DIFFERENTIABLE NORMS

BY GUILLERMO RESTREPO

1. Introduction

A formal theory of manifolds modeled on general Banach spaces has been developed by S. Lang [6]. A fundamental tool in the study of manifolds modeled on finite dimensional spaces—at least in its geometrical aspects—is the existence of partitions of unity, say of class C^p for $p \geq 1$. The construction of partitions of unity, say of class C^p for $p \geq 1$, is still possible in the case of manifolds modeled on separable Hilbert spaces (see [6], p. 30). This construction is based on the existence of an equivalent norm of class \mathbb{C}^{∞} in a Hilbert space. A systematic study of partitions of unity in infinite dimensional manifolds is to be found in [9]. In this paper we study the problem of existence of equivalent differentiable norms in Banach spaces. The main result is Theorem 3: *A separable Banach space admits* an equivalent norm of class C_1 *if and only if its dual is separable.* This result has been announced in [10].

2. Differential calculus in **Banach spaces**

The results stated and proved in this section are to be found in [4]. They are included for ease of reference.

Let (X, α) and (Y, β) be Banach spaces. Let $A \subset X$ be an open set, and let $f:A \to Y$ be continuous. We say that *f is differentiable* at $x_0 \in A$ if there exists a linear map $u(x_0): X \to Y$ such that

$$
\lim_{\substack{x\to x_0\\x\neq x_0}}\frac{\beta(f(x)-f(x_0)-u(x_0)\cdot(x-x_0))}{\alpha(x-x_0)}=0.
$$

We say that *f is differentiable on A* if *f* is differentiable at each point $x \in A$. The linear map $u(x):X \to Y$ is called a differential of f at x. If f is differentiable at $x_0 \in A$, we will write $h(x, x_0) = f(x) - f(x_0) - u(x_0) \cdot (x - x_0)$. Thus, if *f* is differentiable at x_0 , $\beta(h(x, x_0)) / \alpha(x - x_0) \rightarrow 0$ as $x \rightarrow x_0$ and

$$
f(x) = f(x_0) + u(x_0) \cdot (x - x_0) + h(x, x_0).
$$

The definition of differential depends only on the topologies of *X* and *Y.*

PROPOSITION 1. If f is differentiable at x_0 , then f has a unique differential, de*noted by* $f'(x_0)$ *, given by*

$$
f'(x_0)\cdot x=\lim_{\substack{\lambda\to 0\\ \lambda\neq 0}}\frac{f(x_0+\lambda x)-f(x_0)}{\lambda}\,.
$$

Proof. $h(x_0 + \lambda x, x_0)/\lambda = [f(x_0 + \lambda_x) - f(x_0) - \lambda \cdot f'(x_0) \cdot (x)]/\lambda$, and $\lim_{\lambda \to 0} [f(x_0 + \lambda x) - f(x_0)]/\lambda = f'(x_0) \cdot x.$

PROPOSITION 2. If f is differentiable at x_0 , then $f'(x_0)$ is a continuous linear map *from X into Y.*

Proof. By definition $f'(x_0)$ is linear, so we have to prove only continuity at x_0 . From the definition of $h(x, x_0)$ one has $\beta(f'(x_0) \cdot (x) - f'(x_0) \cdot x_0) = \beta(f'(x_0) \cdot x_0$ $(x - x_0) \leq \beta(f \cdot x - f \cdot x_0) + \beta(h(x, x_0))$. Let $\epsilon > 0$, and find $0 < \delta(\epsilon) < 1$ such that $\beta(f(x) - f(x_0)) < \epsilon/2$ and $\beta(h(x, x_0)) < \epsilon/2\alpha(x - x_0)$ if $\alpha(x - x_0) < \delta(\epsilon)$. Then $\beta(f'(x_0) \cdot x - f'(x_0) \cdot x_0) < \epsilon$ if $\alpha(x - x_0) < \delta(\epsilon)$. This concludes the proof.

If $(X_1, \alpha_1), \cdots, (X_n, \alpha_n)$ are Banach spaces, then $X_1 \times X_2 \times \cdots \times X_n$ becomes a Banach space if we define $\alpha(x_1, \dots, x_n) = \text{Sup } (\alpha_1(x_1), \dots, \alpha_n(x_n)).$

PROPOSITION 3. Let (X, α) and (Y, β) be Banach spaces. Then,

1) if $A \subset X$ is open and $f: A \to Y$ is a constant, $f'(a) = 0$ for each $a \in A$;

2) if $f: X \to Y$ is a continuous linear map, f is every where differentiable and $f'(x) = f$ *for each* $x \in X$.

3) *if* (X_1, α_1) , (X_2, α_2) *are Banach spaces and* $f: X_1 \times X_2 \rightarrow Y$ *is a continuous bilinear map, f is everywhere differentiable and* $f'(x_1, x_2) \cdot (t_1, t_2) =$ $f(x_1, t_2) + f(t_1, x_2)$.

Proof. The proof follows from Proposition 1.

PROPOSITION 4. Let (X, Y, Z) be Banach spaces, and let $A \subset X$ and $B \subset Y$ *be open sets. Let* $f: A \rightarrow Y$ *be differentiable at* $a \in A$ *, and let g be differentiable at* $f(a) \in B$. Then $g \cdot f: A \to Z$ is differentiable at $a \in A$, and $(g \cdot f)'(a) = g'(f(a)) \cdot$ $f'(a)$.

Proof. See [4], page 145.

Let (X, α) and (Y, β) be Banach spaces, and denote by $\mathfrak{L}(X, Y)$ the linear space of all continuous linear maps from *X* into *Y*. The norms α and β define a norm $||u|| = \text{Sup}_{\alpha(x)\leq 1} \beta(u \cdot x)$ in $\mathfrak{L}(X, Y)$. Denote by $\mathfrak{L}_n(X, Y)$ the space of all continuous multilinear maps from $X_1 \times X_2 \times \cdots \times X_n$, where $X_1 = \cdots =$ $X_n = X$, into *Y*. Then there is a natural isomorphism between $\mathfrak{L}_2(X, Y)$ and $\mathfrak{L}(X, \mathfrak{L}(X, Y))$. Inductively, one could define a natural isomorphism between $\mathfrak{L}_n(X, Y)$ and $\mathfrak{L}(X_1, \mathfrak{L}(X_2, \cdots, \mathfrak{L}(X_n, Y)),$ where $X_1 = X_2 = \cdots = X_n = X$. We recall that $\mathfrak{L}_2(X, Y) \stackrel{\mu}{\leftrightarrow} \mathfrak{L}(X, \mathfrak{L}(X, Y))$ is defined by $(h(u)(x_1))(x_2) =$ $u(x_1, x_2)$.

Let *X* and *Y* be Banach spaces; let $A \subset X$ be an open set; and let $f: A \to Y$ be continuous. We say that *f is of class* C^1 is $f'(a)$ exists for each $a \in A$ and the map $f' : A \to \mathcal{L}(X, Y)$ is continuous. Inductively, we say that f is of class C^p , $p \ge 1$ if $f^{(p-1)}$: $A \to \mathfrak{L}_{p-1}(X, Y)$ is of class C^1 , and we write $f^{(p)} = (f^{(p-1)})'$.

PROPOSITION 5. Let X and Y be Banach spaces; $A \subset X$, an open set; and $f:A \to Y$, a map of class C^p , $p \geq 2$. Then the multilinear map $(t_1, t_2, \cdots, t_p) \to$ $f^{(p)}(a) \cdot (t_1 , t_2 , \cdots , t_p)$ is symmetric for each $s \in A$; that is, $f^{(p)}(a) (t_1 , \cdots , t_p) =$ $f^{(p)}(a)$ $(t_{\sigma(1)}, \cdots, t_{\sigma(p)})$ for any permutation σ of the set of indices $\{1, 2, \cdots, p\}.$

Proof. See [4], pages 176-77.

PROPOSITION 6 (Taylor's formula). Let X and Y be Banach spaces; $A \subset X$, an open set; $[x, x + t]$, a segment contained in A; and $f: A \rightarrow Y$, a map of class C^p , $p \geq 1$. *Then,*

$$
f(x+t) = f(x) + \frac{f'(x)}{1!}t + \frac{f^{(2)}(x)}{2!}t^{(2)} + \cdots + \frac{f^{(p)}(x)}{p!}t^{(p)} + \theta(t),
$$

where $t^{(n)} = (t_1, \dots, t_n), t_1 = \dots = t_n = t$, and $\theta(t)$ satisfies $\lim_{t\to 0} \theta(t)/\|t\|^p = 0$ $(|| ||$ is the norm in X).

Proof. See [6], page 186.

3. Differentiable norms

In this section we will always talk about continuous norms in a Banach space *X.* A norm $\beta: X \to R$ is said to be *differentiable*, or of class C^p , $p \geq 1$, if $\beta: X \to R$ ${0} \rightarrow R$ is differentiable, or of class C^p . In particular, we will sometimes talk about differentiability at a point, or of a norm's being of class C^p at a point. An *inner product norm* is any continuous norm derived from an inner product.

PROPOSITION 7. Assume that β is an inner product norm. Then β is of class C^{∞} and $\beta'(x) \cdot u = (x \cdot u)/\beta(x)$.

Proof. Let $\beta(x) = (x \cdot x)^{1/2}$ and $f(x) = x \cdot x$; and let $d: X \to X \times X$ be defined by $d(x) = (x, x)$. Clearly *d* is a continuous linear isomorphism. The map $g(t) = t^{1/2}$ is of class C^{∞} except at $t = 0$, so $\beta = g \cdot f \cdot d$ is of class C^{∞} . A simple argument shows that $\beta'(x) \cdot u = (x \cdot u)/\beta(x)$.

PROPOSITION 8. Let (X, α) be a separable Banach space. Then there is a con*tinuous norm of class* C^{∞} defined in X (in general, of course, not equivalent to α).

Proof. Let $\{f_i\}$ be the sequence in X^* such that $a^*(f_i) = 1$, for all *j*, and $f_i(x) = 0$, for all *j*, imply $x = 0$. Define $T: X \to l^2$ by $T \cdot x = (f_i \cdot x)$. Then $p(x) =$ $||Tx||_1$ is a continuous norm of class C^{∞} , since it is the composition of a linear map *T* and an inner product norm $\|\ \|_{1^2}$.

PROPOSITION 9. If a norm β in (X, α) is differentiable at each point $x \in S_{\beta}$, *then* β *is differentiable and* $\beta'(\lambda x) = \beta'(x)$ *for each real* $\lambda > 0$ *.*

Proof. Since $\lambda > 0$, then

$$
\frac{\beta(\lambda x + u) - \beta(\lambda x) - \beta'(x) \cdot (u)}{\alpha(u)} = \frac{\beta\left(x + \frac{u}{\lambda}\right) - \beta(x) - \beta'(x) \cdot \left(\frac{u}{\lambda}\right)}{\alpha\left(\frac{u}{\lambda}\right)}.
$$

Since the second term of the equality approaches zero as $u \rightarrow 0$, it follows that $\beta'(x) = \beta'(\lambda x)$.

4. Smooth norms

A linear space with a topology defined by a norm α will be written (X, α) and the dual space, (X^*, α^*) . Let β be a continuous norm in X, and let $S_{\beta} =$ ${x \mid \beta(x) = 1}.$

i) $f \in X^*$ is a normalized *support functional* at $x \in S_0$ if $\alpha^*(f) = 1$ and $\sup_{\beta(y)=1} f \cdot y = f(x)$.

ii) β is *smooth* if there is a unique normalized support functional at each $x \in S_{\mathcal{B}}$.

iii) β is *rotund* if S_{β} contains no line segments.

The following proposition is well known.

PROPOSITION 10. Let (X, α) be a normed space, and let β be a norm equivalent $to \alpha$. Then,

a) if β^* is rotund, β is smooth;

b) if β^* is smooth, β is rotund.

Proof. a) Assume that β is not smooth. Then, for some $x_0 \in S_\alpha$, there are two normalized support functionals f_1 and f_2 at x_0 , and $(f_1 + f_2)/2$ would also be a normalized support functional at x_0 . This is a contradiction because β^* is rotund.

b) Assume that β is not rotund. Then, for some x_0 , $x_1 \in S_\beta$, $x_t = tx_1 +$ $(1-t)x_0 \in S_{\beta}$, $0 \le t \le 1$. By the Hahn-Banach theorem, there is a normalized support functional *f* such that $f \cdot x_i = 1$ for all $0 \leq t \leq 1$. But then x_i would be a normalized support functional at *f* for all $0 \le t \le 1$. This is a contradiction, since β^* is smooth.

PROPOSITION 11. *a*) A continuous norm β is smooth if and only if β is smooth *in any planar section through the origin.*

b) A continuous norm β is rotund if and only if, for any x_1 , x_2 such that $\beta(x_1) =$ $\beta(x_2) = 1$, one has $\beta(x_1 + x_2)/2 < 1$ if $x_1 \neq x_2$.

Proof. The proof is indicated in [3]; we give it here for completeness.

a) Assume that α is smooth. If α is not differentiable in some planar section *P*, then *P* $\bigcap S_{\alpha}$ is a convex curve in a plane having two tangents, say y_1 and y_2 , at some point $x \in P \cap S_{\alpha}$ (assume that $\alpha(y_1) = \alpha(y_2) = 1$). Define $f_i: P \to R$ by $f_i(y_i) = 0$, $f_i(x) = 1$, and $f_i(\lambda y_i + \mu x) = \mu f_i(x)$, $i = 1, 2$. By the Hahn-Banach extension theorem, *f_i* has an extension g_i such that $a^*(f_i) = a^*(g_i)$, $i = 1, 2$. If $z = \lambda y_i + \mu \cdot x$ and $\alpha(z) = 1$, then $|\mu| \leq 1$; so $|f_i \cdot z| = |\mu| \leq 1$ and $\alpha^*(f_i) = 1$ i = 1, 2. Therefore g_1 , g_2 are two different support functionals at *x.* This is a contradiction. The other part of the proof is trivial.

b) Assume that α is rotund. If $\alpha(x_1 + x_2)/2 = 1$, then $(x_1 + x_2)/2$ would be a boundary point of B_{α} . Since α is rotund, $\alpha (tx_1 + (1 - t)x_2) < 1$, for at least one $0 < t < 1$ (say $\frac{1}{2} < t < 1$). Thus $z = tx_1 + (1 - t)x_2$ is an interior point; so a small neighborhood *U* about *z* is contained in B_{α} . The cone (x_1, U) is contained in B_{α} by convexity, and $(x_1 + x_2)/2$ is an interior point of it; therefore,

PROPOSITION 12. Let (X, α) be a normed space, and assume that β is a norm *which is continuous and smooth (perhaps not equivalent to* α *). Then the map* $v: S_6 \longrightarrow S_{6*}$ which assigns to each $x \in S_a$ the unique normalized support functional $\nu(x)$ is continuous if the β -topology is considered in S_{β} and the w^{*}-topology is con*sidered in Sp** .

Proof. Let $x \in S_3$, and let (x_n) (where *n* is in a directed set *D*) be a net converging to *x*. Then $(\nu(x_n))$ is a net in $\bar{B}_{\beta *}$ which converges to $\nu(x)$, as we will show next. If we assume that $(\nu(x_n))$ does not converge to $\nu(x) = f$, then there is a neighborhood $U(f)$ (in the w^{*}-topology) such that for each $m \in D$ there is some $m' \in D$ with the property $m' \geq m$ and $\nu(x_{m'}) \notin U$. The subnet $(\nu(x_{m'}))$ has a subnet (still denoted by $(\nu(x_{m'})))$ which converges to some $g \in \bar{B}_{\beta*}$, because $\bar{B}_{\beta*}$ is w^{*}-compact, and $g \notin U$. Now $| \nu(x_{m'}) \cdot (x_{m'} - x) | = | \nu(x_{m'}) \cdot x_{m'}|$ $-\nu(x_{m'})\cdot x \mid = |1 - \nu(x_{m'})\cdot x \leq \beta^*(\nu(x_{m}'))\cdot \beta(x_{m'} - x) = \beta(x_{m'} - x) \to 0;$ therefore, $\lim_{n \to \infty} v(x_{m'}) \cdot x = q \cdot x = 1$, and *g* is a normalized support functional at *x* different from $\nu(x)$. This is a contradiction because β is smooth.

Remark. Since the β -topology is weaker than the α -topology, ν is also continuous if we consider the α -topology in X.

THEOREM 1. *(Klee,* [5]). *Assume that both* (X, α) *and* (X^*, α^*) *are separable Banach spaces. Then there exists a conjugate norm* β^* *equivalent to* α^* *such that,* 1) β^* *is rotund;*

. 2) *if* f_n converges to f in the w*-topology and $\beta^*(f_n) \rightarrow \beta^*(f)$, then $\beta^*(f_n-f)\to 0.$

5. Differentiability and smoothness

PROPOSITION 13. Let (X, α) be a Banach space, and let β be a differentiable *norm (perhaps not equivalent to* α *). Then* β *is smooth and, for any* $x \in S_{\beta}$ *,* $\beta'(x)$ *is a support functional.*

Proof. Let $x \in S_8$, and let *P* be any plane containing *x* and the origin. Then the equation of the curve $P \cap S_\beta$ near x is of the form $h(t) = u(t)/\beta(u(t))$, where $u(t) = t \cdot x_1 + (1 - t)x_0$, $\beta(x_1) = \beta(x_0) = 1$, and $h(t) = x$, for some $0 < t < 1$. Therefore β is smooth in any planar section through the origin, and β is smooth by Proposition 11:

The second part of the proposition follows from the fact that, for any *u* with $\beta(u) \leq 1$,

$$
\beta'(x) \cdot u = \lim_{\lambda \to 0} \frac{\beta(x + \lambda u) - \beta(x)}{\lambda} \le \lim_{\lambda \to 0} \frac{\beta(xu)}{\lambda} = \beta(u) \le 1
$$

and $\beta'(x) \cdot x = 1$.

PROPOSITION 14. Let (X, α) be a Banach space, and let 8 be any continuous norm in X (perhaps not equivalent to α). Assume that

a) β is a smooth norm;

b)
$$
\lim_{\substack{y\to x_0\\ g(y)=1}}\frac{|\nu(x_0)\cdot(y-x_0)|}{\beta(y-x_0)}=0,
$$

where $\nu(x_0)$ is a support functional at x_0 such that $\beta^*(\nu(x_0)) = 1$. Then β is differentiable at x_0 and $\beta'(x_0) = \nu(x_0)$.

Proof. We have to prove that

$$
\lim_{\substack{y\to x_0\\y\neq x_0}}\frac{|h(y,x_0)|}{\alpha(y-x_0)}=0,
$$

where $h(y, x_0) = \beta(y) - \beta(x_0) - \nu(x_0) \cdot (y - x_0)$. We observe first that we have to prove only that $\lim_{y\to x_0} |h(y, x_0)|/\beta(y - x_0) = 0$, since $|h(y, x_0)|/\alpha(y - x_0)$ $=$ [| $h(y, x_0)$ $/\beta(y-x_0)$] $\cdot [\beta(y-x_0)/\alpha(y-x_0)]$, and $\beta(y-x_0)/\alpha(y-x_0) \leq M$ for some positive constant M. Let $f = \nu(x_0)$, and consider the following three cases.

(a) Case $f(y) \ge 1$. Let $r(y) = y + (1 - f(y))x_0$ be the projection of y on $f^{-1}(1)$; then $\beta(r(y) - y) = f(y) - 1 = f(y - x_0)$. Let $z(y) = y/\beta(y)$ and $q'(y) = y/f(y)$; then $\beta(y) - \beta(x_0) = \beta(y - z(y)) \ge \beta(y - z(y)) \ge \beta(y - q(y))$ $\geq \beta(y - r(y))$. Thus $\left|\beta(y) - \beta(x_0)\right| - f\left(y - x_0\right) = \beta(y - z(y))$. $f(y - r(y))$. If y is restricted to a small neighborhood around x_0 , then $p(y) =$ $y + \lambda \cdot x_0$ satisfies $\beta(p (y) = 1$, for some real λ . Then, for any y in such neighborhood, $\beta(y - z(y)) \leq \beta(y - p(y))$ and $|\beta(y) - \beta(x_0) - f(y - x_0)| \leq$ $\beta(y - p(y)) - \beta(y - r(y)) \leq \beta(p(y) - r(y)).$ Thus

(1)
$$
\frac{|h(y, x_0)|}{\beta(y - x_0)} \leq \frac{\beta(p(y) - r(y))}{\beta(r(y) - x_0)} \cdot \frac{\beta(r(y) - x_0)}{\beta(y - x_0)}.
$$

Since $\beta(y - r(y)) \leq \beta(y - x_0)$, it follows that $\beta(r(y) - x_0) - \beta(y - x_0) \leq$ $\beta(y - r(y)) \leq \beta(y - x_0)$, and

(2)
$$
\frac{\beta(r(y) - x_0)}{\beta(y - x_0)} \leq 2.
$$

On the other hand $\beta(p(y) - r(y))/\beta(r(y) - x_0) \leq \beta(p(y) - r(y))/|\beta(p(y) - y_0)|$ $(x_0) - \beta(p(y) - r(y))$ | = $\theta(y)/|1 - \theta(y)|$, where $\theta(y) = \beta(p(y) - r(y))$ $\beta(p(y) - x_0)$ and $\beta(p(y) - r(y)) = |f(p(y) - x_0)|$. The map $y \to p(y)$ is continuous and thus, by condition (2) of the theorem $\theta(y) \to 0$ as $y \to x_0$. Therefore, $\beta(p(y) - r(y))/\beta(r(y) - x_0) \rightarrow 0$ as $y \rightarrow x_0$. The result now follows from (1) and (2) .

(b) Case $f \cdot y \leq 1$ and $\beta(y) \geq 1$. We keep the notation used in (a). The conditions of (b) imply $\beta(r(y) - y) = 1 - f(y) = -f(y - x_0)$. Thus $\beta(y)$ - $\beta(x_0) - f \cdot (y - x_0) = \beta(y) - \beta(x_0) + \beta(y - r(y)) = \beta(y - z(y)) +$

 $\beta(y - r(y)) \leq \beta(y - p(y)) + \beta(y - r(y)) = \beta(r(y) - p(y)).$ From here on the proof proceeds as in Case (a).

(c) $Case f \cdot y \leq 1$ and $\beta(y) \leq 1$. Again we keep the notation of Case (a). Then $\beta(y) - \beta(x_0) = -\beta(y - z(y))$, and $\beta(y - r(y)) = -f(y - x_0)$; moreover, $\beta(y - z(y)) = -\beta(y) + \beta(p(y)) \leq \beta(y - p(y)) \leq \beta(y - r(y)).$ Thus $|\beta(y) - \beta(x_0) - f(y - x_0)| = -\beta(y - z(y)) + \beta(y - r(y))$. Let $s(y) =$ $z(y) + (1 - f \cdot z(y))x_0$; then $\beta(s(y) - z(y)) = 1 - f \cdot y/\beta(y)$ and $\beta(y - r(y))$ - $\beta(y - z(y)) = \beta(y) - f(y) \leq \beta(s(y) - z(y))$. From now on the proof proceeds as in Case (a). $|\beta(y) - \beta(x_0) - f(cdot(y-x_0)|/\beta(y-x_0) \leq \beta(s(y)-z(y))/\beta(y-x_0)$ $\beta(y - x_0) = [\beta(s(y) - z(y))/\beta(z(y) - x_0)] \cdot [\beta(z(y) - x_0)/\beta(y - x_0)]$. Now, $\beta(z(y) - x_0)/\beta(y - x_0) \leq [\beta(y - x_0) + \beta(y - z'y))] / \beta(y - x_0) = 1 +$ $[\beta(x_0) - \beta(y)/\beta(y - x_0)] \leq 2$, for all $y \neq x_0$; moreover, $\beta(s(y) - z(y)) =$ $|f(z(y) - x_0)|$, and the map $y \to z(y)$ is continuous. Therefore, by condition (2) of the theorem,

$$
\lim_{y \to x_0} \frac{|\beta(y) - \beta(x_0) - f((y - x_0))|}{\beta(y - x_0)} \leq 2 \quad \text{and} \quad \lim_{y \to x_0} \frac{\beta(s(y) - z(y))}{\beta(z(y) - x_0)} = 0.
$$

From the considerations in (a), (b) and (c), it follows that $\lim_{y\to x_0} |h(y, x_0)|/$ $\beta(y - x_0) = 0$. This concludes the proof.

Let (X, α) be a Banach space, and let β be a norm equivalent to α . For each $x \in S_8$, $\nu(x)$ is a support functional at *x* for which $\beta^*(\nu(x)) = 1$.

THEOREM 2. Let (X, α) be a Banach space, and let β be a smooth norm equivalent to α . Then

a) if $v: S_{\beta} \to S_{\beta*}$ is continuous (in S_{β} we consider the α -topology and in $S_{\beta*}$ the α^* -topology y), then β is differentiable;

b)[†] if β is differentiable, then ν is continuous.

Proof. a) Let $x_0 \in S_\beta$, and let $\epsilon > 0$. Then there exists $\delta = \delta(\epsilon, x_0)$ such that

$$
\beta^*(\nu(x)-\nu(x_0)) < \epsilon
$$

whenever

(1)
$$
\beta(x-x_0) < \delta, \text{ and } x, x_0 \in S_\beta.
$$

Let us construct a ball $B_\beta(x_0, r)$ small enough that if $y_0 \in B_\beta(x_0, r) \cap S_\beta$ and $\theta(t) = x_0(1-t) + ty_0, 0 \le t \le 1$, then the curve $y(t) = \theta(t)/\beta(\theta(t))$ is contained in $B_\beta(x_0, \delta) \bigcap S_\beta$. Since β is continuous, there is some $0 < \eta < \delta/2$ such that $|\beta(z) - \beta(x_0)| < \delta/2$ if $\beta(z - x_0) < \eta$. Let $U = \{z \mid \beta(z - x_0) < \eta \text{ and }$ $\nu(x_0) \cdot z = 1$, and consider the cone $C(U) = \{tz | t > 0 \text{ and } z \in U\}$. Then $C(U) \cap S_{\beta} = \{[z/\beta(z)] \mid z \in U\}$; and for any $y = z/\beta(z)$ one has $\beta(x_0 - y) \leq$ $\beta(x_0 - z) + \beta(z - y) = \beta(x_0 - z) + |\beta(z) - \beta(x_0)| = (\delta/2) + (\delta/2) = \delta.$ Since $C(U)$ is open and contains x_0 as an interior point, there is a ball $B_\beta(x_0, r)$ $\subset C(U)$. This ball satisfies our requirements.

t This is due to R. Phelps.

For any $y_0 \in B_8(x_0, r)$, the segment $\theta(t) = (1 - t)x_0 + t \cdot y_0$ is contained in $B_{\theta}(x_0, r)$. By the construction above, the curve $y(t) = \theta(t)/\beta(\theta(t))$ is contained in $B_\theta(x_0, r)$ $\bigcap S_\theta$; and, since β is smooth, $y(t)$ is a differentiable curve (see Proposition 11) in the plane determined by x_0 , y_0 and the origin. Thus, by the mean-value theorem, there is a point $y(t_0)$ such that $y'(t_0) = \lambda(y_0 - x_0)$ for. some scalar $\lambda \neq 0$. Now, by the Hahn-Banach extension theorem, there is a support functional *g* at $y(t_0)$ such that $g(y'(t_0)) = 0$; and, since β is smooth, $q = v(y(t_0)).$

We can now finish the proof. Let $y_0 \in B_\beta(x_0, r) \cap S_\beta$. Then, by (1), $| (\nu(x_0) - \nu(x_0))|^2$ $\nu(y(t_0)) \cdot [y_0 - x_0/\beta(y_0 - x_0)] \vert < \epsilon$; and, by the remarks in the previous paragraph, $\nu(y(t_0)) \cdot [y_0 - x_0/\beta(y_0 - x_0)] = 0$. Therefore, $|\nu(x_0) \cdot (y_0 - x_0)|$ $\beta(y_0 - x_0) < \epsilon$ whenever $\beta(y_0 - x_0) < r, y_0 \in S_B$; so

$$
\lim_{\substack{y\to x_0\\ \beta(y)=1}}\frac{|\nu(x_0)\cdot(y-x_0)|}{\beta(y-x_0)}=0.
$$

It is clear, then, that a) follows from Proposition 13.

b) Assume that β is differentiable (this proof is due to Phelps). If ν is not continuous at some point $x_0 \in S_\beta$, then there is a net $\{x_n\}$ (where *n* is in some directed set *D*) such that $\lim_{n \in D} x_n = x_0$ and $\nu(x_n)$ does not converge to $\nu(x_0)$. Thus, for some $\epsilon > 0$, there is a subnet (still denoted by $\{x_n\}$) such that $\beta^*(\nu(x_n))$ $-\nu(x_0) > 2\epsilon$ and $\lim_{n \in D} x_n = x_0$. But this means that, for each *n*, there is some $y_n \in S_3$ such that $| (\nu(x_n) - \nu(x_0))y_n | \geq 2\epsilon$. Let $z_n = [(\frac{1 - \nu(x_n) \cdot x_0}{\epsilon}]y_n$, and observe that $\beta(z_n) \to 0$ (see Proposition 12). Now $\beta(x_0 + z_n) - \beta(x_0)$ - $\nu(x_0) \cdot z_n \geq \nu(x_n) \cdot (x_0 + z_n) - 1 - \nu(x_0) \cdot z_n = (\nu(x_n) - \nu(x_0)) \cdot z_n + (x_0) \cdot x_0$ $1 \geq [2\epsilon \cdot (1 - (x_n) \cdot x_0)/\epsilon] + \nu(x_n) \cdot x_0 - 1 = 1 - \nu(x_n) \cdot x_0 \geq 0$. Thus $\beta(x_0 + z_n)$ $-\beta(x_0) - (x_0) \cdot z_n / \beta(z_n) \geq | \nu(x_n) \cdot x_0 - 1 | / \beta(z_n) = \epsilon$. This is a contradiction because β is differentiable.

6. The main theorem

THEOREM 3. *A separable Banach space* (X, α) admits a norm β equivalent to α *of class C' if and only if* (X^*, α^*) *is also separable.*

Proof. a) Assume that X^* is separable, and let β^* be the norm of Klee's theorem (Theorem 1). Then β is smooth (Proposition 10), so therefore the map $\nu: S_{\beta} \to S_{\beta*}$ which assigns to each $x \in S_{\beta}$ the normalized support functional at x is continuous if the β -topology is used in S_{β} and the w^{*}-topology, in $S_{\beta*}$ (Proposition 12). Let $x_0 \in S_\beta$, and let $x_n \to x_0$, $x_n \in S_\beta$. Then $\nu(x_n) \to \nu(x_0)$, in the w^{*}-topology, and $\beta^*(\nu(x_n)) \to \beta^*(\nu(x_0))$; so, by Klee's theorem (Theorem 1), $f(x_n) - y(x_0) \to 0$. Therefore, v is continuous in the norm topologies, and β is of class C' (Theorem 2).

b) Assume there is a norm β equivalent to α of class *C'*. Extend the map $\beta' : X - \{0\} \to S_{\beta *}$ to a continuous map $\mu : X - \{0\} \to X^*$ defined by $\mu(x) =$ $\beta(x)\beta'(x)$. Then the image of μ is the set of all support functionals to ${x \mid \beta(x) \leq 1}.$ (*f* is a support functional if $\text{Sup}_{\beta(x) \leq 1} f \cdot x = f(y)$ for some *y* with

 $\beta(y) = 1$.) Let $\{x_n\}$ be a countable dense sequence in X; let $f \in X^*$; and let $U(f)$ be a neighborhood of f. Since the set of support functionals is dense in X^* ([1], Cor. 4, p. 31), there is some support functional g in $U(f)$ of the form $g = \mu(x)$. Thus $x \in \mu^{-1}(U)$, by continuity, and some $x_n \in \mu^{-1}(U)$; so some $\mu(x_n) \in U$. Therefore the sequence $(\mu(x_n))$ is dense in X^* , and X^* is separable.

Remark 1. Let C_0 be the space of all sequences $\{x_n\}$ of real numbers such that $x_n \to 0$ with $||x|| = \text{Sup}_n |x_n|$; let l_1 be the space of all sequences $\{x_n\}$ such that $\sum_{n=1}^{\infty} |x_n| < \infty$, with $||x|| = \sum_{n=1}^{\infty} |x_n|$; let *C*[0, 1] be the space of continuous functions with $||x|| = \text{Sup}_{0 \le t \le 1} |x(t)|$. Then, by Theorem 3, the topologies in l_1 and $C[0, 1]$ cannot be defined by any norm of class C_1 . On the other hand, the topology in C_0 can be defined by a norm of class C_1 . (Phelps has constructed an equivalent norm of class C_1 in C_0 .)

Remark 2. It follows from Theorem 3 that we cannot drop the hypothesis of (X^*, α^*) being separable in Klee's theorem (Theorem 1). Thus, we can not construct any norm in l_{∞} satisfying the conditions of Klee's theorem.

THEOREM 4. Let (X, α) be a separable Banach space. Then, if both α and α^* *are of class C',* (X, α) *is reflexive.*

Proof. Let $\mu: X \to X^*$ and $\mu^*: X^* \to X^{**}$ be defined by $\mu(x) = \alpha(x)\alpha'(x)$ and $\mu^*(f) = \alpha^*(f)(\alpha^*)'(f)$. Now $j:X \to X^{**}$ (defined by $j(X) \cdot f = f(X)$) s an isometry of *X* into X^{**} , and $j = \mu_0^* \mu$. Thus, by Theorem 3, $j(X)$ is dense $\lim_{n \to \infty} X^{**}$. Therefore $j(X) = X^{**}$, and X is reflexive. **l**

CENTRO DE INVESTIGACI6N DEL I.P.N., MEXICO, D.F.

REFERENCES

- [1] E. BISHOP and R. R. PHELPS, *The support functionals of a convex set,* Proc. Sympos. Pure Math., **7** (1963), 27-35.
- [2] D. F. CUDIA, *Rotundity*, *ibid.*, pp. 73-97.
- [3] M. M. DAY, *Strict convexity and smoothness of normed linear spaces,* Trans. Amer. Math. Society, **78** (1955).
- [4] S. DIEUDONNE, Foundations of modern analysis. Academic Press; New York, 1960.
- [5] V. L. KLEE, *Mappings into normed linear spaces,* Fund. Math., **49** (1960), 25-63 .
- . [6] S. LANG, Introduction to differentiable manifolds. Interscience Publishers; New York, 1962.
- [7] S. MAZUR, *Ober schwache convergent in den Raumen (LP),* Studio Math., **4** (1933), 128-33.
- [8] R. R. PHELPS, *A representation theorem for bounded convex sets,* Proc. Amer. Math. Soc., **11** (1960), 976-83.
- [9] R. BoNIC and JOHN FRAMPTON, *Smooth functions on Banach manifolds* (unpublished).
- [10] G. RESTREPO, *Differentiable norms in Banach spaces,* Bull. Amer. Math. Soc., 70 (1964), 413-14.