A SAMELSON PRODUCT IN $SO(2n)^*$

By MARK MAHOWALD

Consider the sequence

$$\pi_j(O(2n)) \to \pi_j(O(2n+1)) \xrightarrow{p_*} \pi_j(S^{2n}) \xrightarrow{\partial_*} \pi_{j-1}(O(2n)).$$

The main result of [1] can be thought of as the following: the homomorphism ∂_* is just $i_*:\pi_j(S^{2n}) \to \pi_j(V_{4n,2n})$ followed by a monomorphism onto a direct summand $\partial_{2*}:\pi_j(V_{4n,2n}) \to \pi_{j-1}(S^{2n})$ for all j < 4n - 1. The main result of this note is concerned with what happens if j = 4n - 1.

Let $P(\iota_{2n})$ be the Whitehead product of ι_{2n} with itself, where ι_k represents a generator of $\pi_k(S^k)$. Then $\partial_* P(\iota_{2n})$ is called the Samelson product, and we are interested in the order of this element. In particular, we will prove

THEOREM A. If $n \neq 1$, 2, or 4, then the order of $\partial_* P(\iota_{2n})$ is $a_n(2n-1)!/8$, where $a_n = 1$ if n is even and 2 if n is odd.

For comparison with the result of [1] we have

THEOREM B. If $i: S^{2n} \to V_{4n+1,2n+1}$ is a generator of $\pi_{2n}(V_{4n+1,2n+1})$ and if $n \neq 1, 2, \text{ or } 4$, then $i_*P(\iota_{2n})$ is infinite cyclic and generates a direct summand.

Consider the sequence

$$SO(2n) \xrightarrow{i} SO(4n+1) \xrightarrow{p} V_{4n+1} \xrightarrow{2n+1} .$$

THEOREM C. Let α_n generate $\pi_{4n-1}(SO(4n+1)), n \neq 1, 2, or 4$. Then

 $p_*(\alpha_n) = (a_n/4)(2n-1)! i_*P(\iota_{2n}).$

Lundell announced results [6] related to these (in particular to Theorem A), but these sharpen his.

The proof of Theorem A uses the strong form of James' result [5] which gives the commutative diagram, exact on the two components for all j,

In addition we need the sharpened form of the Barratt-Mahowald result [1] (due to Barratt [2]), which asserts that, for $n \neq 1$, 2, or 4, if α_n generates

^{*} This work was supported by the U. S. Army Research Office (Durham).

 $\pi_{4n-1}(SO(4n+1))$, then there is an element α_n' in $\pi_{6n-1}(S^{2n})$ such that $\Sigma^{2n+1}\alpha_n' = J\alpha_n$.

The above result of Barratt implies, using the diagram

that there is an element $\alpha \in \pi_{4n}(BSO(2n + 1))$ such that $i_*\alpha$ generates $\pi_{4n}(BSO(4n + 1))$ and $J(\alpha) \in im\Sigma$. Consider the bundle $S^{2n} \to Y \to S^{4n}$ induced over S^{4n} by α . In the homotopy sequence of this bundle, $\partial_*\iota_{4n}$ is the attaching map by which, in Y, the cell in dimension 4n is attached to the cell in dimension 2n. Using James' result, we have $\Sigma \partial_*\iota_{4n} = 0$. Hence $\partial_*\iota_{4n} = \lambda P(\iota_{2n})$, where λ is some integer. Clearly the order of the Samelson product is just λ .

To compute λ we consider the diagram

It is clear that i_1 is the classifying map for the tangent bundle of S^{2n} , and hence $i_1*\chi = 2\kappa_{2n}$, where κ_{2n} generates $H^{2n}(S^{2n}; Z)$, and χ is the Euler class. Let y_i generate $H^i(Y;Z)$ for i = 2n, 4n, or 6n. Let $p_n \in H^{4n}(BSO(2n + i))$, i = 0 or 1, be the *n*th Pontryagin class. Then $\alpha^*p_n = a_n(2n - 1)!\kappa_{4n}$ where κ_{4n} generates $H^{4n}(S^{4n};Z)$ and $a_n = 1$ if n is even and 2 if n is odd ([7], p. 131). Putting these facts together, we have $\bar{\alpha}^*\chi = 2y_{2n}$ and $\bar{\alpha}^*p_n = a_n(2n - 1)!y_{4n}$. But, in $H*(BSO(2n)), \chi^2 = p_n$ ([7], p. 84). Hence $4y_{2n}^2 = a_n(2n - 1)!y_{4n}$. Finally, in any complex $S^{2n} \cup_{\lambda P(i_{2n})} e^{4n}$, the cup product square of the cell in dimension 2n is 2λ times the cell in dimension 4n. Hence $\lambda = a_n(2n - 1)!/8$.

To prove Theorem B we first recall some facts about the cohomology of Stiefel manifolds. According to Borel [3], $H*(V_{k+m,m}; Z_2)$ is an algebra in primative generators $h_i \in H^i(V_{k+m,m}; Z_2)$, $k \leq i < k + m$. The Steenrod algebra acts according to $\operatorname{Sq}^j h_i = \binom{i}{j}h_{i+j}$. If $k \equiv 0 \mod 2$, then $H^k(V_{k+m,m}; Z) = Z$, while $H^{2i}(V_{k+m,m}; Z) = Z_2$ if $k \leq 2i < k + m - 1$.

Let Y' be the space in the Postnikov tower of $V_{4k+1,2k+1}$ for which all the homotopy groups up through dimension 4k - 2 have been added. That is, there is a map $f: V_{4k+1,2k+1} \to Y'$ such that $f_*: \pi_j(V_{4k+1,2k+1}) \to \pi_j(Y')$ is an isomorphism for $j \leq 4k - 2$ and $\pi_j(Y') = 0$ for $j \geq 4k - 1$. Then f^* is an isomorphism through dimension 4j - 2. Define classes y_i' in $H^*(Y')$ by $f^*y_i' = h_i$.

LEMMA 1. Suppose $2^{j-1} < 2k < 2^{j}$ and $2k = 2^{i}(2l-1)$. Then in $H^{*}(Y'; Z_{2})$, $\operatorname{Sq}^{2k} y_{2k}' = \operatorname{Sq}^{1} \operatorname{Sq}^{4k-2^{j}} y_{2j-1}'$.

Proof. Using the Adem relation and Borel's formula, we see
$$\operatorname{Sq}^{2k}y_{2k}' = \operatorname{Sq}^{2^{i}}\operatorname{Sq}^{2^{i+1}l}y_{2k}'$$
 and $\operatorname{Sq}^{2^{i+1}l}y_{2k}' = \operatorname{Sq}^{2^{i+1}l+2k-2^{i+1}}y_{2i-1}'$. Finally
 $\operatorname{Sq}^{2^{i}}\operatorname{Sq}^{2^{i+1}l+2k-2^{i+1}}y_{2i-1}' = \operatorname{Sq}^{4k-2^{i+1}}y_{2i-1}' = \operatorname{Sq}^{1}\operatorname{Sq}^{4k-2^{i}}y_{2i-1}'$.

Let $\lambda: S^{4n} \to BSO(4n+1)$ be a generator of $\pi_{4n}(BSO(4n+1)) = Z$. We then have this diagram:

Let κ_{4k} generate $H^{4k}(S^{4k}; Z)$. If j < 4k, then i_1* is an isomorphism and we define classes $y_i \in H^i(Y)$ such that $i_1*y_i = h_i$.

LEMMA 2. If $n \neq 1, 2, \text{ or } 4$, then $H^{4n}(Y; Z) = Z + Z_2$ and the sequence $H^{4n}(S^{4n}) \to H^{4n}(Y) \to H^{4n}(V_{4n+1,2n+1})$ splits.

Proof. Let p_n be the *n*th Pontryagin class. Now $\lambda^* p_n = a_n(2n-1)! \kappa_{4n}$. But, in $H*(BSO(2n); Z), \chi^2 = p_n$, where χ is the Euler class. Also $\lambda_{1}*\chi = 2y_{2n}$. Combining these results, we see that $\chi_1*p_n = a_n(2n-1)! p_1*\kappa_{4n}$ and that it also equals $4y_{2n}^2$. Since $i_1*y_{2n}^2 \neq 0$ (even mod 2), y_{2n}^2 cannot be divided by 2; yet $4y_{2n}^2$ must be divided by $a_n(2n-1)!$, which is 8d for some d if $n \neq 1, 2$. This can only happen if $H^{4n}(Y; Z) = Z + Z_2$.

Assume now that $n \ge 3$. Let $a = p_1 * \kappa_{4n}$, and let b generate the finite part. Let $S^{2n'}$ be the stage of the Postnikov tower of S^{2n} in which all the homotopy up through dimension 4n - 2 has been added. Note also that Y' is the corresponding stage for Y, as it is for $V_{4k+1,2k+1}$. Since $H^{4n}(Y;Z) = Z + Z_2$, $H^{4n}(Y';Z) = Z + Z_2$ also. Let a' and b' be the generators of the infinite and the finite parts, respectively (a' is not unique).

LEMMA 3. If $n \neq 1, 2$, or 4 then, in $H^*(Y'; Z), y_{2n}'^2 = 2a' + b'$.

Proof. If $n \neq 2^{j}$, then Lemma 1 asserts that $(y_{2n}'^{2}) \mod 2$ is in Sq¹ $H^{4n-1}(Y'; \mathbb{Z}_{2})$. Hence $y_{2n}'^{2} = 2da' + b'$, where d is some integer. Consider the map $f: S^{2n'} \to Y'$ which induces an isomorphism in homotopy in dimension 2n. Then $f*(y_{2n})^{2}$ is twice a generator. This implies that d = 1.

Now suppose that $n = 2^{j}$. According to Brown and Peterson [4], the unstable secondary cohomology operation φ_{2n} based on $\operatorname{Sq}^{2}\operatorname{Sq}^{2n-1} = 0$, which is a relation on integer classes of dimension 2n, is non-zero in the two-cell complex $S^{2n} \bigcup_{P(\iota_{2n})} e^{4n}$. Since $\operatorname{Sq}^{2n-1} = \operatorname{Sq}^{1}\operatorname{Sq}^{2n-1}$ and $H^{4n-1}(Y'; Z) = 0$, the operation is defined on y_{2n}' . Mod 2 we have $f*\varphi_{2n}(y_{2n}') \neq 0$, with zero indeterminacy. Hence, mod 2, f* is non-trivial. But if $y_{2n}'^{2} = a' + b'$, then $f*(a') \equiv 0 \mod 2$ (since with integers for coefficients it is twice a generator). This completes the proof of the lemma.

Proof of Theorem B. Clearly the k-invariant for the infinite part of $\pi_{4k-1}(V_{4k+1,2k+1})$ is a' and f*a' is the k-invariant for $[\iota_{2n}, \iota_{2n}]$.

Theorem C now is just a restatement of a portion of what was proved to get Theorems A and B.

NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS

References

- M. G. BARRATT and M. E. MAHOWALD, The metastable homotopy of O(n), Bull. Am. Math. Soc., 70(1964), 758-60.
- [2] M. G. BARRATT (unpublished).
- [3] A. BOREL, La cohomologie mod 2 de certains espaces homogènes, Com. Math. Helv. 27 (1953) 165-97.
- [4] E. BROWN and F. P. PETERSON, Whitehead products and cohomology, Quart. J. Math., 15(1964) 116-20.
- [5] I. M. JAMES, Suspension sequences of a triad, Ann. of Math., 63(1956) 191-246.
- [6] A. T. LUNDELL, A Samelson product in SO(2n), Not. Am. Math. Soc., 11(1964) 113.
- [7] J. MILNOR, Lectures on Characteristic Classes. Mimeographed notes; Princeton, 1957.