
ON A THEOREM OF BENDIXSON 

BY SOLOMON LEFSCHETZ 

In his memoire on differential equations (Acta Matematica, 24, pp. 1-88, 
1901) Bendixson subjected to a searching investigation analytical systems of 
the form 

(*) d.::.=x 
dt ' 

dy -
dt - Y, X(0, 0) = Y(0, 0) = 0, 

where X, Y are real and holomorphic at the origin and the origin is an isolated 
critical point. He showed in particular that by a finite sequence of quadratic 
transformations one may replace the study of the critical point at the origin 
by that of a finite set of ordinary points or isolated critical points where at 
least one characteristic root is non-zero: the so-called Bendixson systems. How
ever in any practical instance (even quite simple) it is not. at all easy to obtain 
the actual quadratic transformations involved. 

In the present Note we propose to give a constructive process to reduce the 
critical point, in a finite number of steps, to-ordinary or Bendixson types. Each 
step is clearly described in terms of the properties of the differential system. 

In a paper to appear elsewhere Barocio has made a complete study of analytical 
critical points. In relation to this paper the present Note provides among other 
things an explicit method for discovering so--called fans and also TO-curves in 
the "ambiguous" cases of Barocio's paper. (TO-curve: a curve tending to or 
away from the origin in a fixed direction; fan: a continuous collection of TO
curves). 

Terminology. We shall have to deal repeatedly with power seriesf(x, y, · · · , z) 
in several variables holomorphic at the origin. We shall use the following termi
nology: 

{

a unit if f (O, · · · , O) '#:-0, 
f= 

a non-unit if f(O, • · · , 0) = 0. 

Unitsf such thatf(0, · · · , 0) = I shall be designated generically by E. A special 
polynomial in x is a polynomial of the form 

£ A1(Y, · · · , 2)£- 1 + · · · Ar(Y, · · · , z) 

where the coefficients A,. are non-units. 
We recall that the Weierstrass preparation theorem asserts that if 

J(x, 0, · · · , 0) ~ 0, and r is the last degree of this series in x then 

f = a{x" + A1(Y, · · · , z)x,._1 + · · · + Ar(y, · · · , z)}E(x, y, · · · , z), 

a'#:- 0, 

where the bracket is a special polynomial in x. 
13 
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1. We first discuss the possible directions of approach of TO-curves to the 
origin. Let the system be 

dx 
= X(x, y) = Xn + Xn+1·+ 

(1.1) 
dy --di - Y(x, y) Yn + Yn+l + • · ·, 

where Xh, Yh are forms of degree hand one of Xn, Yn =I= 0. The number n is the 
order of the system and is independent of the choice of coordinates. Equivalent 
forms to (1.1) are 

(1.2) (a) 
dy y 
dx = 

We will require the important expression 

(b) 

a = xYn - yXn, 

and more generally also 

dx X 
dy y· 

so that a = an+i. A change of coordinates merely multiplies the a's by the 
determinant of the transformation, so that they are fixed up to a constant 
factor. The system is. said to be regular if a ¢ 0 and to be irregular otherwise. 

Upon applying the transformation 

(1.3) X = X, 

the TO-curves will become curves tending to the Yi axis and the direction of 
approach y = mx will correspond to the point (0, m) of the Yi axis, and· con
versely. 

Applying now (1.3) say to (1.2a) we find 

dy1 _ Yn(l, Y1) X Yn+1(l, Y1) _ 'Jf_! 

dx - xXn(l, Y1) + x2Xn1--1(l, 'IJ1) + · · · x 

a(l, Y1) xan+2(l, Y1) 
(1.4) 

We will now discuss the defi.Irite direction of approach y = mx, more par
ticularly in relation to the tangents of the curves X = 0, Y = 0 at the origin. 
It will be recalled that they are given by Xn = 0, Yn 0, and we will first 
suppose that y - mx is not a common factor of Xn, Yn, say that Xn (1, m) -:;6; 0. 

We must distinguish now between the regular and the irregular cases. 

A. REGULAR SYSTEM. Thus a (1, y1) ¢ 0. Then (1.4) has for path x = 0 and 
so other paths can only tend to critical points on this line. These will occur at 
places given by a (1, Yi) 0. If a (1, m) -:;6; 0, y mx is not a direction of ap-
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proach. If d (1, m) = 0 then Xn(l, m) ~ 0. It follows that upon applying the 
change of variables Y1 - m = y*, (1.4) is replaced by a system which, in the 
notation [u, v]q = a power series starting with terms of degree ~ q, reads: 

dy* [x, y*]p . 
dx o:x + [x, y*]2' 

(1.5) a~ O, p ~ l. 

If p 1 the point Y1 = m, x = 0 is either a node, a saddle point or of Bendixson 
type; if p > 1 it is of Bendixson type. In both cases the curves tending to it, 
hence the TO-curves tangent to y = mx at the origin are known .• 

B. IRREGULAR SYSTEM. Here then d (1, y1) 0. From the assumption 
Xn(l, m) r= 0 follows that Xn(l, Yi) ¢ 0. Hence (1.4) becomes 

dyi xh-
2dn+h(1, Y1) + xh-ldn+h+iCl, Y1} + ... 

dx Xn(l, Yi).+ xXn+1(1, Y1) + · · · 

Thus since Xn(l, m) ~ 0, the point x 0, Yi m is an ordinary point of the 
Yi axis, and y = mx is a direction of approach for TO-curves. 

Notice that if l = y - mx is a factor of Xn(x, y) but not of Yn(x, y) the same 
reasoning would hold with x and y interchanged. Similarly for the factor l x. 
Thus if y - l is not a factor of both X n and Y n there is a TO-curve with the 
tangent l = 0 in the irregular case. 

To sum up then if l = 0 is not a common tangent to X = 0, Y = 0 (not a 
common factor of X n , Y n), we know how to determine the TO-curves if any 
which are tangent to l Oat the origin. To determine completely the behavior 
of all TO-curves we are thus led to the study of those which tend to the origin 
along common tangents to X = 0, Y = 0 at the origin. This will constitute the 
core of our investigation. 

2. Returning to the system (1.1) we may choose coordinates such that no 
exceptional direction is one of the axes and furthermore such that X n and Yn 
both contain a term in y 11

• Let these terms be ayn and byn, ab ~ 0. At the cost of 
a a 

changing x, t into ,;x, ,;t we may dispose of the situation so that b a~ 0. 

Under these circumstances the series 

(2.1) Z(x, y) = XX+ (1 - X)Y 

will begin with terms of degree n among which there will be the term ayn. The 
range of convergency of this series will be a certain complex region Q of the 
space of the three complex va1fables x, y, X defined by 

O: Ix I , I y I < R, X arbitrary. 

Take any particular Ao and set X - Xo = µ. Then Z(x, y, Ao + µ) Z*(x, y, µ) is 
a power series convergent in an obvious region. Applying the Weierstrass fac
torization theorem we have 

(2.2) z ~ a(yn + A1(x, µ)yn-l + ... + An(X, µ)) E(x, Y, µ), E(O, 0, 0) = 1. 
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From this follows 

(2.3) + An(x, µ)) = Z - = ZEi. 
a a 

Let 

Z = Zo(x, µ) yZ1(x, µ) + ayn + ... ' 
E1 = 1 + yB1(x,,µ) + · · · . 

Upon identifying the coefficients of y on both sides of (2.3) we find 

h < n, Bo= 1. 

Since Z,.(O, µ) = 0 identically for h < n, it follows that the A1i have the same 
property. Thus, they are non-units in x, with coefficients power series in µ. We 
may also think of them as non-units in x with coefficients in the field of the power 
series in µ with coefficients in the complex field JC We require something else 
however. Note that the ascending convergent power series in x11

P with complex 
coefficients, and for all p, form a ring which we write K[x]. Since this ring is an 
integral domain it has a quotient field K { x}, which is merely the field of all 
convergent power series with complex coefficients of the form ax s1PE(x11P), s 
positive negative or zero, and for all p. We shall require both K[µ] and K{µ}. 
It is known that K{µ} is algebraically closed (Lefschetz: Algebraic Geometry, 
p. 99). 

The equation 

(2.4) 0, 

where the Ah are considered as power series in x with coefficients in K { µ} may 
be solved by the Puiseux process. It is necessary to examine this process a little 
more closely to bring out a certain property of the solutions. 

One begiI'ls by selecting by means of the Newton polygon an admissible 
approximate solution a1xn

1
, where n1 = p1/ q1 is a positive irreducible rational 

fraction and a1 satisfies an algebraic equation 

Do(µ)a? 

where the D 1 are polynomials in a finite number of the coefficients of the series 
An in x. Hence a1 e K { µ}. One sets then y (y1 a1)xf 1 , x x'f.1 and obtains 
a similar system in x1 , Y1 whose coefficients are now polynomials in the A1r. and 
a1 , etc. This process in known to terminate with an equation in xk , y1;; with 
coefficients polynomials in the Ai and a1, · · · , ak and will have a term of the 
first degree in Yk alone. In particular with a certain x* such that x*q = x, we 
will have 

Y = a1x*r1 + · · · + ak-1x*r1i:-i + (ak + Yk)x*r", 

r1 < r2 < · · · < r1;; • 
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Thus the lJk equation will have the form 

(2.5) 

where Ft Klµ} and G is a power series in its two variables with coefficients 
polynomials in the a1 , · · · , a" and the coefficients of the series Ai in x. More
over G will contain no term of degree one in 1/k alone. 

It follows that we can solve (2.5) for y1r, as a power series in x* with coefficients 
power series in some µ11rr divided by powers of cp(µ) = F. If cp(O) = O we can 
al ways choose an interval of µ, hence of X: 0 < 'Y ~ X ~ o, in which F ~ 0 and 
the formal solution will be an actual solution as follows from the Puiseux theory. 
As a consequence we shalt obtain a pmver series solution 

(2.G) y(x, X) 

valid in the same A interval. Moreover we can choose this interval so that the 
n roots of (2.4) have a representation (2.6) and this with the same q. 

For I :1: I < R and X e ('Y, o], the n Puiseux series solutions of Z O in y will 
converge absolutely and uniformly and so they will be in a certain re
gion I y I < S. 

3. We will now prove a generalization of a special case of the well known 
Bertini lemma of algebraic geometry. 

(3.1) LEM:i\,IA. For I x I < R and all but a finite number of values of A e ['Y, o] 
the n P.uiseu;r, series solutions yix, X), j 1, · · · , n, I Yi I < S, of Z 0, will 
all be distinct. 

Suppose that there is a multiple root, which we write y(x, >i.), depending 
actually on >i.. Then 

aZ(x, y(.r, X), >i.) 
a>i. ( A a.x + (1 - X) aY) d]!_ 

ay ay a>i. 

+ X(x, y(x, >i.)) - Y(x, y(x, >i.)) = 0. 

Since y(x, >i.) is a multiple root of >i.X + (1 - >i.) Y the coefficient of ay/a>i. vanishes 
and so 

X(x, y(x, X)) Y(;-c, y(x, >i.)) = 0. 

However since y(:1.:, >i.) annuls Z we have for y y(x, X): 

J.(X - Y) + Y = 0 

and hence Y(;i:, y(x, X)) = 0 = X(x, y(x, >i.)). Thus y(x, X) is a root of Z inde
pendent of >i. and common to X and Y. But by hypothesis no such root exists. 
Hence for arbitrary A the n roots are distinct. 

Now from equating any two roots there will result a certain number of analytic 
relations in >i.. Since the number of their solutions on ['Y, o] must be finite the 
lemma follows. 



18 SOLOMON LEFSCHETZ 

As a consequence of the lemma there is an interval ['Y1, oi] c ['Y, o] such that 
for A 1: [1'1 , oi] the n solutions of the lemma are all distinct. 

4. Corresponding to any A 1: [1'1 , ch] among the n roots considered a certain 
number v(A) ~ n will be complex. Let Ao be a A for which v has its maximum 
value n1 . Since the roots are continuous in A for x fixed, there will be n1 com
plex roots for A near Ao. Hence there is an [a, ~] c h1, ch], such that for every 
A 1: [ a, ~] there will be the same fixed number ni of complex roots and hence 
the same fixed number no of real roots, and all these roots will be distinct. 

If we choose two distinct values A, µ 1: [a, ~] we shall be assured that the series • 
Xi AX + (1 - A)Y, Y1 µX + (1 - µ)Y will each haven distinct roots 
in I y I < S for Ix I < R, and that among these roots n1 will be. complex and 
no real. Thus X1 0, Y1 0 ·will each have no real and n1 complex branches 
initiating at the origin. Moreover the two sets will have no common branches. 
We can change coordinates to Xi, Yi so that (1.1) becomes 

Writing now x, · · · , Y for X1, • • • , Y1 we may say that we are dealing with a 
system (1.1) such that among the two sets of branches X = 0, Y O there 
are the same numbers no , n1 of real and complex branches. 

5. Suppose now that the branches of X = 0 and Y O have a common 
tang-ent L. Under our assumptions L is not an axis. Hence it has an equation 
y = mx with m ~ 0. 

Suppose that k of the (real or complex) branches of Z = AX + (1 A)Y, 
A 1: [a, m are tangent to L. They will then have representations 

(5.1) 

Among the coefficients let ap-1 be the last independent of A. Thus the particular 
representation (5.1) has the "fixed" part 

f(x) = m::c + a
4

+1X 1+t/q + · · · + ap_1x<p-l)Jq. 

We may decompose f(x) into a sum 

fc:.fi+ ... +.r., 
and we will set 

so that gs = f. The properties assumed, with k > h, are: (a) gh is the fixed part 
of some branch of Z O; (b) fh and fk have no common terms; (c) the lowest 
degree term in f1c is of higher degree than the highest in J1i. Notice that (a) im
plies that there are fewer branches with the fixed part gk than there are with 
the fixed part g1i • We shall also say that g1,:. contains g1i: g1i c gk • 
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One may represent schematically the situation by a graph (a tree) each arm 
of which such as CD corresponds to arr J,.-here f 3 • The terminal dotted lines 
correspond to the various branches which separate at E, that is to say in whose 
representation the fast term beyond f depends on A. Suppose that this first 
term is a(X)x<p-I)/,J. Then there may he further branches in which the fixed part 
contains a term bx<11

-
01

\ where bis independent of X, and this fixed part is repre
sented by EK, EL · · · in the graph. 

6. Let us set x11
ff u, and .f(:r;11q) = <p(u). The representations of EF, EG, · · · , 

will be of the form a(X)ur · · · , r = p/q, and those of EK, · · · , of the form 
b(>-.)1{ + · · · . If we set 

we will have 

Z(x, y) Z(u\ y) 

where W(0, y1) ¥= 0 and W(0, Yi) 0 has for roots the various a(X), b say a1(X)1 

• • • , av ('A), b1, · · · , b11 • Applying now the direct lemma of Bertini we learn 
that for all but a finite number of values of 'A E [a, 13] the v values ai(X) are dis
tinct and they will represent v distinct branches of Z O related to f. The total 
number of exceptional X values for all possible choices of f is finite. Hence one 
may replace [a, ,8] by a subinterval, still called [a, 13], deprived of exceptional 
values of X. Thus for any X e [a, t3] there will be the same fixed number of distinct 
values such as a.£(X) and this for all possible combinations such as .f. 

Take in particular X1 a, X2 = fJ and let X*, Y* denote the corresponding 
functions Z. The hra,nches represented by X* = 0, Y* 0, will all be distinct 
and the same number v will he attached to f(.1:, ). 

Fm. 1 



20 SOLOMON LEFSCHETZ 

Let us now make the change of variables 

x* = ax + (1 a )y 

y* {3x + (1 /3)y. 

The determinant is a - {3 ~ 0, so that this is a non-singular change of coordi
nates. It is an elementary matter to show that the new variable u* x*11

q is 
regularly related to u:u ~ u* is a regular transformation. As a consequence if 
we express the tp'S in terms of u*, the earlier situation will be preserved. The 
branches corresponding to 'Ph will simply become the branches corresponding 
to 'Pt, • 

Returning now to the designations x, · · · , y instead of x*, · · · , y* we have 
the following result: 

(6.1) LEMMA. The coordinates may be so chosen that the basic equation in the 
form (1.1) is such that X 0, Y = 0 have the same number v of branches at-
tached to ip, and this for every IP• 

In the sequel we shall assume that the situation described in this lemma al
ready prevails. Furthermore we only discuss what happens for x > 0. One takes 
care of x < 0 by applying the change of variable x ~ -x to (1.1). 

7. We ::t,re now ready for the analysis of the local phase-portrait of the funda
mental system (1.1) at the origin. We first put it in the form 

(7.1) 
dy _ oE(x, y)Y(x, y) 
dx - X(x, y) 

where under our general choice of coordinates both X and Y are special poly
nomials of degree n in y and o is a constant. 

Let us fix our attention upon a certain tp(x) corresponding say to a point 
between C and Don the graph. Let 

tp(x) = mx + x<q-I)/q + • • • + ux(p-I)iq' 

where we assume that the first t/,t :J IP, t/,t ~ IP, is of the form 

t/,t IP+ axp/q 

We seek the TO-curves between IP and t/,t and so we apply the transformation 

(7.2) !) 

where 1 ~ (p - l)/q < µ < p/q. Now the factors of X are of the form y -
tf,, • • • , where either t/,t c IP or else t/,t :J IP and t/,t ~ IP• If t/,t c IP (7 .2) replaces the 
factor by xr (x"_,. y1 - a · · · ), r < µ, a ~ 0. If t/,t :J IP the factor is replaced by 
i/(y 1 - axr-µ • • • ), r > µ. The same thing holds for Y and the same number of 
factors of each type with the same exponents r is found in each. Hence under 
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(7.2) and since µ, > 1, (7.1) is replaced by 

(7.3) 
dy1 _ oE(x, Y1) Y1(x, Y1) 
dx - xµX1(x, Y1) 

which it is more convenient to write as 

dx _ xµX(x, Yi) 

dy1 - oE(.ct:, Y1) Y1 (x, Yi) . 
(7.4) 

Observe here that X1, Yi, E are power series in x, xµ, Y1 and that X1(Y1, 0) 
Y1(y1 , O) = yt . As a consequence (7.4) satisfies a Lipschitz condition in x in the 
whole set Q: x ~ 0, origin excluded. It follows that the whole existence theorem 
of Cauchy-Lipschitz, uniqueness included, is applicable throughout Q. In par
ticular through a point P of the Yi axis other than the origin, there passes a 
unique path in Q. Since the half of the Y1 axis through P is already such a path 
it is the only one reaching P. Hence the image of a TO-curve of (7.1) can only 
terminate at the origin on the Y1 axis or else tend to infinity along that axis. 
Thus in the process either these TO-curves have already appeared earlier, i.e. 
for some f c 'P, or else they will appear later. In our systematic "sweeping 
out" process for TO-curves we are only concerned with the curves that appear 
later and for these we must take a cp corresponding to a vertex of the graph and 
µ, = p/q rational. 

8. This time then ·we apply the more complete transformation 

(8.1) .1: = u\ q p-1 
cp(u) = mu + · · · + uu , 

and we note also that p > q ~ 1. The same factors as before will appear, of 
one of the two forms 

ur(up-r1/1 -a "· ' ), 

ur(Y1 - a.Ur-µ ... ), 

In addition however there may appear a third type with r = p: 

a ... ), 

r < p,, a ~ 0, 

r > p. 

a ~-o. 

Here again the number in each type will he the same for X and Y. Hence this 
time we have an equation 

dy1 _ E(u, Y1)F*G*H* 
du - 11,aFGH (8.2) s = p - q + 1 ~ 2, 

where the pairs (F, F*), (G, G*), (H, H*) correspond to the three types of factors 
of X and Y and 

F(O, y1), F*(O, 111) are constants; 
G(O, y1), G*(O, y1) are polynomials of the same degree whose common and 

only possible multiple roots are the values b1 , b2 , · · · , corresponding to fixed 
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parts::::, r.p; 

H*(O, Yi) = yi . 
Notice that the degrees of GH and G*H* in Y1 do not exceed the degree n of 
X, Yin y. 

The images of TO-curves of interest now are those if any, which reach 
the Y1 axis at points other than the bi . They are the real roots a1 , · · · , ap of 
G*(O, y1) = 0 other than the bi , and their number v ;;:i n, none being a root of 
G(O, Yi) 0. That is to say they are the real roots of G*(O, Y1)/G(O, Yi) = 0. 
Let c be such a root and set Y1 - c Yi . The (yi , w) equation will thus have 
the form 

(8.3) 
dyj' = E(u yi) -a-K(1.t, yi) 
du ' ua ' 

K(u, yi) yr+ A1(u)yi-ir-i + · · · + Ar.(u), 

1r ;;:i v, AiO) = 0, o = constant 

The relation K = 0 will represent a certain number of branches through the 
(y*, u) origin. Upon writing then the representations of these branches in frac
tional powers of u we can construct a graph such as that of fig. 1, corresponding 
to the common parts of these representations. Let us select a definite branch r. 
In the new graph it will correspond to an arc going from the starting point to 
the end. Let r have a representation in terms of a suitable v, v1'" = u, 

where r.p is the part common to other branches as well. Upon introducing a new 
variable by Yi - r.p(v) vPy2 , we obtain a relation 

dy2 _ cL(v, Y2)M(v, Y2)N(v, Y2)E(v, Y2) 
dv - va 

quite similar to (8.2). The properties of L, M, N are essentially the same as 
those of F, G, H before. In particular their degrees in Y2 are The process 
is repeated until we· reach an equation in terms of new variables Y1-: , w1.: analogous 
to Y2 , v of the form 

(8.4) 

Here e is a constant and r.p is a power series. If r I this equation is of Bendixson 
type and its phase-portrait is completely known. If r > I and ,p ~ 0 ,ve apply 
the further transformation 
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which replaces (8.4) by 

(8.5) dz,. ( ) [ z~ 
d
- - t:E Zk' w,. l 

Wk \. 

23 

Let i/;(wk) = aw~ + · · · . If a11
r is complex then there is no TO-curve of our 

system of type z -yw:'r. Let (3 = a 11r be real. The transformation 

reduces (8.5) to the form 

(8.6) 
dy* 
dw* 

r, = u:. 

py* 
w* 

We must now distinguish several cases. One must bear in mind that only the 
TO-curves for which w* > 0 do matter. 

A. (p + I) (r - 1) - ps ~ 0. The system (8.6) is now equivalent to 

(8.7). . .. dw* 
= - py* + Xw* + · · · , = w*. 

The only critical point on the w* axis is the origin. It is an ordinary critical 
point with characteristic roots - p, I and so it is a saddle point. It has one TO
e,1.1rve other than w* = 0 and it corresponds to a single TO-curve in the initial 
x, y system. 

B. ps - (p + I) (r - 1) = 1. The equation for the critical points on they* 
axis is 

(8.8) 0. 

If this equation has no real roots there are no corresponding TO-curves in the 
initial system. Let 'Y be a real root and let it be simple. Setting f} y* - 'Y, our 
equation becomes 

tfj + Xw* + · · · 
w* 

where f is a known constant ~O. Hence (,-/, 0) is an ordinary critical point: a 
node if r > 0, a saddle point if r < 0. In the second case there is a single TO
curve, in the first a fan in the initial If 'Y is a multiple root one has a 
Bendixson critical point. 

C. ps (p + 1) (r I) 

... ) _ py*wk-1 



24 SOLOMON LEFSCHETZ 

The critical point equation is 

y*r a = 0. 

It has one real root a1
/r if r is odd, two real roots ±a 11

r if r is even. The same 
change of variables as before yields a Bendi-xson critical point for each root, 
and at least one corresponding TO-curve for each root. 

9. There remains (8.4) with cp = 0, or the general type 

(9.1) 
dy 
dx ;i;8 

E(x, y), E a constant :;z£ 0. 

If 1· or s, or both 1, we have a Bendixson or an ordinary critical point, so 
that we may assume both >1. 

Suppose first r s. Thus (9.1) is 

(9.2) 
dy EYr 
- = -E(x,y). 
dx xr 

To determine the possible directions of approach of TO-curves we make the 
change of variables y = XY1 which yields 

dy1 _ t:y';_E(x, xy1) - Yi 
dx - x (9.3) 

The x and Yi axes are solutions and the other directions of approach correspond 
to the critical points on the Yi axis other than the origin of (9.3). They are given 
by the roots of 

(9.4) r-i 
Yi 

1 

This relation may have: (a) no real roots, hence there are no TO-curves other 
than along the axes, or else: (b) one or two real roots. Let € .be one of these. 
The change of variables Yi y* € reduces (9.3) to the form 

dy* _ 11:i: + (r 
dx - x 

Thus the point Yi = € is a node and we may have another node if (9.4) has two 
roots, at Yi = ± €. This completes the treatment of the present case. Each node 
yields a fan for (9.1). 

10. We return now to (9.1) and assumer :;z£ sand both >l. The change of 
variables y xyi yields this time 

dy1 _ E1 y~ E(1:, xyi) 
dx - xs-r+i 

(10.1) 
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If s > r the only critical point is at the origin and so the only direction of ap
proach for TO-curves is along Ox. If s < r we study d:c/ dy and the situation is 
then the same with x and y interchanged. 

Suppose then s > r. Thus along the TO-curves if any are present y is of order 
> 1 in x for x small. Let us make the transformation of variables 

(10.2) X p>q 

or y = x/J.y1 , µ > 1. Thus we endeavor to "capture'' the possible TO-curves of 
(9.1) as it were. We find 

cqy"i_E(u, uy1) _ PY1 
1.l · 'U,(s-l)q-(r-l)p 'U, 

(10.3) TE( · ) (s-l}q-(r-1) p cqy1 it, u.y1 - PY1'l.t 
U.. 'll(s-l)q-(r-l)p 

This shows that if 

p s - l 
µ = - < = er, 

q r-

the (u., Y1) origin is the only critical point and so along possible TO-curves y 
is of order > µ in x. On the other hand if µ > er the origin is merely a saddle 
point, and has the x axis as only TO-curve ( outside of the Yi axis itself). This 
means that the same order <er. Hence er is the only possible order for y(x) along 
a TO-curve. Taking thenµ er we have in place of (10.3): 

(10.4) cqy~ E ( ii, 1iy1) 
'l.l 

PY1 

The critical points other than the origin correspond now to the real roots of 

r-1 
Y1 

and the situation is the same as discussed before: either no critical point and 
hence no TO-curves or one or two nodes, and hence one or two fans for (9.1), 
and therefore also for the initial system (1.1). This also completes the treatment 
of (9.1) and hence of (1.1). 

11. Concerning the application of the method of the Newton polygon. This 
process was applied to differential equations for the first time by Briot and 
Bouquet (see notably: Ince, Ordinary differential equations, p. 297). It is used 
to determine the order in x of y(x) on a TO-curve. The basic assumption is that 
such an order exists. That is to say that for such a curve there is a µ > 0 such 
that I y I/ I xP. I tends to a finite limit cl as x ~ 0. We extend the definition to 
include µ defined as follows: I y I / l xµ+c I ~ 0, I y I / I I ~ oo for arbitrary 
positive c. 
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12. If a TO-curve tends to the origin along y mx with m ~ 0, then clearly 
µ 1. Let the curve tend to the origin along the :r axis. Then at all events 
I y I / I x I -4 0 and so if µ exists it is > 1. Notice that approach along Oy would 
be dealt with by interchanging x and y: if I x j / I y'' I -4 d ~ 0 then I y I / 
I x 11v 1-4 d-v and so the result is the same. Thus we may confine our attention 
to tangency to Ox, and clearly we only need to consider TO-curves to the right 
of Oy. This means that we may replace I x I by x throughout. 

Generally speaking if our TO-curve arises as one of the dotted lines in the 
graph of fig. 1, at the end of a ·definite path in that graph then it has a repre
sentation 

X 

rp(u) a'itP + · · · + /3'lls-1, a ~ 0. 

Hence on the TO-curve ,ve' · find that I y I / xpfq tends to a limit as x -4 0. In a 
certain plane u, Y1 this limit will be a "critical value" of Yi . 

13. There remains then the case when rp O and approach along the direc-
tion of the x axis or they The latter may be taken care of by interchanging 
x and y, so that it is only necessary to consider tangential approach to the x 
axis, say on the positive side. Approach on the negative side is disposed of by 
the change of variables x -4 - x. 

Since we have dealt with the "rp case", we may suppose that X,,, Yn (nota
tions of 1) are not both tangent to the x axis. Nmv to have it be among the 
directions of approach xY11 yXn must be divisible by y. Hence y must not be a 
factor of Xn and so X 11 ¢. 0. We will then have 

where X*, Y* do not have x, y as factors and certainly X* ¢. U. Applying now 
the transformation y = xyi, we find 

(13.1) 

or else 

(13.2) 

where U is a non-unit. 

I yf + x W(:r, Yi) l E(x, Yi) 
X 

s ~ 1, 

The only point of interest is the new origin 01. In the case of (13.2) it is an 
ordinary point and so only one TO-curve has an image through it. Since that 
curve is an ordinary analytical branch we have on it: Yi = ax'' + · · · , hence 
Yi is of order v and therefore y of order v + 1 on the TO-curve. 

Consider now (13.1). There are several possibilities. Let us WTite it as 

dy1 _ N 
dx - x (13.3) 
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(a) N has tenns of the first degree of fonn ax + f3Yi with (3 ~ 0. Then 01 is a 
simple critical point. On its TO-curves Yi is of a definite order JI in x, hence on 
the original TO-curves y is of order J1 1. 

(b) N has tenns o.f the first degree off orm, ax with a ~ 0. Then 01 is 'a BendLxson 
point. Its analysis brings out readily that it has two hyperbolic sectors to the 
right of Oy1 with separatrices S1 and S2 along the Yi axis and Sa tangent to Y1 
ax. The first two do not yield TO-curves in the (x, y) plane. The separatrix S:1 

does yield such a curve say S~ . On Sa Y1 is of order one, hence on s; y is of 
order two. 

(c) N has no terms of the first degree. T'he geometric analysis is really the same 
as in (b) save that this time S3 is tangent to the x axis. To have the corresponding 
order we apply the transformation Y1 .r,y2 which yields 

dy2 _ -y2 + · · · 
dx - x 

(13.4) 

so that the new origin 02 is a saddle point. It has a single separatrix Si not 
tangent to the Y2 axis and corresponding to Sa. On Si Y2 is analytical in x and 
therefore of a definite order JI in :t'.. To Si there corresponds a TO-curve in the 
(:r, y) plane on which y is of order v 2 in x. 

To sum up we have proved our order assertion on TO-curves and this justifies 
the Briot-Bouquet process. 
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