A SAMELSON PRODUCT IN *S0(2n)**

BY MARK MAHOWALD

Consider the sequence

$$
\pi_j(O(2n)) \to \pi_j(O(2n+1)) \xrightarrow{\ p_{\ast} } \pi_j(S^{2n}) \xrightarrow{\ \partial_{\ast} } \pi_{j-1}(O(2n)).
$$

The main result of **[1]** can be thought of as the following: the homomorphism ∂_* is just $i_*:\pi_i(S^{2n}) \to \pi_i(V_{4n,2n})$ followed by a monomorphism onto a direct summand $\partial_{2*}\pi_i(V_{4n,2n}) \to \pi_{i-1}(S^{2n})$ for all $i < 4n - 1$. The main result of this note is concerned with what happens if $j = 4n - 1$.

Let $P(\iota_{2n})$ be the Whitehead product of ι_{2n} with itself, where ι_k represents a generator of $\pi_k(S^*)$. Then $\partial_*P(\iota_{2n})$ is called the Samelson product, and we are interested in the order of this element. In particular, we will prove

THEOREM A. If $n \neq 1, 2,$ or 4, then the order of $\partial_* P(\iota_{2n})$ is $a_n(2n-1)!/8$, *where* $a_n = 1$ *if n is even and* 2 *if n is odd.*

For comparison with the result of [1] we have

THEOREM B. If $i: S^{2n} \longrightarrow V_{4n+1,2n+1}$ is a generator of $\pi_{2n}(V_{4n+1,2n+1})$ and if $n \neq 1, 2, or 4$, *then* $i_*P(\iota_{2n})$ *is infinite cyclic and generates a direct summand.*

Consider the sequence **same** sequence

$$
SO(2n) \xrightarrow{i} SO(4n + 1) \xrightarrow{p} V_{4n+1,2n+1}.
$$

THEOREM C. Let α_n generate $\pi_{4n-1}(SO(4n + 1)), n \neq 1, 2, or 4$. Then

 $p_*(\alpha_n) = (a_n/4)(2n-1)!i_*P(\iota_{2n}).$

Lundell announced results [6] related to these (in particular to Theorem A), but these sharpen his.

The proof of Theorem A uses the strong form of James' result [5] which gives the commutative diagram, exact on the two components for all j ,

$$
\rightarrow \pi_j(SO(2n)) \rightarrow \pi_j(SO(2n+1)) \rightarrow \pi_j(S^{2n}) \longrightarrow
$$

\n
$$
\downarrow J \qquad \qquad \downarrow J \qquad \qquad \downarrow \Sigma
$$

\n
$$
\rightarrow \pi_{j+2n}(S^{2n}) \longrightarrow \pi_{j+1+2n}(S^{2n+1}) \longrightarrow \pi_{j+1}(S^{4n+1}) \longrightarrow.
$$

In addition we need the sharpened form of the Barratt-Mahowald result [1] (due to Barratt [2]), which asserts that, for $n \neq 1$, 2, or 4, if α_n generates

^{*} This work was supported by the U.S. Army Research Office (Durham).

 $\pi_{4n-1}(SO(4n+1))$, then there is an element α_n' in $\pi_{6n-1}(S^{2n})$ such that Σ^{2n+1} $= J_{\alpha_n}$.

The above result of Barratt implies, using the diagram

$$
\pi_{4n}(BSO(4n + 1))
$$
\n
$$
\uparrow i_{4n}(BSO(2n)) \longrightarrow \pi_{4n}(BSO(2n + 1))
$$
\n
$$
\downarrow J \qquad \qquad J
$$
\n
$$
\pi_{6n-1}(S^{2n}) \longrightarrow \pi_{6n-1}(S^{2n+1}),
$$

that there is an element $\alpha \in \pi_{4n}(BSO(2n + 1))$ such that $i_{*}\alpha$ generates $\pi_{4n}(BSO(4n + 1))$ and $J(\alpha) \in im\Sigma$. Consider the bundle $S^{2n} \to Y \to S^{4n}$ induced over S^{4n} by α . In the homotopy sequence of this bundle, $\partial_{*}u_n$ is the attaching map by which, in Y , the cell in dimension $4n$ is attached to the cell in dimension 2n. Using James' result, we have $\Sigma \partial * \iota_{4n} = 0$. Hence $\partial * \iota_{4n} = \lambda P(\iota_{2n}),$ where λ is some integer. Clearly the order of the Samelson product is just λ .

To compute λ we consider the diagram

It is clear that i_1 is the classifying map for the tangent bundle of S^{2n} , and hence. $i_1 * \chi = 2_{\kappa_{2n}}$, where κ_{2n} generates $H^{2n}(S^{2n}; Z)$, and χ is the Euler class. Let y_i generate $H^{i}(Y; Z)$ for $i = 2n, 4n$, or 6n. Let $p_n \in H^{4n}(BSO(2n + i)), i = 0$ or 1, be the nth Pontryagin class. Then $\alpha^* p_n = a_n(2n - 1)!$ K_{4n} where K_{4n} generates $H^{4n}(S^{4n}; Z)$ and $a_n = 1$ if n is even and 2 if n is odd ([7], p. 131). Putting these facts together, we have $\bar{\alpha}^* \chi = 2y_{2n}$ and $\bar{\alpha}^* p_n = a_n (2n - 1)! y_{4n}$. But, in $H * (BSO(2n))$, $\chi^2 = p_n (7]$, p. 84). Hence $4y_{2n}^2 = a_n (2n - 1)! y_{4n}$. Finally, in any complex $S^{2n} \bigcup_{\lambda P(i_n)} e^{4n}$, the cup product square of the cell in dimension 2n is 2 λ times the cell in dimension 4n. Hence $\lambda = a_n(2n - 1)!/8$.

To prove Theorem B we first recall some facts about the cohomology of Stiefel manifolds. According to Borel [3], $H * (V_{k+m,m} ; Z_2)$ is an algebra in primative generators $h_i \in H^i(V_{k+m,m}; Z_2), k \leq i < k+m$. The Steenrod algebra acts according to Sq^{*i*} $h_i = {i \choose j} h_{i+j}$. If $k \equiv 0 \mod 2$, then $H^k(V_{k+m,m}; Z) = Z$, while $H^{2i}(V_{k+m,m}; Z) = Z_2 \text{ if } k \leq 2i < k+m-1.$

Let Y' be the space in the Postnikov tower of $V_{4k+1,2k+1}$ for which all the homotopy groups up through dimension $4k - 2$ have been added. That is, there is a map $f: V_{4k+1,2k+1} \to Y'$ such that $f_*: \pi_j(V_{4k+1,2k+1}) \to \pi_j(Y')$ is an isomorphism ${\rm for}\, j\le 4k-2\, {\rm and}\, \pi_j(Y')=0\, {\rm for}\, j\ge 4k-1. \, {\rm Then}\, j^*{\rm is\, an\ isomorphism\, through}$ dimension $4j-2$. Define classes y_i' in $H_*(Y')$ by $f^*y_i' = h_i$.

LEMMA 1. *Suppose* $2^{j-1} < 2k < 2^j$ and $2k = 2^i(2l - 1)$. *Then in* $H^*(Y'; Z_2)$, $\operatorname{Sq}^{2k} y_{2k} = \operatorname{Sq}^1 \operatorname{Sq}^{4k-2j} y_{2i-1}$.

Proof. Using the Adem relation and Borel's formula, we see
$$
Sq^{2k}y_{2k}' = Sq^{2^i+1}y_{2k}'
$$
 and $Sq^{2^{i+1}j}y_{2k}' = Sq^{2^{i+1}l+2k-2^{j}+1}y_{2^{i}-1}'$. Finally
\n $Sq^{2^i} Sq^{2^{i+1}l+2k-2^{j}+1}y_{2^{j}-1}' = Sq^{4k-2^{j}+1}y_{2^{j}-1}' = Sq^{1} Sq^{4k-2^{j}}y_{2^{j}-1}'$.

Let $\lambda: S^{4n} \to BSO(4n + 1)$ be a generator of $\pi_{4n}(BSO(4n + 1)) = Z$. We then have this diagram:

Let κ_{4k} generate $H^{4k}(S^{4k}; Z)$. If $j < 4k$, then i_1* is an isomorphism and we define classes $y_i \in H^i(Y)$ such that $i_1 * y_i = h_i$.

LEMMA 2. *If* $n \neq 1, 2$, or 4, *then* $H^{4n}(Y; Z) = Z + Z_2$ *and the sequence* $H^{4n}(S^{4n})$ $\rightarrow H^{4n}(Y) \rightarrow H^{4n}(V_{4n+1,2n+1})$ *splits.*

Proof. Let p_n be the *n*th Pontryagin class. Now $\lambda^* p_n = a_n (2n - 1)! \kappa_4$. But, in $H * (BSO(2n); Z)$, $\chi^2 = p_n$, where χ is the Euler class. Also $\lambda_1 * \chi = 2y_{2n}$. Combining these results, we see that $\chi_1 * p_n = a_n (2n - 1)! p_1 * \kappa_4$ and that it also equals $4y_{2n}^2$. Since $i_1*y_{2n}^2 \neq 0$ (even mod 2), y_{2n}^2 cannot be divided by 2; yet $4y_{2n}^2$ ² must be divided by $a_n(2n - 1)$!, which is 8d for some d if $n \neq 1, 2$. This can only happen if $H^{4n}(Y; Z) = Z + Z_2$.

Assume now that $n \geq 3$. Let $a = p_1 * \kappa_1$, and let *b* generate the finite part. Let $S^{2n'}$ be the stage of the Postnikov tower of S^{2n} in which all the homotopy up through dimension $4n - 2$ has been added. Note also that Y' is the corresponding stage for Y, as it is for $V_{4k+1,2k+1}$. Since $H^{4n}(Y; Z) = Z + Z_2$, $H^{4n}(Y'; Z) =$ $Z + Z_2$ also. Let *a'* and *b'* be the generators of the infinite and the finite parts, respectively (*a'* is not unique).

LEMMA 3. If $n \neq 1, 2$, or 4 *then, in* $H*(Y';Z), y_{2n}^{\prime\prime} = 2a' + b'.$

Proof. If $n \neq 2^j$, then Lemma 1 asserts that $(y_{2n}^{\prime 2})$ mod 2 is in Sq¹ $H^{4n-1}(Y'; Z_2)$. Hence $y_{2n}^{\prime 2} = 2da' + b'$, where d is some integer. Consider the map $f: S^{2n'} \to Y'$

which induces an isomorphism in homotopy in dimension 2n. Then $f*(y_n^2)$ is twice a generator. This implies that $d = 1$.

Now suppose that $n = 2^j$. According to Brown and Peterson [4], the unstable secondary cohomology operation φ_{2n} based on Sq² Sq²ⁿ⁻¹ = 0, which is a relation on integer classes of dimension $2n$, is non-zero in the two-cell complex S^{2n} $\bigcup_{P(i_{2n})} e^{4n}$. Since $Sq^{2n-1} = Sq^1 Sq^{2n-1}$ and $H^{4n-1}(Y'; Z) = 0$, the operation is defined on $y_{2n'}$. Mod 2 we have $f * \varphi_{2n}(y_{2n'}) \neq 0$, with zero indeterminacy.
Hence, mod 2, $f *$ is non-trivial. But if $y_{2n'}^{2} = a' + b'$, then $f * (a') \equiv 0 \mod 2$ (since with integers for coefficients it is twice a generator). This completes the proof of the lemma.

Proof of Theorem B. Clearly the k-invariant for the infinite part of $\pi_{4k-1}(V_{4k+1,2k+1})$ is *a'* and $f*a'$ is the k-invariant for $[\iota_{2n}, \iota_{2n}]$.

Theorem C now is just a restatement of a portion of what was proved to get Theorems A and B.

NoRTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS

REFERENCES

- **[1] M.** G. BARRATT and M. E. MAHOWALD, *The metastable homotopy of O(n),* Bull. **Am.** Math. Soc., 70(1964), 758-60.
- [2] M. G. BARRATT (unpublished).
- [3] A. BoREL, *La cohomologie mod 2 de certains espaces homogenes,* Com. Math. Helv. **27** (1953) 165-97.
- [4] E. BROWN and F. P. PETERSON, *Whitehead products and cohomology,* Quart. J. Math., 15(1964) 116-20.
- [5] I. M. JAMES, *Suspension sequences of a triad,* Ann. of Math., 63(1956) 191-246.
- (6] A. T. LUNDELL, *A Samelson product in S0(2n),* Not. Am. Math. Soc., 11(1964) 113.
- [7] J. MILNOR, *Lectures on Characteristic Classes.* Mimeographed notes; Princeton, 1957.