THE STABLE HOMOTOPY OF K(Z,n)

By M. E. ManowaLp AND R. F. WiLLiams*

1. Introduction

There is the map Z*K(Z, n) — K(Z, n + k) which pulls the basic class back
to the k-fold suspension of the basic class; let . be the fiber of this map. We
then get the commutative diagram

Ek_lF,,,l
LN
Fop — Z*K(Z,n) — K(Z,n + k)
) N e
l K (Z,n+ 1)
Foynia

in which each of the straight sequences is a fiber space, at least in the stable range.
The downward diagonal one is so because it is the suspension of a fiber triple.
That the vertical sequence exists and is a fiber triple is shown by an elementary
argument.

Note that m:(Z*K(Z, n)) = 0, Z, 0 for, respectively, s < n + k, 7 = n + k,
and n + k < i < 2n + k, and note also that my(Z*K(Z, n)) =
i (ZK(Z, n)), for k large relative to 4 and n. Thus let

mi(n) = T ZK(Z, n)),

k large. These 7;(n) are the stable homotopy groups of K(Z, n) of the title. The
2-primary part of =;(n) is computed here for7 = 0, -+, 7.
The fiber space W — Fur — Fapip yields the exact sequence
o= 1 (2 ) = my(Fag) — my(Fajipa) — --- which, for ¢ = 2n +
k + 1, becomes

(1L.2) - = m(n + 1) i Tomihri( S Fn1) — mi(n) = wia(n + 1) —i

so that, using the known groups of F, . [1], mi(n) is determined up to extension
by mii(n + 1) and the two boundary maps. The boundary maps are determined
by the following.

LemMaA 1.3. A homotopy class [g] € mi_i(n + 1) has d[g] 5 O if and only if lg]
corresponds to a spherical cohomology class (that is, g* :H*(F, ;) — H*(§")
is non-trivial). (Here 1 > 1.)

Proof. Referring back to the diagram (1.1), we may as well assume that
g: 8 3K (Z, n + 1); since we are in the stable range, d[g] can be in-
terpreted as [hg], where h:Z*'K(Z, n + 1) — 2'F, .. Now if d[g] 0, then
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(hg)* # 0, as all of the homotopy of F, 1 corresponds to spherical cohomology
(1]. Hence g* # 0.

Now assume that g* is not the trivial homorphism. We proceed indirectly and
thus assume that d[g] = 0, i.e. that ¢ = 4k, where h:S™H" — Z*K(Z, n) and
©:2*K(Z,n) — = 'K(z,n + 1):

ok
H*(Z'K(Z,n + 1) —— H*(Z'K(Z,n))
N /
AN /h*
N e

H*(8).

Thus 2* # 0; say h*(:*u) # 0, where u € H*"™(=*'K(Z, n + 1)). But then
u = Z*Y(8q" any1) where Sq” is of degree n + ¢ and ¢*u = 8* Sq” @, . But then
either Sq’ a, is decomposable or 8q" @, = Sq" &, = 0, as ¢ > 1. But if ¢*u is
decomposable, then 1*i*u = 0, which is a contradiction.

Next, note that, for 0 < ¢ < 7, the groups 7,(n) are periodic of period 8 in n.
This is because the Adem relations expressing Sq° Sq” in terms of admissible
elements are, for ¢ < 7, periodic of period 8 in n. Thus we construct (section 4)
a modified Posnikov tower for F, x , k large and n = 0(8) valid up to dimension
2n 4+ k + 6. This is made possible by the secondary operation ¢ computed in
[2] and the tertiary operation A, computed below. This yields m:(n), n = 0(8);
using this and 1.2 and 1.3, we get 7;(n), n = 7(8) up to extensions. This much
information makes it easy to construct the modified Posnikov tower for F, ;,
n = 7(8), completing the inductive step.

After eight steps we get m:(n), n = 0(8) again, which is a good check. Note
that the groups m:(n), 0 < 7 < 6, yield those for ¢ = 7, as o 7(Fn1) = 0. As a
further check, the towers were actually computed for 0 < ¢ < 7.

2. Statement of results

TueoreEM. The 2-primary part of the first eight mon-trivial stable homotopy
groups of K(Z, n) s given by the following table:

mi(n) = moniii K (Z, n))

\\n, 1;1od
AN 0 7 6 5 4 3 2 1
AN
N
0 A Zs Z Zs Z Zs Z Zs
1 Zsy 0 Z> 0 Zs 0 Zs 0
2 Zs Zs® + Zs 0 Zy Zs Z® + Zs 0 Zy
3 Zy Zs Zs 0 Zs Zs Zs 0
4 0 Zs* + Zy Zy® Zy 0 Zs Zo®t 4+ Zy | Zgf
5 0 0 Z4 0 0 0 Zs Zy
6 Zy + Zy Zs Zy | Zf + Zy | Zy® Zs Zsy Zs
7 Zs Zs 0 0 Zy 0 0 0
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The mod p, p > 2 case was handled by Barcus [3]. In the table, Z,’ indicates
that the generator corresponds to a spherical cohomology class.

3. A tertiary cohomology operation

Let ¢, and ¢, be the operations introduced in [1]; let " denote the vector
operation (@ , ¢nt1 ) ; and let ®;" be the ith eoordinate of ", ¢ = 1, 2.

LemMA 3.1. For n = 0(4), there is a choice of ¢ni1 and ¢nis such that Sq° &,

+ Sq' " = 8q"" S’ holds stably and with zero indeterminacy.

Proof. Consider the fiber space with base Ki(Z, n + 1), fiber Ks(Z», 2n + 3)
X Ki(Zsy, 2n 4 5), k-invariants ky, = Sq"Jr2 and k; = Sq"™, and total space
E = E; X K, X K;. Then the relations Sq* 89" = 0 and Sq° Sq* Sq"** + .
Sq' 8q™™* = 0 determine ¢,41 and .42, respectively. In [2] it is shown that ¢n.,
can be chosen so that, for a;, the basic class of Ks = K(Z, n + 1), ¢n1(a1) 2
ay U Sq” s and ¢npa(aa) 3 0.Thus, as the universal example for Pn1 ,we may take
(E, a1, u), where u is any combination of &y U 8q® oz + ¢ 89 az, ¢ = 0, 1. We
choose U= o USq® as + 8 . Smularly, we may take as universal example
for ¢nys, (B, or,v) where v = Sq’ 8q" a2 + Sq' a;. We then have

Sq” enpiar + Sq' @urz'er = 8q” (a1 U 8¢” a1) + 8¢° S’
+ 89" 8¢°Sq" a2 + 89" 8q' o = Sq"P* 8¢ oy .

To show that the indeterminacy is zero, let ¢: X — K(Z, n) be such that
g*ay = u € H*(X), and let go, g1: X — E’ be two liftings of g. Then

gll*u — go*u + Sq2 a0
0" = g™ + S Sq* &1 + 8¢ @z,

for some @y, as € H* (X). Hence Sq° g.*v + Sq* ¢.™v = S¢’ go™u + Sq* go*v;
that is, the indeterminacy of the relation is zero.

LemMa 3.2. Let n = 0(8). Then the relation of Lemma 3.1 deﬁnes a te'rtmry
operation N, , which may be so chosen that

aUSq o € \a
where a 15 the fundamental class of K(Z, n + 1).

Proof. Let By, — K(Z,n + k) be the fiber space with fiber K(Z,,2n + k + 1)
+ K(Z,, 2n + k + 3), fundamental classes 8; and 8, and k invariants Sq™** «
and Sq""* a. For k = 1, this is trivial; let f: K(Z, n) — E; be a cross section.

Now as S¢” 8q"" = 0 and Sq” Sq' 8q™** + 8q' Sq™** = 0, there is the pair
(u, v) € H"™(E) X H"""(E;) such that i*u = B and i*» = 8. Then
(B, (u, ), o) is the universal example for ®", where « is also used for the image
ofa € H*(K(Z,n + 1)) in E; .

Let Es be the fiber space over F; with ﬁber Ki(Z,2n 4+ 1) X Ko(Zs, 2n -I— 3)
X Ky(Zs, 2n 4+ 4), and k-invariants Sq"*' a, u, and v. Let a; , @z, and a3 be the
fundamental classes of the fiber. Let Ky X K; X Ky — Ey — K(Z, n + 1)
be the fiber space induced by F; — Ey by f:K(Z,n 4+ 1) — E;.
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Now the map ¢:SK(Z, n) — K(Z, n + 1), which brings the basic class «
back to the suspension sa’ € H* (SK(Z, n)) of the basic class o of K(Z, n),
lifts to a map SK(Z, n) — FE,, as the appropriate k-invariants vanish on
SK(Z,n), for dimensional reasons. Note that this last map factors as fig: through
E), as By is induced from E, — E; . Thus we have the commutative diagram

Ky X K, XKy — K, X K, X K,
i l

K(Z,nK(Z, n) R
1

|

SK(Z,n) ——— K#,n+1) 1 LK@ a+1)

in which the top row are fibers to the maps g, By — K(Z,n + 1) and E; — E, .
Now the class Sq* a1 + Sq° @ -+ Sq' a1 transgresses to zero in H* (H,),
by the previous lemma; we choose w € H* (E,) so that it restricts to Sq* o +
Sq’ oz 4+ Sq* a4 in the fiber K3 X K; X K.
Then (Es, w) is the universal example of A, . Consider the commutative dia-
gram

*

b I i

H*(BY) —5 H*(Ki X Ky X Ki) —— H*K(Zn +1))

| !

H*(SK(Z,n) o H*(K(Z,n)*K(Z,n)) —— H*(K(Z,n + 1)),

HY(B) — H'(Ka X Ko X Ky) —— H*(E)

in which the horizontal sequences are exact in the range which concerns us. Let
w' = fi*u. Now it is known [2] that g:"ey = & *x @ and g;* @, = & * 8q” @, where o
is the fundamental class of K(Z,n). Thus

7.5 8q &1 + S’ @) = Sq"B+B+ 8L B*STB+B+Sq" 8+ 89’ B +Sd 8
=8q'8 %8+ B8 *Sq* 8.

But ¥ (s(Sq" 8 U 8)) = Sq B8 %8 + B+ Sq* B also. Thus the lifting g1 can be
chosen so that g."w = s(Sq* 8 U 8). That is, « U Sq* @ € \a.

4. The towers

We wish to construct modified Posnikov towers for > * K(Z, n), beginning
with the map =*K(Z, n) 7 K(Z,n + k). Note that the kernel of f* includes all

Sq” a, a the basic class of K(Z, n + k), where I is of excess >n (and less than &,
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but here k is large) ; thus we must kill these classes by adding homotopy groups
in the fibers of our towers. Next, the cokernel consists of the k-fold suspension of

various cup-product classes, Sq° @« U o, 8¢’ « U o, --- . (It turns out that
8o’ @ U e, 8q* @ U @, and some class in dimension 2n + 6 are crucial for our pur-
poses.)

Hence these (cup-produet) classes must be added to K(Z, n + k), unless they
occur as secondary or higher order operations based on relations between classes
introduced in the fibers of towers. Thus the tower for n = 0(8) has two Z,
groups (o, o) added at ¢ = 1, and 7 = 3 at the first stage, E; . Their k-invariants
are Sq"* « and Sq™** . Then Sq"*" « pulls up to E; and is killed at the second
stage. Fy is formed by adding 3 — Z groups (81, B2, 8:) at 2 = 0, 2, 3, and k-in-
variants Sq"*" a, Sq° o1, and Sq" o» + Sq*' o1, respectively. We then find
So® B1 = 0, yielding the operation ¢, where ¢(S8¥a,) = S*(Sq® @, U @), and
next, Sq* B1 + Sq’ B2 + Sq' 8: = 0, yielding the operation N, where N(S¥a,) =
S*(8q* o U ), (section 3). One computes and finds that this takes care of all
cup-product classes except for one in dimension, ¢+ = 6. Thus one more class, s ,
must be added for © = 6, and we know it corresponds to a spherical cohomology
class. The balance of the tower for 7 = 0 is a straightforward computation. One
reads off the homotopy groups in the usual way: e.g. m3(n) has order 4, because
both a; and 8; oceur in this dimension. Then as the k-invariant of 83 involves
Sq' on, m(n) = Z4.

This is the general pattern, with two exceptions. First, Zi;-groups occur for
n = 7 and n = 6(8), without being built up. That these classes are of order 4
was known from the previous cases; as a check, one can easily compute the
corresponding MP-towers with integral coefficients. The second exception is that
the class labeled B; in the tower for n = 2(8) corresponds to a spherical
cohomology clags. One can discover this by the process of elimination; in fact
we know no better way to discover it. A little thought convinces one that this
would not be unlikely, however. Thus, the quaternary operation ¢, in dimension
¢ = 6 detects a cup-product class; Sq' ¢ detects another cup-product, and it is
to this class that the relation Sq" oy + Sq° a; would otherwise have led. Thus B;
is added to kill a class which needs killing only through a fluke. This is the usual
situation where there is a differential in the Adams spectral sequence.

The towers
n = 0(8)
7 5
0 Z B
1 Zs a1 [Sqrtle
2 Zs Sq* Bz | Sq¥bite
3 Zy as |Sqa; B3
4 0 Sqrta Sqle: + Sq?lan Sqi8: + Sq28: + SqlBs : A
5 0
6| Zs 4+ Zy | &1 7 Y2
Sqa'lﬁa Sql,\/1

* An element of order 4.
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n = 7(8)
7 L.
0 Zs a;
1 0 Sqrtia
2 7z + 7, S1 B1
3 Zs [£%] Sq2'1a1
4 Zy + Z, 829q2s; -+ Sqrt2? @ n*
5 0 Sq%
6 ng S3
n = 6(8)
T L0
0 VA o
1 Z2 Sq"‘Ha o2
2 0 Sqntia Sq?a; + Sqle: ¢
3 Zs B1
4 Zy* S1 Sq?lay
5 Zy 'YI*
9 Zy® Sy Sq*s
n = 5(8)
dim ™
0 Z2 (23]
1 0 Sq“ﬂa
2 Z4 ay Sq2a2!<p 61
3 0 Sqrte Sq?la; + Sqla:
4 ng ) 31
5 0 -
6 7 4 Zy 82 B2 b%!
Sqen + Sqti2ley Sq*181 + SqBs
n = 4(8)
dim w5
0 zZ B1
1 Zs a1 Sqrtia
2 Zs Sq"“a B2 quﬂﬂga
3 Zy as Sq?a B3
4 0 Sqtie Sq?len + Sqlas Sq*8: + Sq%8:2 + Sq'8; A
5 0
6 Zy® 81
n = 3(8)
dim T
0 Z, a1
1 0 Sqrtie
2 Zye + Zy | 81 B
3 Z az | Sq2la
4 Zs Sqrt22a + Sq%1 a3 B2 Sq%B1iies 71
5 0 Sq e + Sqrtiile Sqttar + Sqlas Sq216 + Sqls.
6 Zy® 82 Sqbar + Sqlaz 1 0w






