
DIFFERENTIABLE NORMS 

BY GUILLERMO RESTREPO 

1. Introduction 

A formal theory of manifolds modeled on general Banach spaces has been de
veloped by S. Lang [6]. A fundamental tool in the study of manifolds modeled on 
finite dimensional spaces-at least in its geometrical aspects-is the existence of 
partitions of unity, say of class GP for p ~ I. The construction of partitions of 
unity, say of class GP for p ~ I, is still possible in the case of manifolds modeled on 
separable Hilbert spaces (see [6], p. 30). This construction is based on the exist
ence of an equivalent norm of class G"' in a Hilbert space. A systematic study of 
partitions of unity in infinite dimensional manifolds is to be found in [9]. In this 
paper we study the problem of existence of equivalent differentiable norms in 
Banach spaces. The main result is Theorem 3: A separable Banach space admits 
an equivalent norm of class G1 if and only if its dual is separable. This result has 
been announced in [10]. 

2. Differential calculus in Banach spaces 

The results stated and proved in this section are to be found in [4]. They are 
included for ease of reference. 
• Let (X, a) and (Y, {3) be Banach spaces. Let A c X be an open set, and let 

f:A - Y be continuous. We say that f is differentiable at Xo E A if there exists a 
linear map u(xo) :X - Y such that 

lim {3(f(x) - f(Xo) - u(xo) • (x - xo)) = O . 
.,...,,o a(x - Xo) 
x;"'xo 

We say that f is differentiable on A if f is differentiable at each point x E A. The 
linear map u(x) :X - Y is called a differential off at x. If f is differentiable at 
xo EA, we will write h(x, xo) = f(x) - f(xo) - u(xo)· (x - xo), Thus, if f is 
differentiable at Xo, {3(h(x, x0) )/a(x - xo) - 0 as x - Xo and 

f(x) = f(xo) + u(xo) • (x - xo) + h(x, Xo). 

The definition of differential depends only on the topologies of X and Y. 

PROPOSITION I. If f is differentiable at xo , then f has a unique differential, de
noted by / ( Xo), given by 

/(xo)·x = limf(Xo +Ax) -f(Xo). 
X➔O A 
A;"'O 

Proof. h(xo + AX, Xo)/A = [f(xo + A,,) - f(xo) - ;\f(xo)•(x)]/;\, and 
lim>. .. o [f(xo + ;\x) - f(xo)]/;\ = /(xo) ·x. 

47 
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PROPOSITION 2. If f is differentiable at Xo, then J' (xo) is a continuous linear map 
from X into Y. 

Proof. By definition j' (xo) is linear, so we have to prove only continuity at Xo. 
From the definition of h(x, xo) one has /3(f 1(xo)·(x) - J'(xo)·xo) = /3(f1 (xo)· 
(x - x0)) ~ f3(f·x - f·xo) + f3(h(x, xo) ). Let e > 0, and find O < o(e) < 1 such 
that/3(f(x) -f(x 0)) < e/2 and/3(h(x, Xo)) < e/2a(x - xo) if a(x - xo) < o(e). 
Thenf3(J'(xo) ·x -/(xo) ·xo) < eif a(x - xo) < o(e). This concludes the proof. 

If (X1, a1), • • • , (Xn, an) are Banach spaces, thenX1 X X2 X • • • X Xn be
comes a Banach space if we define a(x1, • • • , Xn) = Sup (a1(x1), • • • • , an(Xn) ). 

PROPOSITION 3. Let (X, a) and ( Y, /3) be Banach spaces. Then, 
1) if A C Xis open and f:A - Y is a constant, J' (a) = 0 for each a E A; 
2) if f:X - Y is a continuous linear map, f is every where differentiable and 

j'(x) = f for each x EX. 
3) if (X1, a1), (X2, a2) are Banach spaces and f:X1 X X2 - Y is a con

tinuous bilinear map, f is everywhere differentiable and J'(x1, x2) • (t1, ½) = 
f(X1, t2) + f(t1, X2), 

Proof. The proof follows from Proposition 1. 

PROPOSITION 4. Let (X, Y, Z) be Banach spaces, and let A c X and B c Y 
be open sets. Let f:A - Y be differentiable at a E A, and let g be differentiable at 
f(a) E B. Then g•f:A - Z is differentiable at a E A, and (g·f)' (a) = g' (f(a)) • 
j'(a). 

Proof. See [4], page 145. 

Let (X, a) and (Y, /3) be Banach spaces, and denote by £(X, Y) the linear 
space of all continuous linear maps from X into Y. The norms a and /3 define a 
norm II u II = Supa(x)~l f3(u·x) in £(X, Y). Denote by £n(X, Y) thespaceofall 
continuous multilinear maps from X1 X X2 X • • • X Xn, where X1 = • • • = 
Xn = X, into Y. Then there is a natural isomorphism between £2(X, Y) and 
£(X, £(X, Y) ). Inductively, one could define a natural isomorphism between 
£n(X, Y) and£(X1, £(X2, • • ·, £(Xn, Y)), where Xi= X2 = • • • = Xn =X. 

We recall that £2(X, Y) :+ £(X, £(X, Y)) is defined by (h(u)(x1))(x2) = 
u(x1, x2), 

Let X and Y be Banach spaces; let A c X be an open set; and let f:A - Y 
be continuous. We say that f is of class C1 is J' (a) exists for each a E A and the 
map j':A - £(X, Y) is continuous. Inductively, we say that f is of class CP, 
p ~ 1 if/p- 1) :A -£p-1(X, Y) is of class 01, and we write/p) = (f(p-l))'. 

PROPOSITION 5. Let X and Y be Banach spaces; A c X, an open set; and 
f:A - Y, a map of class 01', p ~ 2. Then the multilinear map (t1, t2, • • • , tp) -
lP\ a)· (t1 , ½ , • • • , tp) is symmetric for each s E A; that is, lp) (a) (t1 , • • • , tp) = 
/P) (a) ( tu(l) , • • • , tu(p)) for any permutation u of the set of indices { 1, 2, • • • , p}. 
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Proof. See [4], pages 176-77. 

PROPOSITION 6 (Taylor's formula). Let X and Y be Banach spaces; A c X, 
an open set; [x, x + t], a segment contained in A; and f:A -+ Y, a map of class 
GP, p ;;; 1. Then, 

f(x + t) =f(x) +f'(x) t +/ 2\x) -/ 2l +···+/pl tCp) + O(t) 
11 2! pl ' 

where {n) = (t1, • • • , tn), t1 = • • • = tn = t, andO(t) satisfies limho O(t)/11 t IJP =0 
(II II is the norm in X). 

Proof. See [6], page 186. 

3. Differentiable norms 

In this section we will always talk about continuous norms in a Banach space 
X. A norm {3:X-+ R is said to be differentiable, or of class GP, p ;;; 1, if {3:X -
{O} -+ R is differentiable, or of class GP. In particular, we will sometimes talk 
about differentiability at a point, or of a norm's being of class GP at a point. 
An inner product norm is any continuous norm derived from an inner product. 

PROPOSITION 7. Assume that (3 is an inner product norm. Then {3 is of class 
G'° and/3'(x)•u = (x•u)/{3(x). 

Proof. Let{3(x) = (x•x) 112 andf(x) = x·x; and let d:X -+X XX be defined 
by d(x) = (x, x). Clearly d is a continuous linear isomorphism. The map 
g(t) = t112 is of class G"' except at t = 0, so {3 = g-f- dis of class G00

• A simple 
argument shows that /3'(x) •u = (x•u)/f3(x). 

PROPOSITION 8. Let (X, a) be a separable Banach space. Then there is a con
tinuous norm of class G"' defined in X ( in general, of course, not equivalent to a). 

Proof. Let {!1} be the sequence in X* such that a *(!1) = 1, for all j, and 
f;(x) = 0, for allj, imply x = 0. Define T:X-+ l2 by T·x = (J;,x). Then p(x) = 
JI Tx IJi2 is a continuous norm of class G00

, since it is the composition of a linear 
map T and an inner product norm II 1112 . 

PROPOSITION 9. If a norm {3 in (X, a) is differentiable at each point x E S/J, 
then {3 is difflerentiable and {31 (),x) = fl ( x) for each real X > 0. 

Proof. Since X > 0, then 

{3(Xx + u) - {3(Ax) - {31 (x) • (u) 
a(u) 

Since the second term of the equality approaches zero as u -+ 0, it follows that 
{31 ( X) = {31 (AX) . 
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4. Smooth norms 

A linear space with a topology defined by a norm a will be written (X, a) 
and the dual space, (X*, a*). Let (3 be a continuous norm in X, and let Sp = 
{x I (3(x) = l}. 

i) f E x* is a normalized support functional at x E Sp if a*(f) = 1 and 
supp(y)=d • Y = f ( X). 

ii) (3 is smooth if there is a unique normalized support functional at each 
XE Sp. 

iii) (3 is rotund if Sp contains no line segments. 
The following proposition is well known. 

PROPOSITION 10. Let (X, a) be a normed space, and let (3 be a norm equivalent 
to a. Then, 

a) if f3* is rotund, (3 is smooth; 
b) if f3* is smooth, (3 is rotund. 

• Proof. a) Assume that (3 is not smooth. Then, for some Xo E Sa , there are two 
normalized support functionals Ji andf2 at xo, and (!1 + f2)/2 would also be a 
normalized support functional at x0 • This is a contradiction because f3* is 
rotund. 

b) Assume that (3 is not rotund. Then, for some Xo , xi E Sp , x 1 = tx1 + 
(1 - t)xo E Sp, 0 ~ t ~ 1. By the Hahn-Banach theorem, there is a normalized 
support functional f such that f · Xt = 1 for all 0 ~ t ~ 1. But then x 1 would be a 
normalized support functional at f for all 0 ~ t ~ • 1. This is a contradiction, since 
(3 * is smooth. 

PROPOSITION 11. a) A continuous norm (3 is smooth if and only if (3 is smooth 
in any planar section through the origin. 

b) A continuous norm (3 is rotund if and only if, for any xi, X2 such that (3(x1) = 
(3(x2) = 1, one has (3(x1 + x2)/2 < 1 if xi ~ X2. 

Proof. The proof is indicated in [3]; we give it here for completeness. 

a) Assume that a is smooth. If a is not differentiable in some planar section 
P, then P n Sa is a convex curve in a plane having two tangents, say Y1 and y2, 
at some point x E P n Sa (assume that a(y1) = a(y2) = 1). Definef,:P - R 
by f,(y;) = 0, f,(x) = 1, and f,(\y; + µx) = µf;(x), i = 1, 2. By the Hahn
Banach extension theorem, f; has an extension g; such that a*(f,) = a*(g,), 
i = 1, 2. If z = \y, + µ-x and a(z) = 1, then Iµ I ~ 1; so I f;-z I = Iµ I ~ 1 
and a* (f;) = 1 i = 1, 2. Therefore g1 , g2 are two different support functionals at 
x. This is a contradiction. The other part of the proof is trivial. 

b) Assume that a is rotund. If a(x1 + x2)/2 = 1, then (x1 + x2)/2would be a 
boundary point of Ba. Since a is rotund, a(tx1 + (1 - t)x 2) < 1, for at least 
one 0 < t < 1 (say½ < t < 1). Thus z = tx1 + (1 - t)x2 is an interior point; 
so a small neighborhood U about z is contained in Ba. The cone (x1, U] is con
tained in Ba by convexity, and (x1 + x2)/2 is an interior point of it; therefore, 
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(x1 + x2)/2 is an interior point of Ba. This is a contradiction. The other part of 
the proof is trivial. 

PROPOSITION 12. Let (X, a) be a normed space, and assume that {3 is a norm 
which is continuous and smooth (perhaps not equivalent to a). Then the map 
v:S13-+ S13* which assigns to each x E Sa the unique normalized support functional 
v(x) is continuous if the {3-topology is considered in S13 and the w*-topology is con
sidered in Sp* . 

Proof. Let x E S13, and let (xn) (where n is in a directed set D) be a net con
verging to x. Then (v(xn)) is a net in B13* which converges to v(x ), as we will 
show next. If we assume that (" ( Xn) ) does not converge to " ( x) = f, then there is 
a neighborhood U(J) (in the w*-topology) such that for each m E D there is 
some m' E D with the property m' ···~ m and v(Xm') (!= U. The subnet (v(xm,)) 
has a subnet (still denoted by (v(xm'))) which converges to some g E B13* , 
becauseBp* isw*-compact, andg (!= U. Now I v(xm,)·(Xm' - x) I= I v(xm,) ·Xm' 
- v(Xm•)·x I= 11 - v(xm,)•x ~ /3*(v(x.,.'))·/3(Xm' _:_ x) = /3(Xm, - x)-+ O; 
therefore, lim v(xm,) ·x = g·x = 1, and g is a normalized support fl}.nctibnal 
at x different from v(x). This is a contradiction becalise {3 is smooth. •• 

Remark. Since the {3-topology is weaker than the a-topology, " is also con
tinuous if we consider the a-topology in X. 

THEOREM 1. (Klee, [5]). Assume that both (X, a) and (X*, a*) are separable 
Banach spaces. Then there exists a conjugate norm /3* equivalent to a* such that, * . . . 

1) {3 is rotund; 
. 2) if f,,. converges to f in the w*-topology and f3*Cfn) -+ f3*(f),then 

fl*(!,. - J) - 0. 

5. Differentiability and smoothness 

PROPOSITION 13. Let (X, a) be a Banach space, and let fl be a differentiable 
norm (perhaps not equivalent to a). Then fl is smooth and, for any x E S13 , fl' ( x) 
is a support functional. 

Proof. Let x e S13, and let P be any plane containing x and the origin. Then 
the equation of the curve Pn S13 near xis of the form h(t) = u(t)/fl(u(t) ), 
where u(t) = t-x 1 + (1 - t)x 0 , fl(x1) = fl(xo) = 1, and h(t) = x, for some 
O < t < I. Therefore fl is smooth in any planar section through the origin, and {3 
is smooth by Proposition 11: 

The second part of the proposition follows from the fact that, for any u with 
{3(u) ~ 1, 

/3'(x) •u = fun fj(x + A.u) - fj(x) ~ lim p(xu) = {3(u) .~ 1 
x-o A x-o A 

and {31(x) ·x = 1. 
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PROPOSITION 14. Let (X, a) be a Banach space, and let fJ be any continuous norm 
in X (perhaps not equivalent to a). Assume that 

a) fJ is a smooth norm; 

b) 
lim I v(xo) • (y - Xo) I = 0 
y-x 0 fJ(y - Xo) ' 

/3(y)-l 

where v(xo) is a support functional at Xo such that fJ*(v(xo)) = 1. Then fJ is dif
ferentiable at Xo and fJ'(xo) = v(xo). 

Proof. We have to prove that 

1. I h(y, Xo)I O 
lm "--oo-...c....c_-c' -

y-x 0 a(y - Xo) - ' 
y,.<xo 

whereh(y,xo) = fJ(y) - fJ(xo) - v(xo)•(y - xo). Weobservefirstthatwehave 
to prove only that limy-x0 I h(y, Xo) 1/fJ(y - xo) = 0, since I h(y, Xo) 1/a(y- xo) 
= [I h(y,xo) 1/fJ(y - Xo)]•[fJ(y- Xo)/a(y - Xo)], andfJ(y- Xo)/a(y- Xo) ~ M 
for some positive constant M. Let f = v(xo), and consider the following three 
cases. 

(a) Casef(y) ~ I. Let r(y) = y + (1 - f(y) ):robe the projection of yon 
r1<1); then fJ(r(y) - y) = f(y) - 1 = f(y - Xo). Let z(y) = y/fJ(y) and 
q' (y) = y/f(y); then fJ(y) - fJ(xo) = fJ(y - z(y)) ~ fJ(y - z(y)) ~ fJ(y - q(y) 
~ fJ(y - r(y) ). Thus I fJ(y) - fJ(xo) - f • (y - xo) I = fJ(y - z(y)) -
fJ(y - r(y) ). If y is restricted to a small neighborhood around x0 , then p(y) = 
y + ;\ • x0 satisfies fJ(p (y) = 1, for some real;\. Then, for any yin such neighbor
hood, fJ(y - z(y)) ~ fJ(y - p(y)) and I fJ(y) - fJ(xo) - f • (y - xo) I ~ 
fJ(y - p(y)) - fJ(y - r(y)) ~ fJ(p(y) - r(y)). Thus 

lh(y,Xo)I < fJ(p(y) - r(y)). fJ(r(y) - Xo) 
fJ(y - :ro) = fJ(r(y) - xo) fJ(y - xo) • 

( 1) 

Since fJ(y - r(y)) ~ fJ(y - xo), it follows that fJ(r(y) - xo) - fJ(y - x0) ~ 
fJ(y - r(y)) ~ fJ(y - :ro), and 

(2) fJ(r(y) - Xo) :,;; 2_ 
fJ(y - Xo) -

OntheotherhandfJ(p(y) - r(y))/fJ(r(y) - xo) ~ fJ(p(y) - r(y))/1 fJ(p(y) -
Xo) - fJ(p(y) - r(y)) I = 0(y)/l l -0(y) I, where 0(y) = fJ(p(y) - r(y)) 
/fJ(p(y) - Xo) and fJ(p(y) - r(y)) =If· (p(y)- xo) I-The map y - p(y) is 
continuous and thus, by condition (2) of the theorem 0(y) - 0 as y - x0 • 

Therefore, f3(p(y) - r(y) )/fJ(r(y) - xo) - 0 as y - Xo. The result now 
follows from ( 1) and ( 2). 

(b) Casef•y ~ 1 and fJ(y) ~ I. We keep the notation used in (a). The con
ditions of (b) imply fJ(r(y) - y) = 1 - f(y) = -f(y - xo). Thus I fJ(y) -
fJ(xo) - f • (y - Xo) I = fJ(y) - fJ(xo) + fJ(y - r(y)) = fJ(y - z(y)) + 
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(3(y - r(y)) ~ (3(y - p(y)) + (3(y - r(y)) = (3(r(y) - p(y) ). From here on 
the proof proceeds as in Case (a). 

( c) Case j • y ;;i; 1 and (3 (y) ;:i 1. Again we keep the notation of Case (a). Then 
fJ(y) - f3(xo) = -(3(y - z(y) ), and (3(y - r(y)) = -j(y - xo); moreover, 
fj(y - z(y)) = -(3(y) + (3(p(y)) ~ (3(y - p(y)) ;;i; (3(y - r(y)). Thus 
I (3(y) - (3(xo) - J· (y - xo) I = -(3(y - z(y)) + (3(y - r(y) ). Let s(y) = 

z(y) + (1 - J,z(y) )xo; then(3(s(y) - z(y)) = 1 - f•y/(3(y) and (3(y - r(y)) -
(3(y - z(y)) = (3(y) - j(y) ~ /3( s(y) - z(y)). From now on the proof pro
ceeds as in Case (a). J f3(y) - f3(xo) - J • (y - xo) l/f3(y-xo) ~(3(s(y)-z(y))/ 
(3(y - Xo) = [,6(s(y) - z(y))/(3(z(y) - xo)]·[f3(z(y) - xo)/(3(y - xo)]. Now, 
(3(z(y) - Xo)/(3(y - Xo) ~ [(3(y - xo) + (3(y - z'y))]/f3(y - xo) = 1 + 
[.B(xo) - (3(y)/f3(y - xo)] ~ 2, for ally ~ Xo; moreover, (3(s(y) - z(y)) = 
IJ(z(y) - xo) /, and the map y - z(y) is continuous. Therefore, by condition 
( 2) of the theorem, 

lim I (3(y) - /3(Xo) - J· (y - Xo) I :;;; 2 and 
l,"+'"o f3(y - Xo) -

lim (3(s(y) - z(y)) - 0 
!,"+'"o /3(z(y) - Xo) - • 

From the considerations in (a), (b) and (c), it follows that limy-x0 / h(y, x0) I/ 
(3(y - x0) = 0. This concludes the proof. 

Let (X, a) be a Banach space, and let (3 be a norm ,equivalent to a. For each 
x E Sp, v(x) is a support functional at x for which fJ*(v(x)) = 1. 

THEOREM 2. Let (X, a) be a Banach space, and let (3 be a smooth norrrJ, equivalent 
to a. Then 

a) if v:Sp - Sp* is continuous (in Sp we consider the a-topology and in Sp* 
the a* -topology y), then (3 is differentiable; 

b) t if (3 is differentiable, then v is continuous. 

Proof. a) Let Xo E Sp, and let e > O. Then there exists o = o(e, x0 ) such that 

/3*(v(x) - v(xo)) < e 

whenever 

(1) (3(x - Xo) < a, and x, Xo E S13 , 

Let us construct a ball Bp(xo, r) small enough that if Yo E Bp(x0 , r) n Sp and 
0(t) = xo(l - t) + tyo, 0 ~ t ~ 1, then the curve y(t) = 0(t)/f3(0(t)) is con
tained in Bp(Xo, o) n Sp. Since (3 is continuous, there is someO < ri < o/2 such that 
I (3(z) - (3(xo) I < o/2 if (3(z - xo) < 'l/· Let U = {z I (3(z - xo) < 7/ and 
v(xo) •z = 1}, and consider the cone C(U) = {tz It > 0 and z E U}. Then 
C{U) n S13 = {[z/(3(z)] I z E U}; and for any y = z/(3(z) one has f3(xo - y) ~ 
(3(xo - z) + [j(z - y) = f3(xo - z) + I (3(z) - (3(xo) I = (o/2) + (o/2) = o. 
Since C( U) is open and contains xo as an interior point, there is a ball B13(x0 , r) 
c C( U). This ball satisfies our requirements. 

t This is due to R. Phelps. 
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For any y0 E B 13(x 0 , r), the segment O(t) = (1 - t)xo + t•yo is contained in 
B 13(x0, r). By the construction above, the curve y(t) = O(t)/f3(0(t)) is contained 
in B13(x0, r) n S13; and, since {3 is smooth, y(t) is a differentiable curve (see 
Proposition 11) in the plane determined by xo , Yo and the origin. Thus, by the 
mean-value theorem, there is a point y(to) such that y'(to) = 1,.(yo - Xo) for. 
some scalar A ,£. 0. Now, by the Hahn-Banach extension theorem, there is a 
support functional g at y(to) such that g(y'(to)) = O; and, since {3 is smooth, 
g = v(y(to) ). 

Wecannowfinishtheproof.Letyo E B13(Xo,r) ns11,Then,by(l),I (v(xo)
v(y(to)) • [Yo - xo/f3(yo - xo)] J < E; and, by the remarks in the previous para
graph, v(y(to)) • [Yo - xo/f3(Yo - xo)] = 0. Therefore, I v(xo) • (Yo - xo) I/ 
f3(Yo - xo) < E whenever ,B(yo - xo) < r, Yo E S13 ; so 

lim I v(xo) • (y - Xo) \ = O. 
y➔o:o f3(y - xo) 

/3(y)=l 

It is clear, then, that a) follows from Proposition 13. 
b) Assume that {3 is differentiable ( this proof is due to Phelps). If v is not 

continuous at some point x0 E Sil, then there is a net {xn} (where n is i~ some 
directed set D) such that limnED Xn = Xo and v(x,.) does not converge to v(xo), 
Thus, for some E > 0, there is a subnet ( still denoted by { x,.} ) such that {3 * ( v ( x,.) 
- v(xo)) > 2E and lim,.ED x,. = Xo. But this means that, for each n, there is some 
Yn E S13 such that J (v(x,.) - v(xo) )Yn J ~ 2E. Let z,. = [(1 - v(xn) ·Xo)/E]y,., 
and observe that {3(z,.) - 0 (see Proposition 12). Now ,B(xo + z,.) - {3(xo) -
v(xo) ·Zn ~ v(x,.) • (xo + Zn) - 1 - v(xo) ·Zn = (v(x,.) - v(xo)) ·z,. + (xo) ·Xo -
1 ~ [2E· (1 - (xn) ·xo)/E] + v(x,.) •Xo - 1 = 1 - v(x,.) ·Xo ~ 0. Thus I f3(xo + Zn) 
- {3(x0) - (xo) ·z,. l/f3(z,.) ~ I v(x,.) •xo - i l/f3(zn) = E. This is a contradiction 
because {3 is differentiable. 

6. The main theorem 

THEOREM 3. A separable Banach space (X, a) admits a norm {3 equivalent to a 
of class O' if and only if (X*, a*) is also separable. 

Proof. a) Assume that x* is separable, and let ,a* be the norm of Klee's 
theorem (Theorem 1). Then {3 is smooth (Proposition 10), so therefore the map 
v:S 13 - Sil* which assigns to each x E Sil the normalized support functional at x 
is continuous if the ,8-topology is used in S13 and the w*-topology, in S 13* (Proposi
tion 12). Let Xo E Sil, and let Xn - Xo, Xn E S13. Then v(x,.) - v(xo), in the 
w*-topology, and f3*(v(x,.)) - ,a*(v(x0)); so, by Klee's theorem (Theorem 1), 
f3*(v(x,.) - v(x 0)) - 0. Therefore, vis continuous in the norm topologies, and 
,8 is of class O' ( Theorem 2). 

b) Assume there is a norm {3 equivalent to a of class C'. Extend the map 
{31 :X - {0) - Sil* to a continuous map µ:X - {0} - x* defined by µ(x) = 
{3(x)f3'(x). Then the image of µ is the set of all support functionals to 
{ x I ,8 ( x) ~ 1}. (f is a support functional if Supll<o:> ~d · x = f ( y) for some y with 
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fJ(y) = 1.) Let {xn} be a countable dense sequence in X; let f E X*; and let 
U(f) be a neighborhood off. Since the set of support functionals is dense in 
x* ([1], Cor. 4, p. 31), there is some support functional gin U(f) of the form 
g = µ(x). Thus x E µ- 1(U), by continuity, and some Xn E µ-1(U); so some 
µ(xn) E U. Therefore the sequence (µ(xn)) isdenseinX*, andX*isseparable. 

Remark 1. Let Co be the space of all sequences {xn} of real numbers such that 
x,. - 0 with II x II = Supn I Xn /; let Z1 be the space of all sequences f Xn} such that 
L / Xn I < 00 , with 11 x 11 = L I Xn /; let C[O, 1] be the space of continuous func
tions with II x II = Supo;;;t;,;1 / x(t) 1- Then, by Theorem 3, the topologies in Z1 
and C[O, 1] cannot be defined by any norm of class C1 . On the other hand, the 
topology in Co can be defined by a norm of class C1 • (Phelps has constructed an 
equivalent norm of class C1 in C0.) 

Remark 2. It follows from Theorem 3 that we cannot drop the hypothesis of 
(X*, a*) being separable in Klee's theorem (Theorem 1). Thus, we can not 
construct any norm in Z00 satisfying the conditions of Klee's theorem. 

THEOREM 4. Let (X, a) be a separable Banach space. Then, if both a and a* 
are of cl.ass C', (X,a) is reflexive. 

Proof. Let µ:X - X* and µ*:X* - x** be defined by µ(x) = a(x)a'(x) 
and µ,*(f) = a'\f)(a*)'(J). Now j:X - x** (defined by j(X)·f = f(X)) 
.s anisometry of X into x**, andj = µ/µ. Thus, by Theorem 3,j(X) is dense :n x**. Thereforej(X) = x**, and Xis reflexive. 
l 
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