
WEAK ATTRACTORS IN DYNAMICAL SYSTEMS 

BY NAM P. BHATIA* 

J. Auslander, P. Seibert, and the present author have discussed some proper
ties of compact attractors in dynamical systems defined on locally compact, 
metric spaces [l]. In the present paper we show that most of our results in [1] are 
in fact applicable to a wider class of compact sets, which we prefer to call here 
"weak attractors." In the case of dynamical systems defined in a planar region, 
it is shown that in general the distinction between attractors and weak attractors 
is in the absence or presence of spiraling trajectories in the region of attraction. 
Since we show that a stable weak attractor is a stable attractor, we do not go 
into the properties of stable attractors, as these have been extensively studied 
elsewhere [1], [2]. Examples of weak attractors are already found in the literature 
and they are pointed out as such. 

As this paper is closely related to [1] and we use the same notations and tools, 
we do not give proofs of all the theorems. 

1. Notation and elementary concepts 

X denotes a locally compact metric space, with metric d. R denotes the set 
of real numbers. R+ and R- are the sets of non-negative and non-positive real 
numbers, respectively. 

A continuous map 1r:X X R-. X of the product space X X R into X defines 
a dynamical system ( or continuous flow) on X if the two following conditions 
hold: 

(I) 1r(x, O) = x, for all x E X, 
(II) 1r(1r(x, t1), t2) = 1r(x, t1 + t2), for all t1, t2 E R, x EX. 

If, for each x EX, rj,(x) c X, then, for any Mc X, 

rt,(M) = U rt,(x). 
zEM 

For any given x E X, the orbit, the positive semi-orbit, and the negative semi
orbit are, respectively, the sets-y(x) = 1r(x,R),'Y+(x) = 1r(x,R+),and-y-(x) = 
1r(x, R-). 

M c Xis called invariant if -y(M) = M. It is called positively (negatively) 
invariant if -y+(M) = M c,;,-(M) = M). 

The positive ( or omega) limit set A +(x) of an orbit -y(x) is the set of all points 
y E X, such that there exists a sequence { t,.} in R+, with t,. -. + co and 
1r(x, t,.) -. y. 

The negative or alpha limit set A-(x) of an orbit -y(x) is defined similarly. It is 
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the set of ally EX such that there exists a sequence {tn} in R-, with tn - - oo 
and 7r(X, tn) - y. 

For x E X, M c X, and a > 0, the symbols d(x, M), S(M, a), B(M, a), 
andH(M, a) stand for, respectively, inf {d(x, y) :y E Ml, {x E X:d(x, M) < a}, 
{x E X:d(x, M) ~ a}, and {x E X:d(x, M) = a}. M, and aM are the closure 
and boundary of the set M. 

The following properties of positive limit sets are well known. 

LEMMA 1. For any x E X, 
(i) .,,+(x) = ,y+(x) U A+(x); 

(ii) A+ ( x) is closed and invariant; 
(iii) if A+(x) is compact, then it is connected. 

Properties (i) and (ii) follow easily from the definitions. (iii) is proved in 
[4], chapter V. 

Remark. Another interesting property of a set A+(x) is that if it is not com
pact, then none of its components is compact. This property was pointed out to 
us by Professor W. Huebsch.We have not seen it explicitly mentioned anywhere. 
The proof can be made to depend on the fact that a locally compact, Hausdorff 
space possesses a one-point compactification by means of an ideal point oo. The 
given dynamical system is extended to a dynamical system on the compactified 
spacebydefiningthepoint oo tobe a rest point (i.e., {oo} = 'Y(oo)). If now 
A +(x) is the positive limit set of any non-compact trajectory 'Y(x) in the given 
system, then A +(x) U { oo} is the positive limit set of the same trajectory in the 
new system. This set is compact and, by property (iii) of Lemma 1, is connected. 
Now A+(x) is an open subset of the Hausdorff continuum A+(x) U { oo}. Any 
component of A +(x), therefore, must have a boundary point in the complement 
of A+(x) in A+(x) U { oo}, i.e., in { oo}. Thus no component can be compact (see 
[7], p. 37). 

2. Weak attractors, attractors, and stable sets 

In what follows, M denotes a compact, nonempty subset of X, unless stated 
to the contrary. The set M will be called 

( i) a (positive) weak attractor if, for some o > 0, A+ ( y) n M ~ 0 for each 
y E S(M, o), 0 being the empty set. 

(ii) a (positive) attractor if, for some o > 0, A+(y) ~ 0 and A+(y) c M 
for each y E S(M, o). 

(iii) (positively) stable if, for each a > 0, there is a o > 0 such that 
,y+(S(M, o)) c S(M, a). 

Negative weak attractors, negative attractors, and negative stability are 
similarly defined. (We shall omit the adjective "positive" in our discussion when 
referring to positive attractors, etc.) 

It is clear that (ii) implies (i); i.e., an attractor is a weak attractor. However, 
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(i) does not imply (ii). As to examples of weak attractors which are not at
tractors, we refer to Mendelson's geometrical example (see [3] fig. 2) and Digel's 
analytical example ( [5], p. 154). An example on a torus is in the book of N emytskii 
and Stepanov ([4], p. 346), and the attractor of Carlos Perello [1] is a negative 
weak attractor as well. 

By the region of attraction A (M) of the set M ( which need not be a weak 
attractor) we mean the set of all x E X such that A+(x) n M ,-,:, 0. Note that M 
is a weak attractor if and only if A(M) is a neighborhood of M. Further, in the 
case of an attractor our definition is easily seen to be equivalent to the one given 
in [1]. 

LEMMA 2. If M is a weak attractor, then A (M) is an open invariant set con
taining M. 

The proof is the same as that of Lemma 1 in [1] and so is omitted. 

3. The prolongation and the prolongational limit set 

If x E X, the (first) (positive) prolongation D+(x) of x, is the set of ally Efx 
such that there exist sequences {xn} in X and {tn} in R+, with Xn - x and 
'll'(Xn, tn) ~ y (see [1], [2], [6]). 

LEMMA 3. (i) For any compact set M c X, D+(M) is closed and positively 
invariant. (ii) The compact set Mis stable, if and only if D+(M) = M. 

(i) can easily be proved from the definitions. For the proof of (ii) see [6], 
page 177. 

For x. E X, the (positive) prolongational limit set Av +(x) of xis the set of all 
points y E X such that there are sequences { Xn} in X and { tn} in R+, with Xn - x, 
tn - + 00, and 'll'(Xn, tn) - y. The following lemma is analogous to Lemma 1. 

LEMMA 4. For any x E X, 
(i) D+(x) = -y+(x) U Av+(x); 

(ii) Av+ ( x) is closed and invariant; 
(iii) if Av +c X) is compact, then it is connected. 

(i) and (ii) easily follow from definitions. Proof of (iii) will be made to depend 
on the following lemma. 

LEMMA 5. For any x EX, if w E A+(x), then 

Av+(x) C D+(w). 

In particular, if w E A+ ( x) and y E Av+ ( x), then there exist sequences { Xn} in 
X, { tn} and { 'Tn} in R+, with Xn - x, tn - 'Tn > 0 for each n, t,. - + 00' 'Tn - + 00' 

,r(Xn ''Tn) - w, and 'll'(Xn' t,.) - y. 

This lemma is the same as Lemma 4 in [1], the assertion about sequences being 
a step in the proof there. Therefore we omit the proof. 

Proof of Lemma 4 (iii). To be able to apply Lemma 5, we note first that if 
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Av +(x) is compact and non-empty, then A +ex) -¥ JiJ, For if we assume the con
trary, then there is an a > 0 and a T > 0 such that 1rex, t) EE B(An +(x), a) for 
t ~ T. We may thus assume, without loss of generality, that x EE Av+ex), that 
a > 0 is such that 'Y +(x) n Be An +ex), a) = 0, and that B(Av +(x), a) is com
pact. Now let y E Av+ ex). Then there is a sequence { Xn} in X and a sequence 
f tn} in R+, with Xn-+ x, tn-+ + 00, and 1r(Xn, tn) -+ y. We may assume that 
Xn EE BeAv+(x), a) and 1rexn, tn) E S(Av+ex), a) for each n. By continuity 
of the map 1r, there exists for each n a tn', 0 < tn' < tn such that 1rexn, tn') E 
H(An+(x), a). Since H(Av+(x), a) is compact, the sequence {1r(xn, tn')} has 
a limit pointz inH(Av +(x), a). We may assume that 1r(xn, tn')-+ z. Then either 
z E 'Y+(x) or z E An+(x). But since z E H(Av+(x), a), we have z EE An+(x). 
Thus z E -y+(x). This, however, contradicts the fact that 

-y+(x) n B(An+(x), a) = JiJ. 

We have thus proved that A+ ( x) -¥ JiJ. To prove now that Av+ ( x) is connected, 
assume the contrary. Then there are non-empty, closed (in this case compact) 
sets A1 and A2 such that A1 n A2 = 0 and A1 U A2 = Av +(x). Choose now any 
w E A+(x). As A+(x) c Av+(x), we have w E A1 or w E A2. Suppose w E A1, 
and choose y E A2. By Lemma 5, there are sequences {xn} in X, ftn} and {rn} 
in R+, with Xn - x, tn - + 00' 'Tn - + 00' tn - 'Tn > 0 for each n, 1r(Xn ''Tn) - w, 
and1r(xn, tn)-+ y. We can choose a> 0 such that thesetsB(A1, a) andB(A 2, a) 
are compact and disjoint. We may also assume, without loss of generality, 
that 1r(Xn, rn) E S(A1, a) and 1r(xn, tn) E S(A2, a) for each n. But then, by 
the continuity of the map 1r, there is for each n a tn', tn > tn' > Tn, such that 
1r(xn, tn') E H(A1, a). As H(A1, a) is compact, this implies the existence of a 
limit point Z E H(A1, a) of the sequence { 1r(Xn, tn')}. As tn'-+ + 00, we have 
z E Av+ ( x) ; but z EE A1 U A2-which is a contradiction. Thus Av+ ( x) is connected. 

Remark. Av+ ( x) too possesses the property mentioned in the remark after 
Lemma 1. This may be proved by the same method. 

Another interesting observation is that -y+(x) is always connected, whereas 
D+ ( x) is in general not connected. For example, see the case of an improper 
saddle point at infinity ([4], p. 411). This example shows further that if An+(x) 
is not compact, then A+(x) may be empty, even though Av+(x) is connected. 
We have, however, the following: 

LEMMA 6. Let M c X be connected; then if D+(M) is compact, it is connected. 

Proof. If D+(M) is not connected, then there are non-empty compact sets 
A1 and A2 such that A1 U A2 = D+(M) and A1 n A2 = 0. Since M is con
nected and JJ![ c n+ (M), we have M C A1 or M C A2 . Let M C A1 , and choose 
y E A 2 . There are then sequences { Xn} in X and { tn} E R+, with Xn-+ x E MC A1 
and 1r(xn, tn) -+ y E A 2. We may choose a > 0 such that the sets BeA1, a) 
and BeA2, a) are compact and disjoint. Further, we may assume that 
Xn E S(A 1, a) and 1rexn, tn) E S(A 2, a) for each n. Then, by continuity of the 
map 1r, there exists for each n a tn', 0 ;;:;; tn' < tn such that 1r(Xn, tn') E H(A1, a). 
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Since H(A 1 , a) is compact, this implies the existence of a point z of D+(x) in 
the setH(A1, a). This is ruled out, asD+(x) c D+(M) = A1 U A 2 andH(A 1, a) 
n (A1 U A2) = 0. This contradiction proves that D+(M) is connected. 

4. Theorems on weak attractors 

THEOREM 1. Let the set M be stable. Then M is an attractor if and only if M is a 
weak attractor. 

Before proving this theorem, we give 

LEMMA 7. For any set Mc X, x E A(M) implies A +ex) c D+(M). 

Proof. As A+(x) n M ;= 0, choose w E A+(x) n M. Letnowy E A+(x) be 
arbitrary. There are sequences { t,.} and { rn} in R+, with r,. --+ + oo, tn --+ + oo, 

1r(x, tn) --+ y, and 1r(x, r,.) --+ w. We may assume, if necessary by choosing a 
subsequence, that tn - Tn > 0 for each n. As 7l"(X, tn) = 1r(11"(X, Tn), tn - Tn), 

we see that y E D+(w). This proves the lemma. 

Proof of Theorem 1. Let M be a weak attractor. Let x E A (M) ""M. As 
A+(x) n M ;= 0, choose w E A+(x) n M. Then by Lemma 7, A+(x) c D+(M). 
However, Mis stable; so D+(M) = M by Lemma 3 (ii). We have thus proved 
that A+(x) c M for each x E A(M); i.e., Mis an attractor. The converse is 
trivial; thus the theorem holds. 

THEOREM 2. Let the set M be a weak attractor. Then D+(M) is a compact set 
which is a stable attractor, its region of attraction, A(D+(M)), coinciding with A(M). 
Moreover, D+ (M) is the smallest stable attractor containing M. 

The proof of this theorem differs from that of Theorem 1 in [1] only in 
insignificant detail. It is omitted. We have in fact the following stronger version 
of the Lemma 5 in [1] whose proof is also exactly the same. 

LEMMA 8. Let the set M be a weak attractor, and let a> 0. Then there is a T > 0 
such that 

D+(M)c 1r(B(M,a), [O,T] ). 

The following theorem is a stronger version of Theorem 2 in [1]. 

THEOREM 3. Let M be invariant. If the set M is a weak attractor and 
y E D+(M), then A-(y) n M ;= 0. 

Proof. If y E M, then A-( y) C M, since Mis compact and invariant. Suppose 
now y EE M. By Lemma 8, if a > 0, then there is a t < 0 such that 
1r(y, t) E B(M, a). There is thus a sequence {t,.} of negative reals such that 
1r(y, tn) --+ x E M. If this sequence is bounded below, then there is a convergent 
subsequence {tn'} of {t,.}, tn'--+ r ~ 0. But then 1r(y, tn')--+ 1r(y, r) = x, and so 
x E 'Y(y). Since Mis invariant, this implies 'Y(Y) c Mand, in particular also, 
y E M-which is a contradiction. Thus the sequence { tn l cannot have a bounded 
subsequence; i.e., tn --+ - oo. But then x E A-(x); and since x E M, we have 
proved thatA-(y) n M ;= 0. This proves the theorem. 
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We recall that Carlos Perello's example (given in [1]) of an attractor on a torus 
indicated that, even for an attractor, A-(y) c M does not hold for each 
y E n+(M) in general. The following theorem gives the characterization of the 
set D+(M) in the case of a weak attractor M. 

THEOREM 4. If a compact invariant set Mis a weak attractor, then 

n+(M) = {y E X:A-(y) n M ~ ,0}. 

Proof. If the set on the right is denoted by P, then n+(M) c P follows from 
Theorem 3. But P c D+(M) always holds (even when Mis not a weak at
tractor) ; for if z E A -( y) n M, then there is a sequence { tn} in R-, with tn - - oo 

and 1r(y, tn) - z. This implies that y E AD +(z) c AD +(M) c n+(M), and the 
theorem is proved. 

The examples of Mendelson and Digel in the plane show that a weak attractor 
need not be a weak negative attractor. On the other hand the two examples on 
the torus indicate that the possibility that a weak attractor is also a negative 
weak attractor is not always ruled out. The following theorem throws light in this 
direction. 

THEOREM 5. A positive weak attractor M is also a negative weak attractor if and 
only if 

D+(M) = A(M). 

Proof. The set A(M) is a neighborhood of M; therefore, if n+(M) = A(M), 
we have, by Theorem 3, A-(y) n M ~ ,0 for each y E A(M). Thus Mis a nega
tive weak attractor. If n+(M) ~ A(M), then n+(M) cannot be a neighborhood 
of M. Thus every neighborhood U of M meets A(M)',p+(M). If however, 
y E Ufl (A(M)"'D+(M)), thenA-(y) nM = 0;forotherwisey E D+(M), by 
Theorem 4. Hence Mis not a negative weak attractor. This proves the theorem. 

5. Dynamical systems defined in a planar region 

To start with, we note the following consequence of Theorem 5 for general 
dynamical systems defined in the euclidean plane. 

THEOREM 6. If the set Mis a weak attractor, then it cannot be a negative weak 
attractor. 

Proof. M can be a negative weak attractor only if n+(M) = A(M). This is 
impossible in the plane, as n+(M) is compact and hence closed and bounded. But 
the only closed sets which are also open are the empty set and the whole plane. 
SinceA(M) is open, we cannothaveD+(M) = A(M). This proves the theorem. 

For the remaining part we assume that our dynamical system is defined in the 
euclidean plane by a system of differential equations 

X1 = f1(X1, X2), X2 = f2(X1, X2), ( • = ~) · 

From now on M will stand for a compact and invariant set. 
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We shall let x stand for the pair (x1 , x2) and shall continue using the same nota
tion as in the previous sections. Our first result is a stronger version of Theorem 3 
in [1]. 

THEOREM 7. Let the set M be a weak attractor, and let M be connected. Then, for 
each X E n+(M), we have 

(A+(x) U r(x)) c M. 

Proof. Let x E D+(M). Then, by Theorem 3, A-(x) n M ¢ 0, and as 
D+(M) c A(M), we also have A+(x) n M ¢ 0. If x EM, then A+(x) U 
A-(x) c M (for Mis compact and invariant). Let now x E D+(M)~M, and 
suppose, if possible, that A+(x) ¢ M (A-(x) ¢ M). Choose y E (A+(x)~M) 
(y E (A-(x) ~M)). Certainly y is not a critical point; for otherwise 'Y(Y) = A +(y) 
= r(y) = {y}, and, since y E D+(M) c A(M), we will have y E M, as 
A +(y) n M ¢ 0. Hence y is a regular point. Again y i 'Y(x). For if y E ,,(x), 
then 'Y(x) will be a periodic orbit, so that ,,(x) = A +(x) = A-(x). Since 
A +(x) n M ¢ 0 and Mis invariant, we will then have ,,(x) c Mand, in particu
lar also, y E M-which contradicts the assumption that y i M. Since y is a 
regular point and y i 'Y(x), we can draw a transversal Z through y with the 
property that 'Y+(x) ( ,,-(x)) intersects l in a monotone sequence of points {Pn}, 
Pn - y. The portion of the semi-orbit 'Y +(x) ( ,,-(x)) between any two successive 
points, say P 1 and P 2 , of this sequence and the part of the transversal between 
them form a Jordan curve J. This curve J divides the plane into two connected 
sets A1 and A2 which are disjoint. Further, one of them (say A1) is positively in
variant, and the other, A 2 , is negatively invariant. Consequently, A+(x) c Ai 
andA-(x) c A2. But, asMisconnectedandM nJ = 0, wemusthaveM c A1, 
sinceM n A +(x) ¢ 0. This shows that Mn A-(x) = 0, contradicting Theorem 3. 
This proves the theorem. 

Indeed, if M is not connected, the theorem does not hold. 

Example 1. Consider the dynamical system in the plane, given in polar co
ordinates by the equations 

r = r(I - r), 

• 2 1 3/ 
sm 0 + log 3 , 0 < r ~ 74, 

• 2 + 1 ¾ 1 
(J = sm O log (r/1 - r)' 4 < r < ' 

sin2 0, r = I, 

. 2 1 
sm 8 + log (r/r - 1) 'r > I. 

The phase portrait is given in Figure 1. The set M consisting of the three critical 
points ( 0, 0), ( 1, 0), and ( l, 71") is a weak attractor. This set M is not connected. 
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D+(M) is the set of all points with r ~ l. Note that, for any point P with 
0 < r < I, A +(P) is the set of all points with r = I. Thus A +(P) ¢ M. 

Theorem 7 suggests that in the case when Mis connected the distinction be
tween weak attractors and attractors must lie in the behavior of trajectories not 
contained in D+(M). 

THEOREM 8. Let the set M be connected. Let M be a weak attractor. If Mis not an 
attractor, then there are spiraling orbits in A(M)',,p+(M). If, further, D+(M) is 
simply connected, then every such orbit is a spiral. 

Proof. There exists x E A(M)"'D+(M) such that A+(x) ¢ M. But A+(x) c 
aD+(M). There is therefore a y EA+(x) n aD+(M), y EE M. Since 
y E A(M)"'M, y is a regular point. Further y EE 'Y(x). There is thus a transversal 
l having y as an inner point, and the semi-orbit 'Y + ( x) intersects l in a monotone 
sequence {Pnl, with Pn - y. Thus 'Y+(x) is a spiraling trajectory (see (4], pp. 
43-44). Let now D+(M) be simply connected. In the above discussion, we let 
J, denote the Jordan curve formed by the portion of the semi-orbit 'Y + ( x) between 
Pi and Pi+i and the portion of the transversal l between Pi and P;+1. Each J, 
divides the plane into two parts, Ai and Bi , one of which is simply connected. 
We shall assume that Ai is simply connected. In general, there are two possi
bilities: (i) Ai ::J Ai+l for each i, and (ii) Ai c Ai+dor each i. Note that in case 
(ii) M c Bi for each i, and, since D+(M) is connected and contains M, we have 
in fact D+(M) c Bi . But in this case A +(x) = a( U~1 Ai). As U:=1 Ai is simply 
connected andA+(x) c D+(M), wemusthaveD+(M) ::J U~1 Ai, sinceD+(M) 
is simply connected. This is absurd because D+(M) n Ai = 0 for each i. This 
shows that the case (ii) is impossible. In the event of case (i), we have 
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D+(M) c A, for each i. Note now that any trajectory which intersects the 
transversal l, say at a point Q, between the points P, and P'+ 1 , must intersect l 
in a monotone sequence of points { Q;}, Q; lying between P; and P ;+i , j ~ i. ( This 
is so because such a trajectory must enter each of the Jordan curves J; from the 
region B; into A;, and this can be done only between the points P; and P;+• .) 
Noticefurtherthatforanypointy E A(M)'-,p+(M), y EE -y(x), wehavey EE A; 
for sufficiently largej. Hence each such trajectory must intersect the transversal 
l. This shows that each such trajectory is a spiral and the theorem is proved. 

THEOREM 9. Let the set M be simply connected. Let M be an unstable attractor. 
Then the set A+(x) for each orbit -y(x) in A(M)"'--M contains critical points only. 

Proof. If, for some x E A(M)"'--M, A+(x) contains a regular pointy, which 
necessarily lies in the boundary of M, then, following the method of proof of 
Theorem 8, it is seen that M will be stable. This contradicts the hypothesis that 
M is unstable. We leave the details to the reader. 

COROLLARY. Let M be simply connected; and let M be an unstable attractor. As
sume further that iJM contains regular points. Then no semi-orbit 'Y + ( x), with 
x E A(M)"'--M, can approach M spirally. 

Remark. Theorem 9 and the above corollary leave still open the question of 
spiraling orbits in the set A(M)"'--M corresponding to an unstable attractor M, 
whose boundary iJM consists only of critical points. The answer to this question 
may depend on an answer to the following problem. 

Problem. Let M be an isolated critical point; let M be an attractor; and let there 
exist a spiraling semi-orbit -y+(x) approaching M. Can M be unstable? 

Added in proof. Dr. Peter Seibert has informed the author that the answer to 
the above problem is in the affirmative. In fact Mendelson's example [3] can be 
transformed into an unstable critical point such that all orbits besides the critical 
point are spirals approaching it. 
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