AN ELEMENTARY PROOF OF AN IDENTITY OF GOULD'S

BY DAVID BLACKWELL* AND LESTER DUBINS[†]

This note offers an elementary proof of a combinatorial identity of Gould (Formula 4 in [4]).

José Adem called this identity and its literature to our attention and pointed out to us that it had not yet received a purely finitistic proof. We are indebted to him and to Samuel Gitler for several stimulating conversations.

For historical remarks see [5]; for further developments see [6]; and for an application to the "Adem Relations" see [2] and [1].

Our proof of Gould's identity uses the circular symmetry technique that Dvoretzky and Motzkin introduced in their elegant treatment of the "ballotbox problem" [3].

Throughout this note, δ , β , and n are positive integers.

Let ρ be a cyclic permutation onto itself of a set E, whose order is the number of elements of E; and let g be a nonnegative, integer-valued function defined on E. For any $e \in E$ such that, for all $i, 1 \leq i \leq n$,

(1)
$$\sum_{j=0}^{i\beta-1} g(\rho^j e) < i,$$

e is winning for E, g, β, n, ρ .

THEOREM 1. Suppose that E has $\delta + \beta n$ elements. Then, for each g such that

(2)
$$\sum_{e \in \mathbb{Z}} g(e) = n,$$

there are precisely δ winning e.

Proof. As is not difficult to verify, there must exist an $e \in E$ and an integer $k \geq 1$ such that $g(\rho^{i}e) = 0$ for $1 \leq j \leq k\beta - 1$ and $g(\rho^{k\beta}e) = n$. Plainly, none of the $k\beta$ elements $\rho e, \dots, \rho^{k\beta}e$ are winning for E, g, β, n, ρ . Consider $E', g', \beta', n', \rho'$, where the following obtain: E' is E with the $k\beta$ elements $\rho e, \dots, \rho^{k\beta}e$ deleted; g' is g restricted to $E'; \beta' = \beta$ and $n' = n - k; \rho' = \rho$ restricted to E', except that $\rho'(e) = \rho^{k\beta+1}(e)$. As is easily verified an element of E' is winning for $E, g, \beta, n \rho$ if and only if it is winning for $E', g', \beta', n', \rho'$. The proof is completed by induction on n.

A set S is special for an (n + 1)-tuple of disjoint sets $\{B_0, B_1, \dots, B_n\}$, say \mathfrak{B} for short, if these three conditions are satisfied:

(i) $S \subset B_0 \cup \cdots \cup B_n$;

(ii) S contains precisely n elements;

* Supported in part by the U.S. Army Research Office (Durham), Grant DA-31-124-ARO-D-548.

† Supported in part by the National Science Foundation, Grant GP-5059, and by the Information Systems Branch of the Office of Naval Research under Contract Nonr-222 (53). (iii) for all $i, 0 \le i \le n$, the intersection of S with the union of the B_j 's for $0 \le j \le i$ contains at least i + 1 elements.

Let $N(\mathfrak{B})$ be the number of special sets S.

COROLLARY 1. If B_0 contains δ elements and, for all $i, 1 \leq i \leq n, B_i$ contains β elements, then

(3)
$$N(\mathfrak{G}) = \binom{\delta + n\beta}{n} \frac{\delta}{\delta + n\beta}.$$

For one may compute the number M of pairs (j, S), $0 \le j \le n\beta + \delta$, $S \subset E = B_0 \cup \cdots \cup B_n$, for which $\Phi(j, S) = \rho^j S$ is special, where ρ is a suitable cyclic permutation of E, in two ways:

(4)
$$M = \begin{pmatrix} \delta + n\beta \\ n \end{pmatrix} \delta,$$

as flows from Theorem 1 by letting g range over the indicator (characteristic) functions of subsets of E with n elements; and

(5)
$$M = (\delta + n\beta)N(\mathfrak{B}),$$

since Φ assumes each of its values (special or not) for exactly ($\delta + n\beta$) pairs. Q.E.D.

Let A_0, \dots, A_n be a sequence of n + 1 sets. For each set S with fewer than n + 1 elements, define a triple T(S) = (k, S', S'') thus: Denoting the intersection of S with the union of the j + 1 sets A_0, \dots, A_j , by S_j , let k be the first j such that S_j contains fewer than j + 1 elements; let S' be S_k ; and let S'' be S - S'.

LEMMA 1. If B_0, \dots, B_n are pairwise disjoint, and $A_i \subset B_i$ for $0 \leq i \leq n$, then, as S ranges over those sets that are special for (B_0, \dots, B_n) , T defines a one-one correspondence onto the set of all triples (k, S', S'') such that $0 \leq k \leq n$, S' is special for A_0, \dots, A_k and S'' is special for C_0^k, \dots, C_{n-k}^k , where

(6)
$$C_0^k = (B_0 \cup \cdots \cup B_k) - (A_0 \cup \cdots \cup A_k)$$

and

(7)
$$C_j^k = B_{j+k}, \quad \text{for} \quad 1 \le j \le n-k.$$

GOULD'S IDENTITY. Using Gould's notation,

(8)
$$A_k(\alpha,\beta) = \binom{\alpha+\beta k}{k} \frac{\alpha}{\alpha+\beta k}$$

his result is this. For all real numbers α , β , γ , and for all positive integers n,

(9)
$$\sum_{k=0}^{n} A_k(\alpha, \beta) A_{n-k}(\gamma, \beta) = A_n(\alpha + \gamma, \beta).$$

Proof of Gould's Identity. Suppose first that α , β , and γ are positive integers. Let B_0, \dots, B_n be n + 1 disjoint sets where B_0 contains $\alpha + \gamma$ elements and each B_i for $i \ge 1$ contains β elements. Then, according to Corollary 1, the right side of (9) is the number of sets that are special for (B_0, \dots, B_n) . On the other hand, if A_0 is a subset of B_0 with α elements and $A_i = B_i$, for $i \ge 1$, then Lemma 1, together with Corollary 1, implies that the left side of (9) also represents the number of sets special for (B_0, \dots, B_n) . So (9) holds whenever α, β and γ are positive integers. Since the left side of (9) is a polynomial in α, β and γ , as is the right side, (9) must hold for all real α, β , and γ .

UNIVERSITY OF CALIFORNIA, BERKELEY

References

- JOSÉ ADEM, "The relations on Steenrod powers of cohomology classes", Algebraic geometry and topology, Princeton University Press, Princeton, New Jersey, 1957, 192-238.
- [2] L. CARLITZ, Some congruences involving sums of binomial coefficients, Duke Math. J.. 27 (1960), 77-79.
- [3] A. DVORETZKY and T. MOTZKIN, A problem of arrangements, Duke Math. J., 14 (1947), 305-13.
- [4] H. W. GOULD, Some generalizations of Vandermonde's convolution, Amer. Math. Monthly, 63 (1956) 84-91.
- [5] ——, Final analysis of Vandermonde's convolution, Amer. Math. Monthly, 64 (1957), 409-15.
- [6] ——, Generalization of a theorem of Jensen concerning convolutions, Duke Math. J., 27 (1960), 71–76.