EMBEDDING AND IMMERSION OF PROJECTIVE SPACES

فالمحادث والمتحر والمعرف

BY J. ADEM, S. GITLER, AND M. MAHOWALD*

Introduction

Considerable progress has been made recently in the problem of embedding and immersing of manifolds. The families of projective spaces $RPⁿ$, $CPⁿ$ and $QPⁿ$ -the real, complex, and quaternionic, respectively- form an interesting collection of manifolds, since they seem to have embedding and immersion difficulties which are close to the worse possible for each dimension. For example, if $n = 2^j$ or $2^j + 1$, the exact results for embedding all manifolds are known and *RPn* in each case proves that the result is best possible. In this note we prove the following.

THEOREM 1. If $n = 2^r + 5$ and $n > 13$, then RP^n embeds in R^{2n-3} but not $in R^{2n-4}$.

We also obtain

THEOREM 2. If $n = 4(2^r + 2^s) + 3$ and $r > s$, then RP^n cannot be embedded in R^{2n-8} .

• This second result is not as sharp as Theorem **1,** in the sense that it is not known whether this result is best possible. In particular we have that RP^{15} does not embed in R^{22} , but that it does embed in R^{24} (by [8], (1.4)).

From [12], it is known that, if $n = 2^r + 2^s$ and $r > s$, QP^n embeds in R^{s_n-4} . We prove that this result is best possible, namely,

THEOREM 3. If $n = 2^r + 2^s$ and $r > s$, then QP^n embeds in R^{8n-4} but not in R^{8n-5} .

This result answers in the negative a problem raised by Sanderson (Problem $4'$ of [6]) to the effect that the best possible embeddings and immersions of QP^n coincide.

We also include the following immersion results:

THEOREM 4. If $n = 2^r + 2^s + 2^t$ and $r > s > t$, then QP^n immerses in R^{3n-6} *but not in* R^{8n-7} .

THEOREM 5. *If* $n = 2^r + 2^s + 2^t$ and $r > s > t$, then RP^{4n+3} immerses in R^{8n-3} .

Theorem 5 is an immediate consequence of Theorem 4 and (5.3) of [12]. The result implies that RP^{31} immerses in R^{53} . Together with the results of James [5], this result is best possible.

^{*} S. Gitler was partially supported by N.S.F. Grant NSF GP-2440. M. Mahowald is an Alfred P. Sloan fellow and was partially supported by the U.S. Army Research Office (Durham).

1. Proof of the non-embedding theorems

1.1 *Proof of Theorem* 1. That $RPⁿ$ immerses in $R²ⁿ⁻³$ is given by (7.2.2) of [7]; from (9.3) of [3] we have that RP^n immerses in R^{2n-4} but not in R^{2n-5} . It follows from Hirsch ([4], (6.1)) that, for any immersion of RP^n in R^{2n-4} , the normal bundle ν does not have a non-zero section. We now apply the methods of [7] and assume familiarity with the notation. Let $f:RP^n \to BSO(n-4)$ be the classifying map for *v*. Then f does not admit a lifting to $RP^n \rightarrow BSO(n-5)$. The obstructions to the lifting are given in 4.1 of [7], and they are

$$
k_1^1 = \chi, \qquad k_1^2: (\text{Sq}^2 + W_2)\chi = 0, \qquad k_3^2: (\text{Sq}^4 + W_4)\chi = 0,
$$

(1.2) $k_1^3: (\text{Sq}^2 + W_2)k_1^2 = 0, \qquad k_3^3: \text{Sq}^1 k_3^2 + (\text{Sq}^2 \text{Sq}^1 + W_3)k_1^2 = 0,$
and $k_1^4: \text{Sq}^1 k_3^3 + (\text{Sq}^2 + W_2)k_1^3 = 0.$

Now $\chi(\nu) \in H^{n-4}(RP^n; Z) = 0$ and $W_2(\nu) \neq 0$. Therefore, $k_1^2(\nu) = 0$, because of the indeterminacy. Now $k_2^3(\nu)$ has zero indeterminacy, and, if $k_3^2(\nu) = 0$, then all the remaining successive k-invariants would vanish and we would obtain a lifting. Therefore $k_3^2(\nu) \neq 0$. Let $E_0(\nu)$ be the total space of the associated sphere bundle of *v* and $\alpha \in H^{n-5}(E_0(\nu); Z_2)$, any class with $\delta \alpha = U$, where *U* is the Thom class of ν . Then, from $(5.3.3)$ of [7], we obtain

(1.3)
$$
Sq^{4} \alpha = k_{3}^{2} \neq 0.
$$

It follows that ν cannot be the normal bundle to an embedding of $RPⁿ$ in R^{2n-4} , since (1.3) contradicts the existence of the Massey subalgebra [10], and and so Theorem 1 is proved.

1.3. Proof of Theorem 2. We first observe that if $n = 2^r + 7$, $r \ge 3$, then Theorem 2 follows from Theorem 1.

Now assume $n = 2^r + 2^s + 3$, $r > s \ge 3$, and consider the secondary operation from one to three variables Ω_{8k+4} associated with the relations

(1.4)
\n
$$
Sq^{1}Sq^{8k+4} + Sq^{2}Sq^{8k+3} + Sq^{8k+4}Sq^{1} = 0,
$$
\n
$$
Sq^{4}Sq^{8k+4} + Sq^{8k+6}Sq^{2} + Sq^{8k+7}Sq^{1} = 0,
$$
\n
$$
Sq^{4}Sq^{8k+4} + Sq^{8k+6}Sq^{2} + Sq^{8k+7}Sq^{1} = 0.
$$

 Ω_{8k+4} is defined in classes $x \in H^q(X)$ such that $Sq^1 x = 0$, $Sq^2 x = 0$, $Sq^{8k+3} x = 0$, $\operatorname{Sq}^{8k+4}x=0\text{ and its value }\Omega_{8k+4}(x)\text{ lies in }H^{q+8k+4}(X)\oplus H^{q+8k+6}(X)\oplus H^{q+8k+7}(X)$ modulo the subgroup $Q(X) = (\text{Sq}^{8k+4}, 0, \text{Sq}^{8k+7})\Delta H^{q}(X) + (0, \text{Sq}^{8k+5}, \text{Sq}^{8k+6})$ $\Delta H^{q+1}(X)$ + (Sq², Sq⁴, 0) $\Delta H^{q+8k+2}(X)$ + (Sq¹, 0, Sq⁴) $\Delta H^{q+8k+3}(X)$, where $\Delta: H^p(X) \to H^p(X) \oplus H^p(X) \oplus H^p(X)$ is the diagonal homomorphism given by $\Delta(x) = (x, x, x)$, for all $x \in H^p(X)$.

The following lemma gives a sufficient condition for Ω_{8k+4} to vanish. Let $A_i(u)$ be the total image of all stable primary operations which raise dimension by j acting on *u.*

LEMMA 1.5. Let $u \in H^q(X)$ be such that $\Omega_{8k+4}(u)$ is defined. If $q = 8k + 2$ *and* $A_{8k+4}(u) = 0$ *and* $u \text{ }\circ Sq^2 u = 0$ *for* $a = 4, 5$ *, then* $\Omega_{8k+4}(u) = 0$.

The proof is entirely analogous to that of [2] (p. 63) and therefore will be omitted.

LEMMA 1.6. If ν is the normal bundle to an embedding of RP^n and U is the Thom *class of v, then* $\Omega_{n-1}(U)$ *is defined and, with diagonal indeterminacy, is non-zero. Moreover* $A_{n-6}(U) = 0$ *for* $\epsilon = 4, 5, 7$.

Proof. Since the operation Ω_{n-7} is stable and so are the conclusions of the lemma, we may as well work with the stable normal bundle. The Thom space of the stable normal bundles is RP^{2N-1}/RP^{2N-n-2} , where $N = \varphi(n)$ is the Hurwitz-Radon number. Consider the diagram of fibrations

Let $x \in H^1(RP^{\infty})$, $w \in H^2(CP^{\infty})$, and $y \in H^4(QP^{\infty})$ be the generators. Then $\pi_1^* w = x^2, \pi_2^* y = w^2, \text{ and } \pi_3^* y = x^4. \text{ If } 4q = 2^N - n - 1, \text{ then it is easy to see}$ that $\Omega_{n-1}(y^q)$ is defined and has zero indeterminacy. In fact $\Omega_{n-1}(y^q)$ = $(\varphi_{n-7}(y^q), 0, 0)$, where φ_{n-7} is an operation associated with the first relation of (1.4). Moreover, if φ_{n-7} is an operation associated with the relation Sq¹ Sqⁿ⁻⁷ + $(Sq^{2}Sq^{1})Sq^{n-9} + Sq^{n-7}Sq^{1} = 0$, then $\varphi_{n-7}(y^{q}) = \varphi_{n-7}(y^{q})$, with zero indeterminacy. Now $\pi_2^*e_{n-7}(y^q) = e_{n-7}(w^{2q})$, and $e_{n-7}(w^{2q}) \neq 0$ with zero indeterminacy by [2] (p. 68). It follows that $\varphi_{n-7}(y^q)$, and thus $\Omega_{n-7}(y^q)$, is non-zero. Finally, it is easy to verify that $\Omega_{n-7}(x^{4q})$ has diagonal indeterminacy; so, by naturality with respect to π_3^* , we conclude that $\Omega_{n-7}(x^{4q}) \neq 0$. The remaining conclusions follow by simple calculation.

Suppose now that RP^n embeds in R^{2n-8} . Then, from the existence of the Massey subalgebra [10], it follows that there is a class $\alpha \in H^{n-9}(E_0)$, E_0 being the sphere bundle of the embedding, with $\delta \alpha = U$. Then $Sq^{k} \alpha = 0$ for $k = 1, 2, 5$, $6, n - 9$. If Sq⁴ $\alpha = \alpha \cdot W_4(v) + x^{n-5}$, then Sq⁶ $\alpha \neq 0$, so that Sq⁴ $\alpha = \alpha \cdot x^4$. Therefore, $\alpha \circ \text{Sq}^4 \alpha = \alpha^2 x^4 = 0$, since $\text{Sq}^{n-9} \alpha = 0$. Thus $\alpha \circ \text{Sq}^a \alpha = 0$ for $a =$ 4, 5, and α satisfies the conditions of (1.5), which contradicts $\delta\Omega_{n-7}(\alpha)$ = $\Omega_{n-7}(U) \neq 0$. Thus Theorem 2 is established.

1.7 *Proof of Theorem* 3. That QP^n embeds in R^{8n-4} and immerses in R^{8n-5} is given by Sanderson in [12]. In [13] it is proved that *QP"* does not immerse in R^{8n-6} . Again, by (6.1) of Hirsch [4], for any immersion of QP^n in R^{8n-5} , the normal bundle ν does not have a section. From (1.2) we see that the only obstruction to a $\mathrm{section}\ \mathrm{is}\ k_1{}^2(\nu) \,\in\, H^{4n-4}(QP^n) \text{ with zero indeterminacy. Then, similarly to \ }(1.3),$ we have $Sq^2 \alpha = k_1^2 \neq 0$, where $\alpha \in H^{4n-6}(E_0(\nu))$ satisfies $\delta \alpha = U$. This again

contradicts the existence of a Massey subalgebra. Thus *v* cannot be the normal bundle to an embedding, and Theorem 3 follows.

2. Proof of the immersion theorems

It suffices to prove Theorem 4.

2.1 *Proof of Theorem* 4. In (5.1) of [12] it is proved that QP^n immerses in R^{8n-5} . Take any such immersion, with normal bundle *v*. We will show that *v* has a non-zero section. From (1.2) there is only one obstruction $k_1^2(\nu) \in H^{4n-4}(QP^n)$. Now, by $(3.5.1)$ of [9], we have that, if $U \in H^{4n-5}(E, E_0)$ is the Thom class of ν ,

$$
\Phi_{4n-4}^{\prime}(U) = U \cup (k_1^2 + W_2 \cdot W_{4n-6}) = U \cup k_1^2,
$$

since $W_2 = W_2(\nu) = 0$ and Φ_{4n-4} is a secondary operation associated with the relation $Sq^1 Sq^{4n-4} + Sq^2 Sq^{4n-5} = 0$, valid for integral classes. It is easy to see in our case that $\Phi_{4n-4}(U) = \Phi_{4n-4}(U)$, with zero indeterminacy, where Φ_{4n-4} is associated with the relation $Sq^1 Sq^{4n-4} + (Sq^2 Sq^1)Sq^{4n-4} = 0$. Since ν is the normal bundle to an embedding of QP^n and Φ_{4n-4} is a stable operation, $\Phi_{4n-4}(U)$ is non-zero if and only if

$$
c(\Phi_{4n-4}): H^4(QP^n) \to H^{4n}(QP^n)
$$

is non-zero, where $c(\Phi_{4n-4})$ is the dual operation to Φ_{4n-4} (see [2], (5.1)). This secondary operation is the one considered by Maunder in [11], and one can use his main theorem to compute it; or, using the methods of [2], one obtains that, for the given value of *n*, $c(\Phi_{4n-4})(y) = 0$, where $y \in H^4(QP^n)$ is the generator. Therefore $k_1^2 = 0$ and ν has a section. We apply Hirsch's theorem (6.1) of [4] to complete the proof of Theorem 4.

CENTRO DE INVESTIGACIÓN DEL I P N, MÉXICO, D.F. INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS

REFERENCES

- **[1]** J. F. ADAMS, *On the non-existence of elements of Hopf invariant one,* Ann. of Math., **72** $(1960), 20 - 104.$
- [2] J. AnEM and S. GITLER, *Secondary characteristic classes and the immersion problem,* Bol. Soc. Mat. Mex. **8** (1963), 53-78.
- [3] ----, *Non-immersion theorems for real projective spaces*, Bol. Soc. Mat. Mex., 9 (1964), 37-54.
- [4] M. HIRSCH, *Immersion of manifolds*, Trans. Amer. Math. Soc. **93** (1959), 242-76.
- [5] I. **M.** JAMES, *On the immersion problem of real projective spaces,* Bull. Amer. Math. Soc., **69** (1963), 231-38.
- [6] R. LAsHoF, *Problems in differential and algebraic topology* (Seattle Conference, 1963), Ann. of Math., 81 (1965), 565-91.
- [7] M. MAHOWALD, *On obstruction theory in orientable fibre bundles,* Trans. Amer. Math. Soc., **110** (1964), 315-49.
- [8] ----, *On embedding manifolds which are bundles over spheres, Proc. Amer. Math. Soc.*, **16** (1964), 579-83.
- [9] \longrightarrow and F. P. PETERSON, *Secondary cohomology operations in the Thom class*, Topology, **2** (1964), 367-77.
- [10] W. S. MASSEY, *On the embedability of the real projective spaces,* Pacific **J.** Math., **9** (1959), 783-89.
- [11] C.R. MAUNDER, *Chern characters and higher order cohomology operations,* Proc. Camb. Phil. Soc., **60** (1964), 751-64.
- [12] B. J. SANDERSON, *Immersion and embeddings of projective spaces,* Proc. London Math. Soc., **16** (1964), 135-53.
- [13] ---- and R. L. E. SCHWARZENBERGER, *Non-immersion theorems for differentiable manifolds,* Proc. Camb. Phil. Soc., **69** (1963), 319-22.

MAG.