given and have ordinate difference 3



then by (13) d_(p,q)A;:n < |8] ¢! for all m,n, so thati
'pq is always finite. (9) shows that pq is invariant under
all T(m',n’), and (I!) and (12) i{mply that pq satisfies the
trisngle inequality. pp = 0 by (20), and pq = qp > 0 for
p # ¢ follows from d_’n(p.q) dm,n(q.p) and from (10)
because for suitable m,n the lines L, and L (in the
previous notation) will be different.

Thus pq satisfies the axioms for a metric space. To see
that the curves in S are the geodesics it must be shown: that
for three different points p,q,r

(18) Pe + qr = pr if q Llies on the segment o of the
curve of S through p and r.

(18) pa + qr > pr if q does not lie on o,

If q lies on o, then for any m,n the line Lq will either
contain p and r or Lq lies between LP and L,. Hence it
follows from (10) and (1!) that (I5) holds.

If finally q does not lie on o, let L be the curve
in S through two arbitrary interior points q‘' and q" of
the segments (in the sense of S) from q to p and r
respectively. Then L separates ¢ from q. If L contains
for suitable m,n with = > 0 the points q'T(vm,vn), then
(18) follows from (12). If L does not have this property
(that is either a line x = const or not rational) thenm the
parallel axiom implies the existence of m >0 and n such
that the line L' containing the points q’'T(vm,vn) 1is so
close to L that it also separates o, and therefore p and
r from gq. Then (18) follows again from (!2).



That the aistance pq is equivalent to the euclidean
distance is easily derived from either the analytic definition
of pq or the geometric properties of S. The finite compact-

ness of pg ‘follows from its invariance under T(m',n’).

5. A few examples will conclude this paper. The construc-
tion of the distance pq in the preceding section happens to
yield a Minkowski metric if the curves in S are the euclideén
lines ax + by + ¢ = 0. This is however, accidental because
other functions d‘,n(p,q) than the area could have been used.

For instance, if p, = (x,,y,) then

pipe = [(x;-x2)? + (y|—yz)2l* + |7y . +8in2 7 y,-Tys-8in2 = yol

yields a metric for which the euclidean lines are the geodesics,
because 7y + sin2 7 y increases monotonically. Moreover, thir
metric is invariant under the T(m,n). Instead 7y + sin2 7 y
many other functions could have been used, a similarly formed
term in the x, could have been added, the euclidean distance
ocecurring in the definition of p ;p2 could have been replaced
by an arbitrary Minkowski distance. The euclidean distance can
also be modified in less obvious ways. This elucidates a point
made in the introduction: there is so much choice that the
problem to determine all metrics which belong to a given system
of curves becomes uninteresting. )

One might ask whether conditions I, II and III do not imply
either IV or V.- The example |) in [I, p.-105] shbwi that this
is not the case. '

Finally we give an example which confirmsAthe asser£1on

of the introduction that the curves of aAsysteu S satisfying



conditions I to IV need not be the straight lines. This means

the following: in general, no topological mapping of P on
another plane P’ exists under which the system S goes into
the system of the euclidean line in P'. An obviously necessary
(and actually also sufficient) condition for such a mapping to
exist is that the Theorem of Desargues holds for the curves in
S. Systems which satisfy I, II, and V but not Desargues’
Theorem are well known, but a system satisfying III and IV as
well has not come to the author’s attention.

To construct such a system S, we first define certain
functions f,(x) in the interval 0 ¢ x < !|. Put

£.(x) = x, and for integral n > |

a, x for 0<xg%

b, (x-%) + ¥a, for % <x g |

where

a,=2n-1-2, b =1+2, ¢ = & 10

n n

then f (1) = n and £/, (x) - £/(x) >0 for x £ & s0 that
foo,(x) = £,(x) increases. Morover put

fo(x) = (n+l=t) £ (x) + (t-n) £, (x) 4f n <t <n+ |
Then it is easily seen that fez(x) - ft'(x) increasas for

| < ty < t2, and that f£,(1) = t.
Now define g:(x) for all x, all t < | and all b by



g:(x) = f,(x-m) + mt + b for m< x < m + |

Since

(g::(x) - g::'(x))' = f;z(x—m) = f;l(x_m)

be b, :
the difference g, (x) - g, (x) increases for t, > t,. Hence
2 3

the two curves y = g:'(x) and y = g:2(x) intersect at most
g:%x) has slope t2 in the sense of (2).
The system S is defined as consisting of all curves
gz(x), all lines y = mx + b with m < | and the lines

const. Because (g:(x))' > | each line in S intersects

once. Morover y

-«
]

each y = g:(x) exactly once.

Through every point of the plane there is exactly one line
with a given slope (2). Hence the parallel axiom holds. It
is easily verified that two distinct points of the plane lie on
exactly (and not only at most) one curve in S.

To show that the system S has property IV it suffices to

prove the following: If g:(x') =y’ anc g:(x'+m) =y’ +n,

where m and n are integers,, then g:(x’+vm) = y' + vn.

Determine the integer k by k £ x’' < k + {. Then putting
f.(x'-k) + b =W,
y' = golx’) = W+ kt, gh(x'+m) = W + (kem)t = W + kt + n

hence t = n/m. Moreover

g:(x'fvm) =W + (k+va)t = y' + vmt = g’ + wn,






(2]

(31

(4]

foundations of Geometry. Annals of Mathematics Studies,

No. 8. Princeton 1942,

H.Busemann, Spaces with Non-Positive Curvature, Acta
Math., Vol. 80 (1949), pp.261-310.

E.Hopf, Closed surfaces without conjugate points,
Proc.Nat.Acad.Sc., Vol. 34 (1948), pp.47-6l.

M.Morse and G.Hedlund, Manifolds without conjugate points,
Trans.Am.Math.Socc., Vol. 5! (1942), pp.362-382.





