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A pedagogical very satisfactory approach to the study of
integration originates in the search for the primitives of a
given function - that is, for those functions having the ygiven
one as derivative., In the case of real funotions of a reasl
variable this approach has traditional advaitages which, as wo
point out here, are preserved in the consideration of complex
functions of a complex varisble, The study of the equation
(1) dv _
where f is a given continuos function of the complex variable

z with domain D, lead directly and simply to the essential
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results of the Cauchy theory. The technical apparatus required
in this development is at a minimum. In the standard theory
all the preliminar labor needed to define integration along a
path is promply shown by the Cauchy integral theorem to have
been essentialy irrelevant; but here contour integreation is a
relegated to its proper place as a useful devise for computation.
Any solution of (!) has an increment along the directed segment
z,,%22 which is given by the integration of f as a function
of a real parameter for the segment. This integral exists in
agy case, since f is continuos; and its value defines a
function H(z,,2») of two complex variables on any convex part
C of D. A solution of (1) will exists if and only if H(z,z2)
is expressible as the increment of a function of one variable;

or, equivalently, if
(2) H(z1,22) + H(z2,23) + H(zs,2:) = 0 .

& sufficient condition for (2) to hold is that f have a deriva
tive, the proof proceeds, along traditional and here clearly
motivated lines, by subdivision of the triangle with vertices at
z,,%2,%3. The problem of matching local solutions of (1) to
obtain a global one presents itself here as an elementary pro-
blem of combinatorial topology. Its solution for any simply
connected open part of D contains the essence of the Cauchy
integral theorem and leads at once to this theorem and the
associated Cauchy integral formula. A familiar argument then
shows that a function wich has a derivative everywhere in an
open set is infinitely differentiable there, and is expressible
locally by mean of power series. The sufficient condition above
then appsars to be necessary as well.
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