DIFFERENTIABLE NORMS

By GuinLErmo RESTREPO

1. Introduction

A formal theory of manifolds modeled on general Banach spaces has been de-
veloped by S. Lang [6]. A fundamental tool in the study of manifolds modeled on
finite dimensional spaces—at least in its geometrical aspects—is the existence of
partitions of unity, say of class C* for p = 1. The construction of partitions of
unity, say of class C” for p = 1, is still possible in the case of manifolds modeled on
separable Hilbert spaces (see [6], p. 30). This construction is based on the exist-
ence of an equivalent norm of class C* in a Hilbert space. A systematic study of
partitions of unity in infinite dimensional manifolds is to be found in [9]. In this
paper we study the problem of existence of equivalent differentiable norms in
Banach spaces. The main result is Theorem 3: A separable Banach space admyts
an equivalent norm of class Cy if and only if its dual is separable. This result has
been announced in [10].

2. Differential calculus in Banach spaces

The results stated and proved in this section are to be found in [4]. They are
included for ease of reference. . '
" Let (X, &) and (Y, 8) be Banach spaces. Let A < X be an open set, and let
f:A — Y be continuous. We say that f is differentiable at z, € A if there exists a
linear map u(xo) : X — ¥ such that

lim BU (@) — f(@0) —u(w)- (2 — @) _ o
Tz a(r. — x0)

T
We say that f ¢s differentiable on A if f is differentiable at each point z € A. The
linear map u(z):X — Y is called a differential of f at «. If f is differentiable at
29 € A, we will write h(z, o) = f(x) — f(z) — u(z0) - (x — xo). Thus, if f is
differentiable at o , 8(h(x, 20))/a(x — ) — 0 as x — x, and
f(@) = f(x) + u(xo)-(x — 20) + h(z, o).
The definition of differential depends only on the topologies of X and Y.

Prorosition 1. If f is differentiable at x, , then f has a unique differential, de-
noted by f (), given by

(@ + ) — f(xo)
. .

(@) -z = lim

| %

Proof. h(ze + M, zo)/A = [f(®e + A\o) — f(@) — A-f (@) (2)]/A, and
limyo [f(zo + Az) — f(@0)]/N = f'(20) .
47
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PrOPOSITION 2. If f is differentiable at zo , then f'(20) is a continuous linear map
from X into Y.

Proof. By definition f'(w,) is linear, so we have to prove only continuity at ..
From the definition of h(z, x) one has B(f (o) - () — f (@) -20) = B (20)-
(x — ) Bz — f-20) + B(h(x,20)). Let e > 0, and find 0 < 3(e) < 1 such
that 8(f(z) — f(x)) < ¢/2 and B(h(z, xo)) < €/2a(x — ) if a(x — o) < 8(e).
Then B(f (20) - — f () -%0) < e€if a(x — @) < 8(e). This concludes the proof.

If X1, o), -+, (Xa, a,) are Banach spaces, then X; X X, X --- X X, be-
comes a Banach space if we define a(x1, -+ ,2,) = Sup (@1(z1), - - -+ , an(xs) ).

ProrositioN 3. Let (X, a) and (Y, 8) be Banach spaces. Then,
1) if A < X is open and f:A — Y is a constant, f (a) = 0 for each a € A;
2) if f: X — Y 1s a continuous linear map, f is every where differentiable and
f'(z) = ffor each x € X.
3) if (X1, o), (X2, a2) are Banach spaces and f:X1 X Xo — Y is a con-
tinuous bilinear map, f is everywhere differentiable and f'(zy, x2)-(t1, t) =

f(zy, &) + f(t, ).
Proof. The proof follows from Proposition 1.

Prorosition 4. Let (X, Y, Z) be Banach spaces, and let A € X and B C Y
be open seis. Let f:A — Y be differentiable at a € A, and let g be differentiable at
f(a) € B. Then g-f:A — Z is differentiable at a € A, and (g-f)'(a) = ¢'(f(a))-
f(a). J

Proof. See [4], page 145.

Let (X, @) and (Y, 8) be Banach spaces, and denote by £(X, Y) the linear
space of all continuous linear maps from X into Y. The norms o and 8 define a
norm || % || = Supaw <1 8(u-z) in £(X, V). Denote by £,.(X, Y') thespace of all
continuous multilinear maps from X; X X X --+ X X, , where X3 = --- =
X, = X, into Y. Then there is a natural isomorphism between £5(X, ¥) and
£(X, £(X, Y)). Inductively, one could define a natural isomorphism between

(X, Y)and £(X:,L(Xe, -+ ,L8(Xs,Y)),where X; = Xo = --- = X, =X.
We recall that £:(X, Y) %N £(X, £(X, 7)) is defined by (h(u)(z1))(x2) =
u,(a:l, xz).

Let X and Y be Banach spaces; let A C X be an open set; and let f14 — ¥V
be continuous. We say that f is of class C* is f'(a) exists for each a € A and the
map f:A — £(X, Y) is continuous. Inductively, we say that f is of class C?,
p = 1iff""):4 — £, 4(X,Y) isof class C*, and we write f? = (f*)".

ProrosiTioN 5. Let X and Y be Banach spaces; A C X, an open set; and
fiA — Y, amap of class C*, p = 2. Then the multilinear map (1,82, -+ ,1,) —
FP(a)-(t,ta, -+, tp) is symmetric for each s € A;thatis,f®(a)(tr, -+ ,tp) =
FP(@) (tey , =+ * 5 totmy) for any permutation o of the set of indices {1,2, -+ , p}.
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Proof. See [4], pages 176-77.

Prorosirion 6 (Taylor’s formula). Let X and Y be Banach spaces; A C X,
an open set; [x, x + t], a segment contained in A; and f1A — Y, a map of class
C” p = 1. Then,

4 (2) (p)

flx+1) =flz) +f;:f)t+f 2(’96)_t(2) 4o +f : e +0(2),
! ! p!

where t™ = (&, -+ ,ta), o=+ =ty = t, and 6(t) satisfies lim,.o 8(t)/|| t||” =0

(I |l és the norm in X).

Proof. See |6], page 186.

3. Differentiable norms

In this section we will always talk about continuous norms in a Banach space
X. A norm B: X — R is said to be differentiable, or of class C*, p = 1,if 8: X —
{0} — R is differentiable, or of class C®. In particular, we will sometimes talk
about differentiability at a point, or of a norm’s being of class C” at a point.
An inner product norm is any continuous norm derived from an inner product.

ProrosiTiOoN 7. Assume that 8 is an inner product norm. Then B is of class
C” and B'(z)-u = (z-u)/B(z).

Proof. Letf(z) = (z-z)?andf(z) = z-z; andlet d: X — X X X be defined
by d(z) = (z, z). Clearly d is a continuous linear isomorphism. The map
g(t) = % is of class C” except at ¢ = 0, s0 8 = g-f-d is of class C°. A simple
argument shows that g'(z)-u = (z-u)/8(x).

ProrosiTion 8. Let (X, «) be a separable Banach space. Then there is a con-
tinuous norm of class C* defined in X (in general, of course, not equivalent to o).

Proof. Let {f;} be the sequence in X™ such that «*(f;) = 1, for all j, and
fi(z) = 0, for all 7, imply z = 0. Define T: X — by T-2 = (f;-). Then p(z) =
|| Tz |22 is & continuous norm of class C*, since it is the composition of a linear
map 7' and an inner product norm || [z

Prorosition 9. If a norm B in (X, a) is differentiable at each point x € Sp,
then B is differentiable and 8'(\z) = B'(x) for each real A > 0.

Proof. Since A > 0, then

80w + u) — B0) — F@)- () _° <x + ;_4> — 8le) — F(@): (%)

©)

Since the second term of the equality approaches zero as 4 — 0, it follows that

B (z) = B ().
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4. Smooth norms

A linear space with a topology defined by a norm « will be written (X, o)
and the dual space, (X*, a*). Let 8 be a continuous norm in X, and let S5 =
o] B(x) = 1.
i) f € X* is a normalized support functional at & € Sg if «™(f) = 1 and
supgg)=1.f-y = f(x).
ii) B is smooth if there is a unique normalized support functional at each
iii) Bis rotund if Sg contains no line segments.
The following proposition is well known.

Prorosrrion 10. Let (X, a) be a normed space, and let 8 be a norm equivalent
to a. Then,
a) if ,3 is rotund, 8 is smooth
b) if g*is smooth B is rotund.

" Proof. a) Assume that 8 is not smooth Then, for some xz, € S, , there are two
normalized support functionals f1 and fe at z,, and (fi 4+ f2)/2 would also be a
normalized support functional at z,. This is a contradiction because 8* is
rotund. ,

b) Assume that 8 is not rotund. Then, for some x,, 21 € S, x: = txr1 +
(1 —t)zo € 85,0 =t = 1. By the Hahn-Banach theorem, there is a normalized
support functional f such that f-z, = 1 for all0 < ¢ = 1. But then z; would be a
normalized support functional at f for all0 = ¢ < 1. This is a contradiction, since
B* is smooth.

ProrosiTioN 11. a) A conttnuous norm B is smooth if and only if 8 s smooth
in any planar section through the origin.

b) A continuous norm B is rotund if and only if, for any x, , x, such that B(z,) =
B(xs) = 1, one has B(x1 + 42)/2 < 14f &1 = 2.

Proof. The proof is indicated in [3]; we give it here for completeness.

a) Assume that o is smooth. If « is not differentiable in some planar section
P, then P N 8, is a convex curve in a plane having two tangents, say 1 and y. ,
at some point z € P N S, (assume that a(y1) = a(ys) = 1). Define fi:P — R
by fi(y:) = 0, fi(x) = 1, and fi(\y: + px) = pfi(x), ¢ = 1, 2. By the Hahn-
Banach extension theorem, f; has an extension g; such that a*(f.-) = a*(g:),
i=1,2Iz=N:+uzand a(z) = 1,then |p| £ 1580 |fi-z| = |[u] =1
and o*(f;) = 17 = 1, 2. Therefore g , g» are two different support functionals at
x. This is a-contradiction. The other part of the proof is trivial. ‘

b) Assume that a is rotund. If a(2: + 22)/2 = 1, then (x; + z:)/2 would be a
boundary point of B, . Since « is rotund, a(tr; + (1 — t)z:) < 1, for at least
one0 <t <1(say: <t<1). Thusz =iz + (1 — t)x.is an interior point;
so a small neighborhood U about 2 is contained in B, . The cone (z; , U] is con-
tained in B, by convexity, and (21 + z.)/2 is an interior point of it; therefore,
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(x1 + 72)/2 is an interior point of B, . This is a contradiction. The other part of
the proof is trivial.

ProposrrioN 12. Let (X, o) be a normed space, and assume that 8 is o norm
which ¢s continuous and smooth (perhaps not equivalent to o). Then the map
v:8g — Sgsx which assigns to each x € S, the unique normalized support functional
v(x) s continuous if the B-topology is considered in Sz and the w*-topology is con-
sidered m Sﬁ* .

Proof. Let z € Ss, and let (z,) (where n is in a directed set D) be a net con-
verging to z. Then (»(x,)) is a net in Bgsx which converges to »(x), as we will
show next. If we assume that (v(z,)) does not converge to »(x) = f, then thereis
3 neighborhood U(f) (in the w*—topology) such that for each m € D there is
some m’ € D with the property m’ = m and »(zn) ¢ U. The subnet (»(Zm))
has a subnet (stﬂl denoted by (v(zn.s))) which converges to some g € Bgx,
because Bgs is w -compact and g ¢ U Now | #(Zm) * (Tmr — ) | = | v(Tmr) *Tonr
- V(xm') $| Il — »(Tw)x =B (V(xm ) B(xmf — ) = B(Tw — ) - 0;
therefore, lim »(%n)-2 = g-o = 1, and ¢ is a normalized support fynctional
at z different from »(z). This is a contradiction because 8 is smooth. =~

 Remark. Since the g-topology is weaker than the a-topology, » is also con-
tinuous if we consider the a-topology in X. :

TrEOREM 1. (Klee, [5]). Assume that both (X, a) and (X*, ) are separable
Banach spaces Then there exists a conjugale norm g* equivalent to a such that,
1) B* is rotund;
: 2) if f. converges to f in the w -topology and B8*(f.) — B*(f),then
5. Differentiability and smoothness

ProposrrioN 13. Let (X, a) be a Banach space, and let B be a differentiable
norm (perhaps not equivalent to a). Then B is-smooth and, for any = € Sg, B'(z)
18 a support functional. o

Proof. Let x ¢ Sg, and let P be any plane containing x and the origin. Then
the equation of the curve Pl Ss near z is of the form A(¢) = w(t)/B(u(?)),
where u(t) = ¢t + (1 — t)zo, B(z1) = B(x) = 1, and A(¢) = =z, for some
0 <t < 1. Therefore 8 is smooth in any planar section through the orlgln and 8
is' smooth by Proposition 11.

The second part of the proposition follows from the fact that, for any u w1th
B(w) <

8 (2) u = lg?ﬁ(m + Au)? B(z) < lim B(wu) - B(u) < 1

sru,rbldﬂ'(x)«m =1
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Prorosition 14. Let (X, o) be a Banach space, and let 8 be any continuous norm
i X (perhaps not equivalent to a). Assume that
a) B 1is a smooth norm;

b) Hm |v(xo)(y — 11«‘0)‘ =0

> — I ?
ﬁ?y)ﬁl :8(?/ 0)

where v(xo) s a support functional at zo such that B*(v(20)) = 1. Then B is dif-
ferentiable at zo and B (z0) = »(o).
Proof. We have to prove that

vz a(y — To) h
Y#T(

)

where h(y, o) = B(y) — B(xo) — »(x0) - (¥ — %0). We observe first that we have
to prove only that limy.., | A(y, o) |/B(y — 20) = 0, since | h(y, zo) |/a(y — x0)
= [| h(y, o) |/B(y — 0)]-[B(y — o) /a(y — 20)], and B(y — 20)/a(y — ) = M
for some positive econstant M. Let f = »(z,), and consider the following three
cases.

(a) Case f(y) = 1. Let r(y) = y + (1 — f(y))z be the projection of ¥ on
F7(1); then B(r(y) — y) = f(y) — 1 = fly — ). Let 2(y) = y/B(y) and
d'(y) = y/f(y);then B(y) — B(m) = By — 2(y)) 2 By — 2(y)) = B(y — ¢(¥)
= B(y — r(y)). Thus |B(y) —B(x) — f(y — x0) | = By — 2(y)) —
B(y — r(y)). If y is restricted to a small neighborhood around z,, then p(y) =
y + \-xo satisfies B(p(y) = 1, for some real \. Then, for any y in such neighbor-
hood, B(y — 2(y)) = B(y — p(y)) and |B(y) — B(w) — f-(y — =) | =
By — p(y)) — By — r(y)) = B(p(y) — r(y)). Thus

n | Ry, 20| _ Bp(y) — r(y))  B(r(y) — a)
By —a0) = BOG) —a) Bl —a@)

Since B(y — r(y)) < B(y — @), it follows that B(r(y) — @) — B(y — &) <
By — r(y)) = B(y — m), and

B(r(y) — o)
? - S

On the other hand 8(p(y) — r(y))/B(r(y) — ) = B(p(y) — r(¥))/| B(p(y) —
z0) — B(p(y) — r(y)) | = 6(y)/| 1 —0(y) |, where 6(y) = B(p(y) — r(y))

/B(p(y) — o) and B(p(y) —r(y)) = [f-(p(y)— %) |. The map y — p(y) is
continuous and thus, by condition (2) of the theorem 8(y) — 0 as y — x,.

Therefore, 8(p(y) — r(y))/B(r(y) — %) — 0 as y — x,. The result now
follows from (1) and (2).

(b) Casef-y < 1 and B(y) = 1. We keep the notation used in (a). The con-
ditions of (b) imply B(r(y) — y) = 1 — f(y) = —f(y — ). Thus | B(y) —
B(xo) — f-(y — x) | = B(y) — B(x) + By — r(y)) = By — 2(y)) +
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Bly —r(y)) =By — p(y)) + By — r(y)) = B(r(y) — p(y)). From here on
the proof proceeds as in Case (a).

(e¢) Casef-y < 1andB(y) = 1. Again we keep the notation of Case (a). Then
B(y) — B(w) = —B(y — 2(y)), and B(y — 7(y)) = —f(y — x); moreover,
By — 2(y)) = —B(y) + Bp(y) = By — p(y)) = B(y — r(y)). Thus
[8(y) — B(xo) — f-(y — x0) | = —B(y — 2(y)) + By — r(y)). Let s(y) =
2(y) + (1 —f-2(y))xo s then B(s(y) — 2(y)) = 1 — f-y/B(y) and B(y — r(y)) —
By — 2(y)) = B(y) — f(y) = B(s(y) — 2(y)). From now on the proof pro-
ceeds asin Case (a). | B(y) — B(wo) — f+(y — x0) |/B(y — 20) = B(s(y) —2(y))/
Bly — m) = [B(s(y) — 2(y))/B(2(y) — o)l [B(2(y) — 20)/B(y — @)]. Now,
B(a(y) — x0)/Bly — x0) = [B(y — 20) + By — 2y))/B(y — @) = 1 +
[B(x0) — B(y)/B(y — m)] = 2, for all y £ xo ; moreover, B(s(y) — 2(y)) =
| 7(2(y) — =) |, and the map y — 2z(y) is continuous. Therefore, by condition
(2) of the theorem,

.| 8(y) — Blm) — f-(y — x)| . B(s(y) — 2(y))
o By — 20 =2 and A ) — @)

From the considerations in (a), (b) and (c), it follows that limy.., [ A(y, %) |/
B(y — xo) = 0. This concludes the proof.

= 0.

Let (X, a) be a Banach space, and let 8 be a norm equivalent to a. For each
x € Sg, v(x) is a support functional at z for which 8*(»(z)) = 1.

TueoREM 2. Let (X, a) be a Banach space, and let B be a smooth norm equivalent
to a. Then
a) if viSs — Spx ¢s continuous (in Sg we consider the a-topology and in Spx
the a*-topology y), then B is différentiable;
b)t if B is differentiable, then v is continuous.

Proof. a) Let 2y € Sp, and let € > 0. Then there exists 6 = 6(e, x,) such that
B*(v(z) — »(xo)) < €

whenever
(1) Blx — x0) <8, and x, 2 € Ss.

Let us construct a ball Bs(2o , r) small enough that if yo € Bs(zo, r) N Sg and
0(t) = xo(1 — &) + tyo, 0 = ¢ = 1, then the curve y(¢) = 0(¢)/8(8(%)) is con-
tained in Bg(zo ,8) N Ss . Since g is continuous, there issome 0 < n < 8/2 such that
[B8(2) — B(wo) | < 8/2 if B(z — ) < 7n. Let U = {z|B(z — m) < nand
»(29) -2 = 1}, and consider the cone C(U) = {&z|¢t > 0 and z € U}. Then
C(U) N 8s = {[z/8(2)] | 2 € U}; and for any y = 2/8(z) one has 8(z, — y) =
B(zo — 2) + B(z — y) = B(z0 — 2) + [ B(z) — B(w0) | = (8/2) + (8/2) = &.
Since C(U) is open and contains z, as an interior point, there is a ball Bg(z, , 7)
C C(U). This ball satisfies our requirements.

1 This is due to R. Phelps.
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For any 5y € Bs(xo, 1), the segment 6(¢) = (1 — t)xo + £-yo is contained in
Bgs(zo, 7). By the construction above, the curve y(¢t) = 6(¢)/8(6(¢)) is contained
in Bg(xo, r) N1 Sg ; and, since B is smooth, y(¢) is a differentiable curve (see
Proposition 11) in the plane determined by z;, o and the origin. Thus, by the
mean-value theorem, there is a point y(%) such that y' (k) = ANyo — ) for
some scalar A # 0. Now, by the Hahn-Banach extension theorem, there is a
support functional g at y(4) such that g(y'(%)) = 0; and, since 8 is smooth,
g = v(y(k)).

We can now finish the proof. Let yo € Bg(zo,7) [1Ss . Then, by (1), | (V(xo) —
v(y(6)) - [yo — xo/B(yo — 79)]| < €; and, by the remarks in the previous para-
graph, »(y(%))-[yo — xo/B(yo — x0)] = 0. Therefore, |v(zo) - (yo — %) |/
B(yo — xo) < e wheneverB(yo — xo) < 7,%0 € Sg ;80 ‘

lim | »(20) - (y — 20)| =0

fmy B(y — x)

It is clear, then, that a) follows from Proposition 13.

b) Assume that g8 is differentiable (this proof is due to Phelps). If » is not
continuous at some point zo € Sg, then there is a net {x.} (where n is in some
directed set D) such that lim,cp 2. = xo and »(z,) does not converge to »(z).
Thus, for some € > 0, there is a subnet (still denoted by {z.}) such that 8*(v(z,)
— v(x0)) > 2e¢ and lim,e p ., = % . But this means that, for each n, there is some
Yn € Sg such that | (»(za) — »(%0))Yn| = 2e. Let 2z, = [(1 — »(Zn) - %0)/elyn ,
and observe that G(z,) — 0 (see Proposition 12). Now 8(zo + 2.) — B(z0) —
v(%o) 2n = v(@n) (Xo+ 22) — 1 — v(@0) -2 = (¥(xn) — v(20)) 20 + (X0) 2o —
122 (1 — () %0)/e]l +v(xn) @o—1=1—p(x,) 20 2 0. Thus | B0 + 2a).
— B(20) — (%0) 24 |/B(2a) = | »(%s) 20 — 1|/B(2.) = e This is a contradiction
because g is differentiable.

6. The main theorem

TueorEM 3. A separable Banach space (X, a) admils a norm B8 equivalent to a
of class C" if and only if (X*, &™) is also separable.

Proof. a) Assume that X is separable, and let 8* be the norm of Klee’s
theorem (Theorem 1). Then 8 is smooth (Proposition 10), so therefore the map
v:8s — Sps which assigns to each z € Ss the normalized support functional at
is continuous if the B-topology is used in S and the w*-topology, in Sgx (Proposi-
tion 12). Let zo € Sg, and let . — zo, 2. € Sg. Then v(x,) — »(2), in the
w*-topology, and B*(»(z,)) — B*(»(x)); so, by Klee’s theorem (Theorem 1),
B*(»(x.) — »(x0)) — 0. Therefore, » is continuous in the norm topologies, and
B is of class ¢’ (Theorem 2).

b) Assume there is a norm 8 equivalent to o of class C'. Extend the map
B':X — {0} — Sg« to a continuous map u:X — {0} — X™ defined by u(z) =
B(z)B'(z). Then the image of u is the set of all support functionals to
{x | B(z) £ 1}. (f is a support functional if Supse) <1 /-2 = f(y) for some y with
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B(y) = 1.) Let {z.} be a countable dense sequence in X; let f ¢ X*; and let
U(f) be a neighborhood of f. Since the set of support functionals is dense in
X* ([1], Cor. 4, p. 31), there is some support functional g in U(f) of the form
g = w(z). Thus € p (U), by continuity, and some z, € u (U); so some
u(,) € U.Therefore the sequence (u(z,)) is densein X*, and X *is separable.

Remark 1. Let Co be the space of all sequences {z,} of real numbers such that
&, — 0 with || z || = Sup. | 2. |; let 1 be the space of all sequences {z,} such that
|2, | < oo, with ||z || = 2 | 2. |;let C[0, 1] be the space of continuous func-
‘tions with ||z || = Supo<e<i | 2(¢) |. Then, by Theorem 3, the topologies in I
and C[0, 1] cannot be defined by any norm of class C; . On the other hand, the
topology in Cy can be defined by a norm of class C; . (Phelps has constructed an
equivalent norm of class C in Cy.)

Remark 2. It follows from Theorem 3 that we cannot drop the hypothesis of
(X*, &™) being separable in Klee’s theorem (Theorem 1). Thus, we can not
construet any norm in I, satisfying the conditions of Klee’s theorem.

TraEOREM 4. Let (X, a) be a separable Banach space. Then, if both o and o™
are of class C', (X,a) 1s reflexive.

Proof. Let u: X — X™* and p™: X* — X™* be defined by u(z) = a(z)e/(z)
and p*(f) = «"(f)(a®)'(f). Now j:X — X** (defined by j(X)-f = f(X))
s an isometry of X into X** and j = w*u. Thus, by Theorem 3, j(X) is dense
In X**, Therefore j(X) = X**, and X is reflexive.
i

CeNTRO DE INVESTIGACION DEL I.P.N., Mfxico, D.F.
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