AN ELEMENTARY PROOF OF AN IDENTITY OF GOULD'S

BY DAVID BLACKWELL* AND LESTER DUBINST

This note offers an elementary proof of a combinatorial identity of Gould $(Formula 4 in [4]).$

Jose Adem called this identity and its literature to our attention and pointed out to us that it had not yet received a purely finitistic proof. We are indebted to him and to Samuel Gitler for several stimulating conversations.

For historical remarks see [5]; for further developments see [6]; and for an application to the "Adem Relations" see [2] and [I].

Our proof of Gould's identity uses the circular symmetry technique that Dvoretzky and Motzkin introduced in their elegant treatment of the "ballotbox problem" [3].

Throughout this note, δ , β , and *n* are positive integers.

Let ρ be a cyclic permutation onto itself of a set E , whose order is the number of elements of *E;* and let g be a nonnegative, integer-valued function defined on E. For any $e \in E$ such that, for all $i, 1 \leq i \leq n$,

$$
(1) \qquad \qquad \sum_{j=0}^{i\beta-1} g(\rho^j e) < i,
$$

 e is *winning* for E , g , β , n , ρ .

THEOREM 1. Suppose that E has $\delta + \beta n$ elements. Then, for each g such that

$$
(2) \qquad \qquad \sum_{e \in E} g(e) = n,
$$

there are precisely o *winning e.*

Proof. As is not difficult to verify, there must exist an $e \in E$ and an integer $k \geq 1$ such that $g(\rho^{j}e) = 0$ for $1 \leq j \leq k\beta - 1$ and $g(\rho^{k}\theta e) = n$. Plainly, none of the $k\beta$ elements ρe , \cdots , $\rho^{k\beta}e$ are winning for *E*, g, β , n, ρ . Consider *E'*, g', β' , $n', \rho',$ where the following obtain: *E'* is *E* with the *k* β elements $\rho e, \cdots, \rho^{k\beta} e$ deleted; g' is g restricted to E' ; $\beta' = \beta$ and $n' = n - k$; $\rho' = \rho$ restricted to E' , except that $\rho'(e) = \rho^{k\beta+1}(e)$. As is easily verified an element of E' is winning for E, $g, \beta, n \rho$ if and only if it is winning for E', g' , β' , n' , ρ' . The proof is completed by induction on *n.*

A set S is *special* for an $(n + 1)$ -tuple of disjoint sets $\{B_0, B_1, \cdots, B_n\}$, say \otimes for short, if these three conditions are satisfied:

(i) $S \subset B_0 \cup \cdots \cup B_n$;

(ii) S contains precisely *n* elements;

* Supported in part by the U.S. Army Research Office (Durham), Grant DA-31-124- ARO-D-548.

t Supported in part by the National Science Foundation, Grant GP-5059, and by the Information Systems Branch of the Office of Naval Research under Contract Nonr-222 (53).

(iii) for all $i, 0 \leq i \leq n$, the intersection of *S* with the union of the *B*²'s for $0 \leq j \leq i$ contains at least $i + 1$ elements.

Let $N(\mathfrak{G})$ be the number of special sets *S*.

COROLLARY 1. If B_0 contains δ *elements and, for all i,* $1 \leq i \leq n$, B_i contains *{3 elements, then*

(3)
$$
N(\mathfrak{B}) = \binom{\delta + n\beta}{n} \frac{\delta}{\delta + n\beta}.
$$

For one may compute the number *M* of pairs $(j, S), 0 \leq j \leq n\beta + \delta$, $S \subset E = B_0 \cup \cdots \cup B_n$, for which $\Phi(j, S) = \rho^{j}S$ is special, where ρ is a suitable cyclic permutation of *E,* in two ways:

(4)
$$
M = \begin{pmatrix} \delta + n\beta \\ n \end{pmatrix} \delta,
$$

as flows from Theorem 1 by letting *g* range over the indicator (characteristic) functions of subsets of *E* with *n* elements; and

(5)
$$
M = (\delta + n\beta)N(\mathfrak{B}),
$$

since Φ assumes each of its values (special or not) for exactly $(\delta + n\beta)$ pairs. Q.E.D.

Let A_0 , \dots , A_n be a sequence of $n + 1$ sets. For each set *S* with fewer than $n + 1$ elements, define a triple $T(S) = (k, S', S'')$ thus: Denoting the intersection of *S* with the union of the $j + 1$ sets A_0 , \dots , A_j , by S_j , let *k* be the first *j* such that S_j contains fewer than $j + 1$ elements; let S' be S_k ; and let S'' be $S - S'$.

LEMMA 1. If B_0 , \cdots , B_n are pairwise disjoint, and $A_i \subset B_i$ for $0 \leq i \leq n$, *then, as S* ranges over those sets that are special for (B_0, \dots, B_n) , *T* defines a one-one correspondence onto the set of all triples (k, S', S'') such that $0 \leq k \leq n$, *S'* is special for A_0 , \dots , A_k and S'' is special for C_0^{κ} , \dots , C_{n-k}^{κ} , where

(6)
$$
C_0^k = (B_0 \cup \cdots \cup B_k) - (A_0 \cup \cdots \cup A_k)
$$

and

(7)
$$
C_j^k = B_{j+k}, \quad \text{for} \quad 1 \leq j \leq n-k.
$$

GouLD's IDENTITY. *Using Gould's notation,*

(8)
$$
A_k(\alpha, \beta) = \binom{\alpha + \beta k}{k} \frac{\alpha}{\alpha + \beta k}.
$$

his result is this. For all real numbers α *,* β *,* γ *, and for all positive integers n,*

(9)
$$
\sum_{k=0}^{n} A_k(\alpha, \beta) A_{n-k}(\gamma, \beta) = A_n(\alpha + \gamma, \beta).
$$

Proof of Gould's Identity. Suppose first that α , β , and γ are positive integers. Let B_0 , \cdots , B_n be $n + 1$ disjoint sets where B_0 contains $\alpha + \gamma$ elements and

each B_i for $i \geq 1$ contains β elements. Then, according to Corollary 1, the right side of (9) is the number of sets that are special for (B_0, \dots, B_n) . On the other hand, if A_0 is a subset of B_0 with α elements and $A_i = B_i$, for $i \geq 1$, then Lemma 1, together with Corollary 1, implies that the left side of (9) also represents the number of sets special for (B_0, \cdots, B_n) . So (9) holds whenever α , β and γ are positive integers. Since the left side of (9) is a polynomial in α , β and γ , as is the right side, (9) must hold for all real α , β , and γ .

UNIVERSITY OF CALIFORNIA, BERKELEY

REFERENCES

- [1] José ADEM, "The relations on Steenrod powers of cohomology classes", Algebraic geomatry and topology, Princeton University Press, Princeton, New Jersey, 1957, 192-238.
- [2] L. CARLITZ, *Some congruences involving sums of binomial coefficients*, Duke Math. J.. **27** (1960), 77-79.
- [3] **A.** DvoRETZKY and T. MoTZKIN, *A problem of arrangements,* Duke Math. J., **14** (1947), 305-13.
- [4] H. W. GouLD, *Some generalizations of Vandermonde's convolution,* Amer. Math. Monthly, **63** (1956) 84-91.
- [5] ----, *Final analysis of Vandermonde's convolution*, Amer. Math. Monthly, 64 (1957), 409-15.
- [6] ---, *Generalization of a theorem of Jensen concerning convolutions*, Duke Math. J., **27** (1960), 71-76.