
LIMIT SETS AND PERIODIC ORBITS 

BY J. L. ARRAUT 

1. Introduction 

Let X be a metric space and Fa continuous flow on X (see §2). With each orbit 
'Y of the flow there is associated a subset A+ ( 'Y), called the positive limit set of 'Y. 

It is known that A+( 'Y) is a union of orbits. An open problem is to determine the 
orbital composition of A+( 'Y). The problem has been exhaustively studied 
for the case when the space Xis the euclidean plane R2, and the results related to it 
form the theory of Poincare-Bendixon. In the euclidean space Rn, with n ~ 3, 
or in general in a metric space, the problem becomes very difficult. Here we 
consider a partial aspect of it, say: Under what conditions does the set A +('Y) 
reduce to a periodic orbit? To deal with this partial problem we have introduced 
the concept of strong limit point ( see §3). We believe that we have found very 
general conditions under which the problem is solved; see Theorems 1, 2, and 3. 
Results related to this problem, as those of Borg (see [3]), can be shown to be 
contained, in a certain sense, in ours. In §5, we define the strong flows, and we 
show that they behave in a good way; for example, the theorems of Bohr-Fenchel 
(see [2]) and Poincare-Bendixon can be applied in these flows. In particular we 
show that any continuous flow on R2 is strong. 

This work is a resume of a doctoral thesis, developed under the direction of 
Dr. Carlos Imax at the Centro de Investigaci6n del I. P. N. I want to use this 
opportunity to express my gratitude to him. 

2. General concepts 

Throughout this paper X will denote a metric space, with distance d, R being 
the space of real numbers with the usual topology and R+(R-), the non-negative 
(non-positive) reals. The spherical neighborhoods with center at a subset A of X 
and radius o > 0, open and closed, are denoted respectively by S(A, o) and 
B(A, o). Every time we consider a subset A of X as a space, it should be under­
stood that it possesses the induced topology. 

A continuous flow or dynamical system is a map 1r:X X R - X which satisfies 
the two following conditions: 

F.l 1r(x, O) = x, x E X 
F.2 1r(1r(x, ti), t2) = 1r(x, t1 + t2), x EX, t1, t2 E R. 

From now on, we write xt in place of 1r(x, t). F.1 and F.2 then read: xO = x 
and ( xt1) t2 = x( t1 + t2). The continuity of 1r will in general be used in the following 
way: if { Xn} is a sequence of points of X such that Xn - x, and { tn} is a sequence of 
real numbers such that tn - t, then Xntn - xt. The following results easily from 
the definition of continuous flow: Let Xe (the initial condition) be a point of X 
and t0 , a positive number. For each E > 0 there exists o(t) > 0 such that 
d(x, x0) < o and I t I ;;£ to implies d(xt, Xot) < E. 
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In a continuous flow F on X we may distinguished two structures, one algebraic 
and the other geometric. The second is considered our basic object of interest. 

Algebraic structure. For each t E R, 1r induces a map ,r1:X-+ X given by 
11"1(x) = xt. Let us consider the collection {,rt}tER together with the operation 
composition of functions and suppose that t ;;,!at' implies ,r1 ;;,!: ,r1,. Then it is easy 
to see that the correspondence R-+ {,rt}tER given by t-+ ,r1 transfers isomor­
phically onto { 11"1} tER the additive group structure of R. It is a direct consequence 
of this that each ,r is a homeomorphism of X on X. From now on we will identify 
the group { 11"1} tER with R. 

Geometric structure. For each x EX, ,r induces a map ,r,.:R-+ X given by 
,r,.(t) = xt. Each ,r., is called a movement, and, coherently with this, the variable 
t E R is called time. The subset of X'Y(x) = ,r.,(R) = {xt:t E R} is called the 
orbit of x. It is easy to see that the collection {-y( x)} zEX of all the orbits forms a 
partition of X. Finally, observe that for every point x of a given orbit 'Y, the 
movement ,r,.: R -+ X is a parametrization of 'Y. 

Let x be a point of X and consider the action of R on it. Two cases are possible: 
( i) there exists to ;;,!a O such that xt0 = x; 

(ii) xt = x, if and only if t = 0. 
Analyzing case (i), we will finally arrive at the two following subcases: (i.l) 

xt = x for all t E R; i.e., 'Y(x) reduces to x. In this situation xis called a critical 
point. (i.2) There exists a minimum r > 0 such that x-r = x. Here xis called a 
periodic point and -r, the period. The orbit 7(x) is called periodic also, and it is 
easy to see that 7(x) is homeomorphic to the circle. 

In the case (ii), we obtain that the map ,r,.:R-+ Xis one-to-one on 'Y(x). 
This is properly the general situation. Sometimes the map ,r,.:R -+ 7(x) is a 
homeomorphism. 

LEMMA 1. Let x E X. ,r.,:R -+ 7(x) is a homeomorphism if and only if for 
every sequence { t,,} such that xt,, -+ x we have t,. -+ 0. 

Proof. The necessity of the condition is evident. To prove sufficiency we have 
to show that ,r.,-1 exists and is continuous. Let us Sll;ppose that xt = x; then t = 0 
follows by applying the hypothesis to the sequence {t,, = t}. Now let {t,,} be a 
sequence such that xt,, -+ xto . We want to see that t,, -+ to . From the continuity 
of ,ritfollowsthat (xt,,)(-to) -+xto(-to); i.e., x(t,, - to) -+x, thus t,,-+ t0• 

A subset A of Xis called invariant (under F) if x E A implies 'Y(x) c A. A 
property defined for points of X is called orbital if the set of points which satisfies 
it is invariant. • 

The set 'Y +(x) = {xt:t E R+} is called the positive semi-orbit of x. An orbit 
'Y(x) is £+-stable (positively stable in the sense of Lagrange) if the closure of 
'Y+(x) is compact. 

The (positive) limit set A +(x) of an orbit 7(x) consists of the points yE X 
such that there exists a sequence { t,,} c R+ with t,,-+ + oo and such that xt,, -+ y. 
A pointy E A +(x) is called a (positive) limit point of 7(x). 
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It is known that for any -y(x) the limit set A +(x) is closed and invariant. 
Besides, if -y(x) is L+-stable, then A +(x) is non-empty, compact, connected, 
and limt-++"" d(xt, A +(x)) = 0. 

A pointx E Xis (positively) recurrent ifx E A +(x). Observe that the property 
of being recurrent is an orbital property. The orbit -y(x) is also called recurrent. 

CoROLLARY (to Lemma 1). Let x E X. The map 1r,,:R - -y(x) is a homeo­
morphism if and only if x is neither positively nor negatively recurrent ( see [4]). 

If A c X and t ER, At will denote the set {xt:x EA}. A point x EX is 
called non-wandering if, for every neighborhood V(x) and every to > 0, there 
exists t ~ to such that V(x)t n V(x) = 0. It is clear that the property of being 
non-wandering is orbital. 

If A c X, -y(A) will denote the set U,,EA -y(x). An orbit -y(x) is called (posi­
tive) orbitally stable if for any e > 0 there exists B(x, e) > 0 such that 'Y +(S(x, B)) 
C S(-y+(x), e). 

LEMMA 2. Let -y(xo) be a L+-stable, orbitally stable, and non-wandering orbit. 
Then -y(xo) is recurrent; i.e., Xo E A +(xo). 

Proof. Let us suppose that xo is not recurrent. Since -y(xo) is £+-stable, A +(xo) 
is non-empty and compact. Then d(xo , A +('xo)) = a > 0. For the same reason, 
if e = a/2 there exists to such that -y+(xoto) C S(A+(xo), e/2). Now, since 
-y(xo) is orbitally stable for x0t*, with t* > t0 , and e/2 given, there exists 
B = B(xot*, e/2) > 0 such that-y +(S(xot*, B)) C S('Y +(xot*, e/2)) c S( A +(x 0), e). 
Finally, from the continuity of 1r1• we can determine a neighb'orhood S(x 0 , 'II) 

with 'II < e/2 such that S(xo, 'l!)t* C S(xot*, B). From this it follows directly that 
Xo is wandering. 

3. Local sections 

For the study of the geometric structure of a continuous flow in the neighbor­
hood of a regular point, the concept of a local section is useful. (The reader is 
refered to [5], pp. 332-38.) 

We will use the open and closed intervals (a, b) and [a, b] in the non-oriented 
sense: i.e., if a~ b, then (a, b) = {t E R:a < t < b}; if b ~ a, then (a, b) = 
{t E R:b < t < a}; etc. If x E X, the set x[a, b] = {xt E X:x E [a, b]} is called 
an arc of the orbit-y(x) with time length (b - a). Note that the time length of an 
arc may be a negative number. 

Let x0 be a point of X and B and a, two positive numbers. The set 

T = T(xo, 5, a) = B(xo, B)[-a, a] 

is called a tube of time length 2a over B(xo, B). A tube Tis a closed subset of X. 
In fact, let {Yn} be a sequence of points of T such that Yn - y* E X. From the 
definition of T we can write y,,. = x,.t,,., where x,. E B(xo, B) and -a ~ t,,. ~ a. 
The sequence {t,,.}, being contained in [-a, a], has at least one limit point t*, 
with -a ~ t* ~ a, to which a subsequence converges. Without loss of generality, 
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suppose that tn - t*. Then, by the continuity of 1r, Yn(-tn) - y*(-t*); i.e., 
Xn - y*(-t*). Now, since B(xo, o) is closed, we know that y*(-t*) E B(xo, o) 
and therefore y * E T. 

We say that S c T is a local section, or for short a section, of T if the following 
conditions are satisfied: 

l)S is a closed subset of X; 
2) to each point x E T there corresponds a unique number tx , with I t,, I ~ 2a, 

such that xtx E S and x[O, t,,] c T. 
The two following theorems (see [5], pp. 333-35 for the proofs) ensure the 

existence of tubes with a section. 

THEOREM I. Let xo E X be a regular point. Then, for a sufficiently small a > 0, 
there exists o > 0 such that the tube T ( Xo , o, a) has a section S which contains Xo . 

THEOREM II. Let Xo E X be a regular point. If a is any positive number and 
a < -r / 4 when Xo is periodic with period -r, then there exists o > 0 such that the tube 
T ( x0 , o, a) has a section S which contains x0 • 

Let T be a tube with a section S. The relation defined for points of T:x ,__, y, 
if and only if xtx = yty, is clearly an equivalence relation. It is easy to see that 
each element of the associated partition is an arc which has a unique point in 
common with S and whose time length is a number in the interval [-4a, 4a]. 
We say that x E Sis interior to S if xis an interior point of T. It is also easy to 
see that if x E S ( Xo , o), then xtx is interior to S. 

LEMMA 3. If Sis a section of the tube T(xo, o, a) and x[a, b] is any arc, then there 
are only a finite number of values oft, in the interval [a, b], such that xt E S. 

Proof. In fact, x[a, b] n Tis a disjoint union of arcs contained in T whose time 
lengths, with two possible exceptions, are contained in the interval [-4a, 4a]. 
Since each one of these arcs has exactly one point in common with s, the lemma 
follows. 

COROLLARY. A periodic orbit intersects a section S of a tube T in only a finite 
number of distinct points. 

LEMMA 4. Let S be a section of a tube T(xo, o, a). Then: 
i) the function T - [- 2a, 2a], which associates to each x E T the unique 

number t,, such that xtx E S and x[O, tx] c T, is continuous; 
ii) the function T - S, which associates to each x E T the point xtx E S, is 

continuous. 

Proof. Let { Xn} be a sequence of points of T convergent to x * E T. We are going 
to prove that the sequence tn = t,,n} converges to t* = tx• . Since { tn} c 
[-2a, 2a], we know that every limit point of {tn} is contained in [-2a, 2a]. 
Let t' be a limit point of { tn} and { tnk}, the corresponding subsequence. The 
continuity of 1r implies that Xnklnk - x*t'. Since Sis closed, then x*t' E S. Besides, 
it is clear that x*[O, t'] c T 1 Thus t' must be equal tot*. This proves that tn - t*. 
The proof of ii) follows easily from the continuity of tx and that of 1r. 



LIMIT SETS AND PERIODIC ORBITS 35 

4. The strong limit point 

Let 'Y(x) be an orbit, and suppose there exists a regular point x0 E A +(x). 
We then know that there exists a tube T(x 0 , o, a), with a section S, which con­
tains Xo . Our purpose is to obtain information about the orbit 'Y(x 0 ) by means of 
thestudyoftheset'Y+(x) ns (seefig.1). 

i!x 

LEMMA 5. Let x0 be a regular point of the limit set A + ( x) of a certain orbit 'Y ( x), 
and let S be a section through x0 . Then we have: 

i) 'Y+(x) n S = {xnl, where Xn = xtn with ltn} C R+ and tn -l- 00 
monotonically. 

ii] there exists a subsequence of {xn} which converges to xo. Besides, if x' 
is any other point of A +ex) interior to s, then there also exists a subsequence of { Xn} 
which converges to x'. 

Proof. Let S be the section of T ( Xo , o, a) through Xo . Since Xo E A+ ( x), 
for every t 1 > 0 there exists t > t1 such that xt E S ( Xo , o). Each one of the points 
xt E S(x 0 , o) determines a point xt' E S. Thus there exists an unbounded, infinite 
set of positive numbers t' such that xt' E S. Considering 'Y + ( x) as a denumerable 
union of arcs with time length Z, we see that, because of Lemma 4, the collection 
{ t'} can be ordered in such a way that the resulting sequence { tn}tends 
monotonically to + 00 and "/ + ( X) n S is exactly the sequence { Xn = xtn}. Part 
ii) of the lemma follows from the continuity of the function defined in part ii) 
of Lemma 4. 

DEFINITION 1. We say that a regular point Xo E X is a (positive) strong limit 
point of 'Y ( x) if the following two conditions are satisfied: 

1) x0 is a (positive) limit point of 'Y(x) (i.e., xo E A +(x)); 
2) there exists a section S through Xo such that the sequence { Xn} = 'Y + ( x) n S 

converges to Xo . 

Remark. If x0 is a strong limit point of 'Y( x), then we have associated with Xo 
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two sequences {xn} and {tn} which, we recall, are such that {xn} = "/(x) n S 
and Xn = xtn, with tn------)-+ oo monotonically, and Xn------)-x0 • From the sequence 
{tn} we derive the sequence { Tn = tn+l - tn} of positive numbers, where Tn us 

the time needed to go from Xn to Xn+l through the orbit -y(x); i.e., XnTn = Xn+l. 
The sequences {xn} and {rn} play a fundamental role in our study. 

PROPOSITION 1. If x0 is a strong limit point of 'Y ( x), then 'Y ( x0 ) is an open subset 
of /\ +(X). 

Proof. Let S c T(x 0 , o, a:) be the section throuith Xo that by hypothesis 
exists. Let us consider the unique arc of T, say x0[a, bl, that contains Xo . We 
state that S(xo, o) n /\ +(x) = xo[a, b]. If this is not the case, then we have a 
pointy in S(xo, o) n /\ +(x) but not in xo[a, b]. Now, y E S(xo, o) implies that 
ytv is interior to S; moreover, ytv ~ Xo and yty E /\ +(x). Thus, by Lemma 5, 
part ii), there exists a subsequence of {xn} which converges to yty. But this con­
tradicts the fact that x0 is a strong limit point of 'Y ( x) and proves that xo is an 
interior point of-y(x0) c· /\ +Cx). By continuity in the initial condition, it follows 
easily that each point of -y(x0 ) is interior, i.e., that -y(xo) is an open subset of 
/\ +(x). 

PROPOSITION 2. If x0 is a strong limit point of-y(x) and -y(xo) is not periodic, 
then the function 1Tx 0 :R------)--y(xo) is a homeomorphism. 

Proof. Since the regular point Xo is not a periodic one, then 'll'xo is one-to-one. 
It remains only to show that 'll'x0- 1 is continuous. Let {tn} c R be a sequence such 
that x0tn------)-x0 ; then there exists N(positive integer) such that n ~ N implies 
x0tn E x0[a, b] (see the proof of Proposition 1) and, therefore, {tn} C [a, b]. 
By the continuity of 'lT it follows easily that tn------)-0. Applying now Lemma 1, we 
obtain that 7fx 0 is a homeomorphism. 

PROPOSITION 3. Let Xo be a strong limit point of-y(x), and suppose that -y(x) is 
L+-stable. Then, if -y(xo) is periodic, /\ +(x) = -y(xo). 

We recall that if -y(x) is L+-stable, then /\ +(x) is connected. Now, since 
-y(xo) is periodic, we know that -y(x0) is a closed subset of /\ +(x). Besides, by 
Proposition 1, 'Y ( x0) is an open subset of /\ + ( x). But this is possible if and only 
if /\ + ( X) = 'Y ( Xo). 

Remark. Let -y(x) be an L+-stable orbit, and suppose Xo is a strong limit point 
of 'Y ( x). Then Propositions 2 and 3 tell us that there are, topologically speaking, 
two possibilities only for -y(xo): either -y(xo) is homeomorphic to R (the homeo­
morphism being given by 1Tx 0 ), or -y(x0 ) is homeomorphic to the circle (is periodic) 
and, in this case, /\ + ( x) = 'Y ( xo). We are interested in this second case. The 
following theorems refer to it. 

THEOREM 1. Let x0 be a strong limit point of 'Y ( x), ancl suppose that 'Y ( x) is 
L + -stable. Then the following statements are equivalent: 

A) -y( x0) is a periodic orbit and /\ + ( x) = -y( xo) ; 
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B) the sequence { T n = tn+l - tn l is bounded; 
C) x0 is (positively) recurrent (i.e., x0 E A+ ( x)). 

Proof. Since xo is a strong limit point of 'Y ( x), there exists a section S through 
Xo of certain tube T(xo' o, a), such that 'Y +(x) n s = {xn}, where Xn = xtn' 
tn - + oo monotonically, and Xn - Xo. A=> C is obvious. 

B =>A.Since by hypothesis the sequence { Tnl is bounded, then it has at least a 
limit point r ( clearly r > 0) to which a subsequence { Tnkl converges. Now, by the 
continuity of 7f', we have that Xnk'Tnk - Xo . But XnkTnk = Xnk+l' and Xnk+l - Xo . 
Thus Xor = Xo ; i.e., 'Y(Xo) is a periodic orbit. Moreover, it follows from Proposition 
3 that A +ex) = 'Y(Xo). 

C => A. Since Xo is (positively) recurrent, given t1 E R+, there exists ti' > t1 

such that xoti' E S ( Xo , 15). To the point x0ti' there corresponds under the function 
tx a point Xoio interior to S. It follows that xoto = Xo , since otherwise x0 would not 
be a strong limit point of 'Y ( x) ( see part ii of Lemma 5). Moreover it follows from 
proposithon 3 that A +ex) = 'Y(Xo). 

A=> B. Let r be the period of 'Y(x0). Given E > O(E < o), there exists 11 < E 

such that d(x, xo) < 11 implies d(XT, Xor) = d(xr, Xo) < € ( this follows from the 
continuity of 7f'). Since Xn - Xo , from certain N (positive integer) on, 
Xn E S(xo, 11) and, therefore, d(Xn'T, Xo) <€.The map r-s associateswithXnT a 
point XnTn' E S, where clearly rn' - T - 0 and, therefore, {rn'l is bounded. On 
the other hand since 'Y+(x) n Sis exactly the sequence {xnl, we must have 
Tn ~ Tn1 for each n ~ N. This proves that { Tnl is bounded. 

THEOREM 2. Let 'Y ( x) be an L + -stable orbit. Then A + ( x) consists of a unique orbit 
which is periodic if and only if each point of A + ( x) is a strong limit point of 'Y ( x). 

Proof. Suppose that A +ex) = 'Yo and that 'Yo is periodic with period T. Let Xo be 
any point of 'Yo. We want to see that x0 is a strong limit point of 'Y(x). By the 
Corollary to Lemma 3, we know that if Sis a section through x0 , then 'Y(x0 ) n S = 
A + ( x) n S consists of a finite number of distinct points and, because of Theorem 
II (of §3), we can select the section Sin such a way that 'Y(x0 ) n Sis exactly the 
point Xo. Let us consider now the sequence {xnl = 'Y +(x) n S. We state that 
Xn - x0 • If this is not the case, then, since 'Y ( x) is L + -stable and S is closed, { Xn) 
has a limit point x0' ¥ x0 , with x0' E A+ ( x) n S. This proves that x0 is a strong 
limit point. 

Suppose now that each point of A+ ( x) is a strong limit point of 'Y ( x). Let 
Xo E A +ex). By Proposition 1 we know that 'Y(Xo) is an open subset of A +ex). 
We are going to show that 'Y ( xo) is also a closed subset of A + ( x) . In fact, if this is 
not the case, we have in A +(x) a limit point xo' of 'Y(Xo) with xo' i 'Y(x0). Btit 
now any section S through xo' contains in its interior points of 'Y(x0), and this 
contradicts the fact that xo' is a strong limit point of 'Y(x). Thus -y(x0 ) is closed ,in 
A +ex). Now, since A +ex) is connected, A +ex) = 'Y(Xo) and 'Y(Xo) is periodic as 

well. 
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Example l. Let F be a continuous fl.ow in the plane R 2• Let P E R 2 be a critical 
point and -y(xo), an orbit such that A +(x0) = A -(xo) = {P}. Finally, let -y(x) 
be a spiral orbit such that A +(x) = -y(x0) U {P} (see fig. 2). 

In this example the orbit -y(x) is L+-stable, and Xo is a strong limit point of 
-y(x). The orbit -y(xo) is not periodic, and therefore it is homeomorphic with R 
(cf. Prop. 2). Observe that none of the statements A, B, or C of Theorem 1 is 
satisfied. Finally, as P is critical it can not be a strong limit point of 'Y ( x) ( cf. 
Th. 2). 

Example 2. Let F be a continuous fl.ow in the space R 3• Suppose that there exists 
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an invariant torus M which contains a periodic orbit -y1 and is such that, for every 
point x E M, A + ( x) = A -c x) = -y1 . Finally, suppose that there exists x E M 
such that A +ex) = 'Yo U 'Yl (see fig. 3). 

X 

Here, 'Y ( x) is L + -stable and each point Xo of 'Yo is a strong limit point or 'Y ( x). 
The orbit -y(xo) is not periodic and therefore is homeomorphic with R ( cf. 
Prop. 2). None of the statements of Theorem 1 is satisfied. Finally, no point of 
-y1 is a strong limit point of 'Y ( x) ( cf. Th. 2). 

THEOREM 3. Let 'Y ( x) be an L + -stable orbit. Suppose that there exists x0 E A+ ( x) 
which is a strong limit point of-y(x) and is such that -y(x0 ) is (positively) orbitally 
stable. Then-y(xo) is periodic, and A +(x) = -y(xo). 

Proof. Let s be a section through Xo such that 'Y + ( X) n s = { Xn) , where Xn = xtn ' 
tn - + oo monotonically, and Xn - x0 (see Definition 1). Let {tnk) be a subse­
quence of { tn} constructed by the property that tnk - tk > k. The sequence 
{ 'T nk = tnk - tk) is, by construction, such that 'T nk - + oo. Now since Xk - Xo, 
'Tnk - + oo, and Xk'Tnk = Xnk - Xo, we have that Xo is non-wandering. Applying 
now Lemma 2 we obtain that Xo is positively recurrent. The theorem follows from 
C ⇒ A in Theorem 1. 

5. Strong flows 

In §4 we defined the (positive) strong limit point of an orbit. It is clear that we 
can analogously define the (negative) strong limit point of an orbit. Let us now 
define a more restrictive concept which will permit us to define a special kind of 
flows. 

DEFINITION 2. Let F be a continuous flow on X. We say that a regular point 
x0 E Xis a strong limit point ( with respect to F) if it is the limit point of some orbits 
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and if, for every orbit -y(x) such that xo E A +(x) (xo E A -(x) ), we have that xois 
a positive (negative) strong limit point of 'Y ( x) . 

DEFINITION 3. We say that a continuous flow F on X is strong if each limit point 
which is not critical is a strong limit point ( with respect to F). 

The three following theorems refer to a strong continuous flow F on X. They 
will follow easily from Theorems 1, 2, and 3 of §4. 

THEOREM 4. Let F be a strong continuous flow on X. If xo E Xis (positively) re­
current, then Xo is periodic. 

Proof. By hypothesis, x0 E A +(xo) and, therefore, x0 is a (positive) strong limit 
point of 'Y ( x). The proof follows now as in part C ==> A of Theorem 1. 

THEOREM 5. Let F be a strong continuous flow on X, and let 'Y ( x) be an L + -stable 
orbit. If A + ( x) does not contain critical points, then A + ( x) consists of a unique 
orbit 'Y which is periodic. 

Proof. Since, by hypothesis, A +(x) does not contain critical points, then each 
point of A +(x) is a (positive) strong limit point of -y(x). The proof follows now as 
that of the sufficiency of Theorem 2. 

THEOREM 6. Let F be a strong continuous flow on X. Suppose that -y(x) is an 
L + -stable orbit and that there exists a regular point Xo E A + ( x) such that 'Y ( x0) is 
(positive) orbitally stable. Then -y(x0) is periodic and A +(x) = -y(xo). 

Proof. The point Xo is regular, and so it is a (positive) strong limit point of 
-y(x). The proof is now the same of that of Theorem 3. 

Remark. If F is a strong continuous flow on the plane R2, then the Theorems 4 
and 5 are known as theorems of Bohr-Fenchel (see [2]) and Poincare-Bendixon, 
respectively. We can say then that, for a strong continuous flow on a metric space 
X, the theorems of Bohr-Fenchel, Poincare-Bendixon, and Thebrem 6 as well 
apply. 

In relation to the plane R2, we are going now to prove that any continuous flow 
on it, is strong. Let F be a continuous flow on R2 • In order to prove that Fis 
strong, it is enough to prove that if x0 E R2 is a positive (negative) limit point of 
-y(x) and x0 is not critical, then x0 is a positive (negative) strong limit point of 
-y(x). S\lppose for a moment that we have shown the following: for every regular 
point x0 E R2 there exists a section S through xo such that S is a simple arc, i.e., 
the topological image of the closed interval [O, 1]. Then, by using classical argu­
ments of the Poincare-Bendixon theory, it is easy to prove that if Xo (regular 
point) is a (positive) limit point of-y(x), then the sequence {xn} = 'Y+(x) n S, 
where Sis a simple arc, converges to Xo ; i.e., xo is a (positive) strong limit point of 
-y(x). Thus in order to prove that every continuous flow on the plane is strong 
we have to establish the existence of sections which are simple arcs. 

Let A c R 2 be a connected set. x E A is a cut point if A - { x} is not connected. 
A c R2 is a continuum if it is compact, connected, and contains at least two 
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points. A subset L of B(x
0

, o) c R 2 is a crosscut of B(x
0

, o) if Lis a simple arc 
such that all its points, with the exception of the two ends which belong to the 
frontier, are contained in S(xo, o). It is easy to see that a crosscut decomposes 
B(x 0 , o) in two connected components, each one of which is a 2-cell. The follow­
ing theorem characterizes a simple arc (see [6], Chap. IV): 

THEOREM. A continuum A c R2, with the property that all its points, with two 
possible exceptions, are cutpoints, is a simple arc. 

PROPOSITION 4. Let F be a continuous flow on R 2• Then, for any regular point 
x0 E R2, there exists a section S which is a simple arc ( see fig. 4). 

Proof. Let Xo be a regular point and S, a section of a certain tube T(xo, l'i, a). 
Since the function T --+ S is continuous and the image of B ( x0 , o) is S, we know 
that Sis a continuum. Let S1 be the connected component of S n B(xo, l'i) which 
contains xo . We are going to show that certain subset S * of S1 is a simple arc. It 
is easy to see that every point x E S(x 0 , l'i) determines a crosscut L., of B(x 0 , /'i). 
Let B' and B" be the two components of B(xo, l'i) given by the crosscut Lx0 , 

and let si', si" be the intersections of S1 with B' and B" respectively. It is clear 
that si' and si" are non-empty. Let us take x' E s' 1 and x" E si". The two cross­
cuts L.,, and £.,, determine a 2-cell D whose frontier consists of L.,, and £,,, and 
two simple arcs contained in the frontier of B(xo, o). Lets* = S1 n D. If Xis a 
point of S * different from x' and x", it is clear that the crosscut Lx disconnects D 
and, therefore, also s*. This proves thats* is a simple arc. 

CENTRO DE INVESTIGACI6N DEL Ip N, MEXICO, D.F. 
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