
SYMMETRIC FUNCTIONS OF SEVERAL VARIABLES, WHOSE 
RANGE AND DOMAIN IS A SPHERE 

BY I. M. JAMES 

1. Introduction 

Consider a topological n-sphere sn, where n ~ I. Let K denote the m-fold 
cartesian product Sn X · · · X sn X . . . X Sn, and let G be a transitive per
mutation group of degree m which acts on K by permuting the factors. By a 
G-invariant map I mean a continuous function f: K---+ sn which is invariant 
under the permutations of G. If m = 2, for example, then a G-invariant map is 
one such that 

f(x, y) = f(y, x) 

I define the type of a G-invariant map f to be the degree of the map of Sn into 
itself which is obtained from f by fixing all but one of the variables, 1 such as the 
map x---+ f(x, e, · · · , e), where e is a fixed point. The purpose of this note is to 
try and determine, for the various cases of n and G, the numbers q such that Sn 
admits a G-invariant map of type q. Obviously every value of q can be achieved 
in case m = 1. Some results on the problem in case m = 2 are contained in [3]. 

We shall prove 

THEOREM 1.1. Let n be even, m > I. Then Sn admits a G-invariant map of 
type q if, and only if, q = 0. 

Most of the interest, therefore, lies in the case of odd-dimensional spheres. 
Our main result is 

THEOREM 1.2. Let n and G be given, where n is odd. Then there exists a positive 
integer k, such that S" admits a G-invariant map of type q if, and only if, q is a 
multiple of k. Moreover, none of the prime factors of k is greater than m, the number 
of variables. 

For example, if n = I we can represent points of sn by complex numbers of 
unit modulus, and then the function 

f(x1, · · ·, Xm) = x1q· · · · ·x,,/ (complex multiplication) 

provides a G-invariant map of type q, where q is any integer, irrespective of the 
choice of G. Thus k = 1 if n = 1. 

The cases of chief interest appear to be those in which G is the full symmetric 
group or the group of cyclic permutations. In the former case we refer to a G
invariant map as a symmetric function of m variables, and in the latter case 
as a cyclically symmetric function. Clearly, a symmetric function is G-invariant 
for any permutation group G on the same number of variables; in particular, 

1 Variable, in the present context, means a variable point of S". 
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it is cyclically symmetric. Moreover, by fixing some of the variables ,ve obtain 
a symmetric function of that many fewer variables. Thus we have immediately 

THEOREi\f 1.3. To a symmetric function of m variables on Sn there correspond 
symmetric functions on Sn of the same type for every number of variables less than 11i. 

In the case of symmetric functions, therefore, it follows that k in 1.2 is a 
monotone non-decreasing function of m, the number of variables. I do not know 
whether k ever decreases as n, the dimension, increases. We shall prove 

THEOREM 1.4. Let G, in 1.2, be the cyclic group of order p, where p is prime. 
Let n > 1. Then k is a multiple of p. 

Hence, and from 1.3, we obtain 

CoROLLARY 1.5. Let G, in 1.2, be the symmetric group of degree m. Let n > 1. 
Then k is divisible by every prime number which does not exceed m. 

We obtain from 1.5 a lower bound on the value of k in the case of the sym
metric group. An upper bound can be obtained by the methods used in [3] for 
the case of two variables. It seems to be difficult to determine le exactly, even 
in the case of S3• 

2. The symmetric product 

Let K denote the m-fold cartesian product S" X · · · X Sn X · · · X S", 
and let L denote the space which is obtained from K by identifying points which 
correspond under permutations of the factors, i.e. let L be the m-fold symmetric 
product of sn. We embed S" in L so that X - v(x, e, ... 'e), where X € sn and 
v:K - Lis the identification map. The integral homology groups of the sym
metric product have been studied by Richardson in [5]. It is found by his methods 
that m!Hr(L, Sn) = 0 if r ~ n. Hence we obtain by means of the universal co
efficient theorem for cohomology, 

LEMMA 2.1. Let n be odd, and let G be a finitely generated abelian group. Then 
m! Hr(L, Sn; G) = 0 if r > n. 

Let L be triangulated as in [5], so that sn is a subcomplex, and let L" denote 
the r-skeleton of L. We use 2.1 to prove 

LEMMA 2.2. Let r > n, where n is odd, and let m > 1. Suppose that we have a 
map h:Lr-I - Sn. Then there exists a map h':Lr - Sn whose degree on Sn is 
equal to the degree of h on Sn multiplied by 2m ! 

For let a denote the characteristic class of h in Hr(L, Sn; 11",_1(Sn)). Consider 
the endomorphism, u*, of 11"r-i(S") which is induced by a map of degree 2ml, 
u: sn - S". Since m ~ 2, 2m! is divisible by four, and hence u*(/3) = 2m!{3, 
by 6.7 of [1], where /3 e 71",_ 1(Sn). Therefore ull(a) = 2m!a, where u# denotes 
the coefficient endomorphism of Hr(L, Sn; 11"r-i(Sn)) which is determined by 
u* . Hence 1l#(a) = 0, by 2.1. But u#(a) is the characteristic class of uh, i.e. 
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the obstruction to extending uh I Lr- 2 U sn over Lr. Hence there exists a map 
h':L' - sn which agrees with uh on sn. This proves 2.2. 

We use 2.2 to prove 

THEOREM 2.3. Let n be odd, m > 1. Then there exists a symmetric function 
f: K -; sn whose type, q, is a positive integer which has no prime factors greater 
than m. 

For let g,, :L n -; Sn be an extension of the identity map on S". Then it follows 
by induction from 2.2 that there exists a sequence of maps On , gn+I , · · · , 
Or, · · · , where gr:L,.-; S\ such that the degree of gr on Sn is a positive integer 
with no prime factors greater than m. Let f = gmnV, where v:K -; L is the 
identification map. Then f has the stated properties. 

3. The cyclic product 

In this section we.prove 
THEOREM 3.1. Let n > 1 and let m = p, where p is prime. Suppose that we have 

a cyclically symmetric function f: K -; sn of type q. Then q is divisible by p. 
Let 111 denote the space which is obtained from K, the p-fold cartesian product, 

by identifying points which correspond under cyclic permutation of the factors, 
i.e. let M be the p-fold cyclic product of Sn. We embed Sn in M so that 

x-;w(x,e, ···,e), 

where x E S" and w: K -; M is the identification map. Since f is cyclically 
symmetric, a map g: lYI - sn is determined by f = gw, and g maps sn with 
degree q. 

In cohomology modulo p, consider the homomorphisms 

Hr(S\ Zp) ~ Hr(M; Zp) ~ Hr(Sn; Zv) 

which are induced by g and the inclusion map. Let a generate Hn(Sn; ZP). Then 
i*g*(a) = qa. If g*(a) ~ 0 then (P1g*(a) ~ 0, by 6.2 of [4], where CP1 denotes 
the cyclic reduced pmver homomorphism of Steenrod. But this is impossible, 
since (P1g*(a) = g*CP\a), by naturality, and <P1(a:) € Hn+2v- 2(S\ ZP) = 0. Hence 
g*(a) = 0, and therefore qa = 0. Hence q is divisible by p. 

4. Proof of the theorems of the Introduction 

We begin by recalling two theorems of Hopf from [2]. The type of a map 

g:Sn X sn-; sn 
is the pair of integers (t, t'), where t, t' are the degrees of the maps 

x-; g(x, e), x-; g(e, x), 

respectively, (x E sn). 

THEOREM 4.1. Lei n be even. Then there e.xists a map g: Sn X 8" -+ S" of type 
(t, t') ~f, and only if, t or t' is zero. 
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THEOREM 4.2. Let n be odd. Then there exists a map g: Sn X Sn - sn of type 
(t, t') ~f either t or t' is even. 

Let n be even and m ~ 2. Let f:K - Sn be a G-invariant map of type q, 
where G is arbitrary. Then a map g: S11 X sn - sn is defined by 

g(x, y) = .f(x, y, e, · · ·, e) (x, lj E Sn). 

Since g is of type (q, q), it follows from 4.1 that q = 0. Moreover, there exist 
G-invariant maps of type zero, such as the constant map. This proves 1.1. 

We shall now prove 2 1.2. If m = 1, 1.2 is obvious, so let m ~ 2, and let n be 
odd. Let A denote the set of integers q such that Sn admits a G-invariant map of 
type q. It follows at once from 2.3 that A contains non-zero integers. vVe have 

LEMMA 4.3. Let t and t' be integers, one of which is even. If a, a' E A then 

at+ a't' EA. 

For let f, j':K - sn be G-invariant maps of type a, a', respectively. Since n 
is odd and since t or t' is even, there exists a map g: sn X Sn - S 11 of type 
(t, t'), by 4.2. Let h:K - Sn be the map which is defined by 

h(z) = g(f(z), f'(z)) (z E K). 

Then his G-invariant, and it follows easily from considerations of homology that 
his of type at + a't'. This proves 4.3. 

Let k be the highest common factor of the non-zero integers in A, and let a 
be the least positive integer in A. I say that a = k. For otherwise A contains an 
integer a' which is not a multiple of a, and so there exists a positive integer b, 
less than a, such that either a' + b or a' - b is an even multiple of a. But then 
it follows from 4.3 that b EA, which contradicts the definition of a. Therefore 
a = k, hence k EA, and it follows that A consists of the multiples of k. This 
proves the first assertion of 1.2. The second part follows at once from 2.3 and the 
first part. 

Finally, 1.4 follows immediately from 1.2 and 3.1. This completes the proof of 
the theorems stated in the introduction. 
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