
EMBEDDING AND IMMERSION OF PROJECTIVE SPACES 

BY J. AoEM, s. GITLER, AND M. MAHOWALD* 

Introduction 

Considerable progress has been made recently in the problem of embedding 
and immersing of manifolds. The families of projective spaces RPn, CPn and 
QPn -the real, complex, and quaternionic, respectively- form an interesting 
collection of manifolds, since they seem to have embedding and immersion dif­
ficulties which are close to the worse possible for each dimension. For example, if 
n = 2; or 2; + 1, the exact results for embedding all manifolds are known and 
RPn in each case proves that the result is best possible. In this note we prove the 
foAowing. 

THEOREM 1. If n = 2' + 5 and n > 13, the:n RPn embeds in R 2n-3 but not 
in R2n-4. 

We also obtain 

THEOREM 2. If n == 4(2' + 2') + 3 and r > s, the:n RPn cannot be embedded 
in R2n-s. 

• This second result is not as sharp as Theorem 1, in the sense that it is not known 
whether this result is best possible. In particular we have that RP 15 does not 
embed in R22, but that it does embed in R24 (by [8], (1.4) ). 

From [12], it is known that, if n = 2 .. + 2• and r > s, QPn embeds in Rsn-4_ 

We prove that this result is best possible, namely, 
' .- ' 

THEOREM 3. If n = 2• + 2• and r > s, then QPn embeds in Rsn-4 but not in 
Rsn-5

0 

This result answers in the negative a problem raised by Sanderson (Problem 
4' of [6]) to the effect that the best possible embeddings and immersions of QPn 
coincide. 

We also include the following immersion results: 

THEOREM 4. If n = 2' + 2' + 2t and r > s > t, the:n QPn immerses in Rsn-6 

but not in RBn-7_ 

THEOREM 5. If n = 2' + 2" + 21 and r > s > t, then RP 4n+3 immerses in Rsn-s. 

Theorem 5 is an immediate consequence of Theorem 4 and ( 5.3) of [12]. 
The result implies that RP 31 immerses in R53• Together with the results of James 
[5], this result is best possible. 

* S. Gitler was partially supported by N.S.F. Grant NSF GP-2440. M. Mahowald is an 
Alfred P. Sloan fellow and was partially supported by the U.S. Army Research Office 
(Durham). 
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1. Proof of the non-embedding theorems 

1.1 Proof of Theorem 1. That RPn immerses in R 2n-a is given by (7.2.2) of 
[7]; from (9.3) of [3] we have that RPn immerses in R 2n-4 but not in R2n-5• It 
follows from Hirsch ([4], (6.1)) that, for any immersion of Rr in R 2n- 4, the 
normal bundle v does not have a non-zero section. We now apply the methods of 
[7] and assume familiarity with the notation. Let f:RPn - BSO(n - 4) be the 
classifying map for v. Then f does not admit a lifting to RP" - BSO(n - 5). 
The obstructions to the lifting are given in 4.1 of [7], and they are 

k/ = x, k/:(Sq 2 + W2)x = 0, k/: (Sq4 + W4)X = 0, 

(1.2) k/: (Sq2 + W2)k/ = 0, k/:Sq 1 ka2 + (Sq2 Sq1 + Wa)k/ = 0, 

and k/:Sq 1ka8 + (Sq2 + W2)k/ = 0. 

Now x(v) E H"- 4(RPn; Z) = 0 and W2(v) ¢ 0. Therefore, k12(v) = 0, because 
of the indeterminacy. Now k/(v) has zero indeterminacy, and, if k/(v) = 0, 
then all the remaining successive k-invariants would vanish and we would ob­
tain a lifting. Therefore k/(v) ¢ 0. Let Eo(v) be the total space of the associated 
sphere bundle of 11 and a E Hn- 5(Eo(v); Z2), any class with oa = U, where U is 
the Thom class of 11. Then, from (5.3.3) of [7], we obtain 

(1.3) 

It follows that 11 cannot be the normal bundle to an embedding of RPn in 
R 2n- 4, since (1.3) contradicts the existence of the Massey subalgebra [10], and 
and so Theorem 1 is proved. 

1.3. Proof of Theorem 2. We. first observe that if n = 2' + 7, r ~ 3, then 
Theorem 2 follows from Theorem 1. 

Now assume n = 2' + 2• + 3, r > s ~ 3, and consider the secondary opera­
tion from one to three variables Dsk+4 associated with the relations 

Sq1 Sq8lc+4 + Sq2 Sqsk+s + Sqsr,+4 Sq1 = 0, 

(1.4) Sq4 Sqsk+s + Sqsr,+5 Sq2 = 0, 

Sq4 Sq8k+4 + Sq8k+6 Sq2 + Sq8H7 Sql = 0. 

Dsk+4 is defined in classes x E Hq(X) such that Sq1 x = 0, Sq2 x = 0, Sq8k+s x = 0, 
Sq8H 4 x = 0 anditsvalueD8k+4(x) liesinHq+sH4(X) E0 Hq+sk+6(X) E0 Hq+sk+7(X) 
modulo the subgroup Q(X) = (Sq8k+4, 0, Sq8H7)Mlq(X) + (0, Sq8"+5, Sq8"+6) 
Mlq+1(X) + (Sq2, Sq', 0)Mlq+sk+2(X) + (Sq1, 0, Sq4)Mlq+Sk+s(X), where 
t:,,.:HP(X) - HP(X) E0 HP(X) E0 HP(X) is the diagonal homomorphism given 
by !::,,.(x) = (x, x, x), for all x E HP(X). 

The following lemma gives a sufficient condition for Dsk+4 to vanish. Let Ai( u) 
be the total image of all stable primary operations which raise dimension by j 
acting on u. 
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LEMMA 1.5. Let u E Hq(X) be such that Osk+4(u) is defined. If q = Sk + 2 
and Ask+a(u) = 0 and u v Sqa u = 0 for a = 4, 5, then Osk+4(u) = 0. 

The proof is entirely analogous to that of [2] (p. 63) and therefore will be 
omitted. 

LEMMA 1.6. If v is the normal bundle to an embedding of RPn and U is the Thom 
class of v, then Dn-1( U) is defined and, with diagonal indeterminacy, is non-zero. 
Moreover An_,( U) = 0 for E = 4, 5, 7. 

Proof. Since the operation On_7 is stable and so are the conclusions of the lemma, 
we may as well work with the stable normal bundle. The Thom space of the 
stable normal bundles is RP 2N-1/RP 2N-n-2, where N = cp(n) is the Hurwitz­
Radon number. Consider the diagram of fibrations 

RP~-1 ~ CP2N-1-1 

" / 71"3" / 71"2 

~ ,/ 
QF2N-2-1 

Let x E H1(RP"'), w E H2(CP"'), and y E H 4(QP"') be the generators. Then 
71'1 *w = x2, ?T2 *y = w2, and ?Ts *y = x4. If 4q = 2N - n - 1, then it is easy to see 
that On_1(yq) is defined and has zero indeterminacy. In fact On_7(yq) = 
(cp,._7'(yq), 0, 0), where 'Pn-r' is an operation associated with the first relation 
of (1.4). Moreover, if 'Pn-7 is an operation associated with the relation Sq1 Sq"- 7 + 
(Sq2 Sq1)Sq"- 9 + Sqn-7 Sq1 = 0, then cp,._/ (yq) = 'Pn-1(Yq), with zero inde­
terminacy. Now ?T/cp,._7(yq) = 'Pn-1(w2q), and cp,._7(w2q) ¢ 0 with zero inde­
terminacy by [2] (p. 68). It follows that 'Pn-1(Yq), and thus n .. _7(yq), is non-zero. 
Finally, it is easy to verify that n,._7(x4q) has diagonal indeterminacy; so, by 
naturality with respect to ?Ts*, we conclude that n,._7(x4q) ¢ 0. The remaining 
conclusions follow by simple calculation. 

Suppose now that RPn embeds in R2"- 8• Then, from the existence of the 
Massey subalgebra [10], it follows that there is a class a E 1In-9(Eo), Eo being the 
sphere bundle of the embedding, with Ba = U. Then Sqk a = 0 for k = 1, 2, 5, 
6, n - 9. If Sq4 a = a• W4 (v) + xn- 5, then Sq6 a¢ 0, so that Sq4 a = a•x4. 

Therefore, a v Sq4 a = a2x4 = 0, since Sqn-9 a = 0. Thus av Sqa a = 0 for a = 
4, 5, and a satisfies the conditions of (1.5), which contradicts o!J,._7(a) = 
0,._7( U) ¢ 0. Thus Theorem 2 is established. 

1.7 Proof of Theorem 3. That QP" embeds in Rsn-4 and immerses in Rsn-5 

is given by Sanderson in [12]. In [13] it is proved that QP" does not immerse in 
R8"- 6 • Again, by (6.1) of Hirsch [4], for any immersion of QPn inR 8n-6, the normal 
bundle v does not have a section. From ( 1.2) we see that the only obstruction to a 
section is k/(v) E H 4"- 4(QP") with zero indeterminacy. Then, similarly to (1.3), 
we have Sq2 a = k/ ¢ 0, where a E H4"- 6(E 0(v)) satisfies Ba = U. This again 
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contradicts the existence of a Massey subalgebra. Thus v cannot be the nor­
mal bundle to an embedding, and Theorem 3 follows. 

2. Proof of the immersion theorems 

It suffices to prove Theorem 4. 

2.1 Proof of Theorem 4. In (5.1) of [12] it is proved that Qr immerses in 
Rsn- 5• Take any such immersion, with normal bundle v. We will show that v has 
a non-zero section. From (1.2) there is only one obstruction k/(v) E H 4n-4< QPn). 
Now, by (3.5.1) of [9], we have that, if U E H4n- 5(E, Eo) is the Thom class of v, 

4'4n-4 1(U) = u \J (k/ + W2· W4n-6) = u \J k/, 

since W2 = W2(v) = 0 and 4'4n-4 1 is a secondary operation associated with the 
relation Sq1 Sq4n- 4 + Sq2 Sq4n- 5 = 0, valid for integral classes. It is easy to see 
in our case that 4'4n-4' ( U) = 4'4n-4( U), with zero indeterminacy, where 4'4n-4 is 
associated with the relation Sq1 Sq4n- 4 + (Sq2 Sq1)Sq4n- 4 = 0. Since v is the 
normal bundle to an embedding of QPn and 4'4n-4 is a stable operation, 4'4n-4( U) 
is non-zero if and only if 

c(<I>4n-4) :H4(Qr) - H 4n(Qr) 

is non-zero, where c(<I>4n-4) is the dual operation to 4'4n-4 (see [2], (5.1)). This 
secondary operation is the one considered by Maunder in [11], and one can use 
his main theorem to compute it; or, using the methods of [2], one obtains that, 
for the given value of n, c(<I>4n-4) (y) = 0, where y E H4( QPn) is the generator. 
Therefore k/ = 0 and v has a section. We apply Hirsch's theorem ( 6.1) of [4] 
to complete the proof of Theorem 4. 
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