THE STABLE HOMOTOPY OF K(Z, n)

BY M. E. MAHOWALD AND R. F. WILLIAMS*

1. Introduction

There is the map $\Sigma^k K(Z, n) \to K(Z, n + k)$ which pulls the basic class back to the k-fold suspension of the basic class; let $F_{n,k}$ be the fiber of this map. We then get the commutative diagram

in which each of the straight sequences is a fiber space, at least in the stable range. The downward diagonal one is so because it is the suspension of a fiber triple. That the vertical sequence exists and is a fiber triple is shown by an elementary argument.

Note that $\pi_i(\Sigma^k K(Z, n)) = 0, Z, 0$ for, respectively, i < n + k, i = n + k, and n + k < i < 2n + k, and note also that $\pi_{k+i}(\Sigma^k K(Z, n)) = \pi_{k+i+1}(\Sigma^{k+1}K(Z, n))$, for k large relative to i and n. Thus let

$$\pi_i(n) = \pi_{2n+k+i}(\Sigma^{k}K(Z, n)),$$

k large. These $\pi_i(n)$ are the stable homotopy groups of K(Z, n) of the title. The 2-primary part of $\pi_i(n)$ is computed here for $i = 0, \dots, 7$.

The fiber space $\Sigma^{k-1}F_{n+1} \to F_{n,k} \to F_{n+1,k-1}$ yields the exact sequence $\cdots \to \pi_q(\Sigma^{k-1}F_{n+1}) \to \pi_q(F_{n,k}) \to \pi_q(F_{n+1,k-1}) \to \cdots$ which, for q = 2n + k + i, becomes

(1.2)
$$\cdots \to \pi_i(n+1) \xrightarrow{\partial} \pi_{2n+k+i}(\Sigma^{k-1}F_{n,1}) \to \pi_i(n) \to \pi_{i-1}(n+1) \xrightarrow{\partial} \cdots$$

so that, using the known groups of $F_{n,1}$ [1], $\pi_i(n)$ is determined up to extension by $\pi_{i-1}(n+1)$ and the two boundary maps. The boundary maps are determined by the following.

LEMMA 1.3. A homotopy class $[g] \in \pi_{i-1}(n+1)$ has $\partial[g] \neq 0$ if and only if [g] corresponds to a spherical cohomology class (that is, $g^*: H^*(F_{n,k}) \to H^*(S^{2n+k+i})$ is non-trivial). (Here $i \geq 1$.)

Proof. Referring back to the diagram (1.1), we may as well assume that $g:S^{2n+k+i} \to \Sigma^{k-1}K(Z, n + 1)$; since we are in the stable range, $\partial[g]$ can be interpreted as [hg], where $h:\Sigma^{k-1}K(Z, n + 1) \to \Sigma^k F_{n,1}$. Now if $\partial[g] \neq 0$, then

* Research supported in part by grants U. S. Army DA-31-124,-ARO(D)-144 and NSF GP3894. The first named author is an Alfred P. Sloan Fellow.

 $(hg)^* \neq 0$, as all of the homotopy of $F_{n,1}$ corresponds to spherical cohomology [1]. Hence $g^* \neq 0$.

Now assume that g^* is not the trivial homorphism. We proceed indirectly and thus assume that $\partial[g] = 0$, i.e. that g = ih, where $h: S^{2n+k+i} \to \Sigma^k K(Z, n)$ and $i: \Sigma^k K(Z, n) \to \Sigma^{k-1} K(z, n+1)$:

Thus $h^* \neq 0$; say $h^*(i^*u) \neq 0$, where $u \in H^{2n+k+i}(\Sigma^{k-1}K(Z, n+1))$. But then $u = \Sigma^{k-1}(\operatorname{Sq}^I \alpha_{n+1})$ where Sq^I is of degree n + i and $i^*u = S^k \operatorname{Sq}^I \alpha_n$. But then either $\operatorname{Sq}^I \alpha_n$ is decomposable or $\operatorname{Sq}^I \alpha_n = \operatorname{Sq}^{n+i} \alpha_n = 0$, as $i \geq 1$. But if i^*u is decomposable, then $h^*i^*u = 0$, which is a contradiction.

Next, note that, for $0 \le i \le 7$, the groups $\pi_i(n)$ are periodic of period 8 in n. This is because the Adem relations expressing Sqⁱ Sqⁿ in terms of admissible elements are, for $i \le 7$, periodic of period 8 in n. Thus we construct (section 4) a modified Posnikov tower for $F_{n,k}$, k large and $n \equiv 0(8)$ valid up to dimension 2n + k + 6. This is made possible by the secondary operation φ computed in [2] and the tertiary operation λ , computed below. This yields $\pi_i(n)$, $n \equiv 0(8)$; using this and 1.2 and 1.3, we get $\pi_i(n)$, $n \equiv 7(8)$ up to extensions. This much information makes it easy to construct the modified Posnikov tower for $F_{n,k}$, $n \equiv 7(8)$, completing the inductive step.

After eight steps we get $\pi_i(n)$, $n \equiv 0(8)$ again, which is a good check. Note that the groups $\pi_i(n)$, $0 \leq i \leq 6$, yield those for i = 7, as $\pi_{2n+7}(F_{n,1}) = 0$. As a further check, the towers were actually computed for $0 \leq i \leq 7$.

2. Statement of results

THEOREM. The 2-primary part of the first eight non-trivial stable homotopy groups of K(Z, n) is given by the following table:

n, mod 8 i	0	7	6	5	4	3	2	1
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$egin{array}{c} Z_2 \ Z_2 \ Z_4 \ 0 \ 0 \end{array}$	$egin{array}{c} Z_2 \ 0 \ Z_2^s + Z_2 \ Z_2^s \ Z_2^s + Z_4 \end{array}$	$\begin{vmatrix} Z \\ Z_2 \\ 0 \\ Z_2 \\ Z_2^s \\ Z_2 \end{vmatrix}$	$egin{array}{c} Z_2 \ 0 \ Z_4 \ 0 \ Z_{2^s} \ 0 \ \end{array}$	$\begin{vmatrix} Z \\ Z_2 \\ Z_2 \\ Z_4 \\ 0 \\ 0 \end{vmatrix}$	$egin{array}{c} Z_2 & & \ 0 & \ Z_{2^s} + Z_2 & \ Z_2 & \ Z_8 & \ 0 & \ \end{array}$	$egin{array}{c} Z & & \ Z_2 & & \ 0 & & \ Z_2 & & \ Z_2^s + Z_2 & & \ Z_2^s + & \ Z_2 & & \ Z_2^s + & \ Z_2 & & \ Z_2^s & \ $	$egin{array}{c} Z_2 \ 0 \ Z_4 \ 0 \ Z_{2^8} \ Z_2 \end{array}$
6 7	$Z_{2^8} + Z_4 \ Z_{16}$	$Z_{2^{s}} Z_{4}$	$\begin{array}{c} Z_{2}^{s} \\ Z_{2}^{s} \\ 0 \end{array}$	$Z_{2^s} + Z_4 = 0$	$egin{array}{c} Z_{2^{8}} \ Z_{4} \end{array}$	$egin{array}{c} U_{2^s} & U_{2^s} $	$egin{array}{c} Z_2^s \ 0 \end{array}$	$egin{array}{c} Z_{16} \\ 0 \end{array}$

 $\pi_i(n) = \pi_{2n+k+i}(\Sigma^k K(Z, n))$

The mod p, p > 2 case was handled by Barcus [3]. In the table, Z_2^s indicates that the generator corresponds to a spherical cohomology class.

3. A tertiary cohomology operation

Let φ_h and φ'_h be the operations introduced in [1]; let Φ^n denote the vector operation $(\varphi_n, \varphi_{n+1}')$; and let Φ_i^n be the *i*th coordinate of Φ^n , i = 1, 2.

LEMMA 3.1. For $n \equiv 0(4)$, there is a choice of φ_{n+1} and φ_{n+2}' such that Sq² Φ_1^{n+1} + $\operatorname{Sq}^{1} \Phi_{2}^{n+1} = \operatorname{Sq}^{n+3} \operatorname{Sq}^{2}$ holds stably and with zero indeterminacy.

Proof. Consider the fiber space with base $K_1(Z, n + 1)$, fiber $K_2(Z_2, 2n + 3)$ $\times K_3(Z_2, 2n + 5)$, k-invariants $k_2 = \operatorname{Sq}^{n+2}$ and $k_3 = \operatorname{Sq}^{n+4}$, and total space $E = K_1 \times K_2 \times K_3$. Then the relations $\operatorname{Sq}^2 \operatorname{Sq}^{n+2} = 0$ and $\operatorname{Sq}^2 \operatorname{Sq}^1 \operatorname{Sq}^{n+2} + K_3 = 0$ $\operatorname{Sq}^{1}\operatorname{Sq}^{n+4} = 0$ determine φ_{n+1} and φ_{n+2}' , respectively. In [2] it is shown that φ_{n+1} can be chosen so that, for α_1 , the basic class of $K_1 = K(Z, n + 1), \varphi_{n+1}(\alpha_1) \ni$ $\alpha_1 \bigcup \operatorname{Sq}^2 \alpha_1 \operatorname{and} \varphi_{n+2}(\alpha_1) \ni 0$. Thus, as the universal example for φ_{n+1} , we may take (E, α_1, u) , where u is any combination of $\alpha_1 \cup \operatorname{Sq}^2 \alpha_1 + \epsilon \operatorname{Sq}^2 \alpha_2$, $\epsilon = 0, 1$. We choose $u = \alpha_1 \bigcup \operatorname{Sq}^2 \alpha_1 + \operatorname{Sq}^2 \alpha_2$. Similarly, we may take as universal example for φ_{n+2}' , (E, α_1, v) where $v = \operatorname{Sq}^2 \operatorname{Sq}^1 \alpha_2 + \operatorname{Sq}^1 \alpha_3$. We then have

$$\begin{split} \operatorname{Sq}^{2} \varphi_{n+1} \alpha_{1} \,+\, \operatorname{Sq}^{1} \varphi_{n+2}{}^{1} \alpha_{1} \,=\, \operatorname{Sq}^{2} \,\left(\alpha_{1} \,\, \bigcup \,\, \operatorname{Sq}^{2} \,\, \alpha_{1} \right) \,+\, \operatorname{Sq}^{2} \,\, \operatorname{Sq}^{2} \,\, \alpha_{2} \\ &+\, \operatorname{Sq}^{1} \,\, \operatorname{Sq}^{2} \,\, \operatorname{Sq}^{1} \,\, \alpha_{2} \,+\, \operatorname{Sq}^{1} \,\, \operatorname{Sq}^{1} \,\, \alpha_{3} \,=\, \operatorname{Sq}^{n+3} \,\, \operatorname{Sq}^{2} \,\, \alpha_{1} \,. \end{split}$$

To show that the indeterminacy is zero, let $g: X \to K(Z, n)$ be such that $g^* \alpha_1 = u \in H^*(X)$, and let $g_0, g_1: X \to E'$ be two liftings of g. Then

$$g_1'^* u = g_0^* u + \operatorname{Sq}^2 a_1$$

 $g_1'^* v = g_0^* v + \operatorname{Sq}^2 \operatorname{Sq}^1 a_1 + \operatorname{Sq}^1 a_2,$

for some a_1 , $a_2 \in H^*(X)$. Hence $\operatorname{Sq}^2 g_1^* u + \operatorname{Sq}^1 g_1^* v = \operatorname{Sq}^2 g_0^* u + \operatorname{Sq}^1 g_0^* v$; that is, the indeterminacy of the relation is zero.

LEMMA 3.2. Let $n \equiv 0(8)$. Then the relation of Lemma 3.1 defines a tertiary operation λ_n , which may be so chosen that

$$\alpha \cup \operatorname{Sq}^4 \alpha \in \lambda_n \alpha$$

where α is the fundamental class of K(Z, n + 1).

Proof. Let $E_k \to K(Z, n+k)$ be the fiber space with fiber $K(Z_2, 2n+k+1)$

+ $K(Z_2, 2n + k + 3)$, fundamental classes β_1 and β_2 , and k invariants $\operatorname{Sq}^{n+2} \alpha$ and $\operatorname{Sq}^{n+4} \alpha$. For k = 1, this is trivial; let $f: K(Z, n) \to E_1$ be a cross section. Now as $\operatorname{Sq}^2 \operatorname{Sq}^{n+2} = 0$ and $\operatorname{Sq}^2 \operatorname{Sq}^1 \operatorname{Sq}^{n+2} + \operatorname{Sq}^1 \operatorname{Sq}^{n+4} = 0$, there is the pair $(u, v) \in H^{2n+1+3}(E_1) \times H^{2n+1+2}(E_1)$ such that $i^*u = \beta_1$ and $i^*v = \beta_2$. Then $(E_1, (u, v), \alpha)$ is the universal example for Φ^n , where α is also used for the image of $\alpha \in H^*(K(Z, n+1))$ in E_1 .

Let E_2 be the fiber space over E_1 with fiber $K_1(Z, 2n + 1) \times K_2(Z_2, 2n + 3)$ $\times K_3(Z_2, 2n + 4)$, and k-invariants Sqⁿ⁺¹ α , u, and v. Let α_1 , α_2 , and α_3 be the fundamental classes of the fiber. Let $K_1 \times K_2 \times K_3 \to E_2' \to K(Z, n + 1)$ be the fiber space induced by $E_2 \rightarrow E_1$ by $f: K(Z, n + 1) \rightarrow E_1$.

Now the map $g: SK(Z, n) \to K(Z, n + 1)$, which brings the basic class α back to the suspension $s\alpha' \in H^*(SK(Z, n))$ of the basic class α' of K(Z, n), lifts to a map $SK(Z, n) \rightarrow E_2$, as the appropriate k-invariants vanish on SK(Z, n), for dimensional reasons. Note that this last map factors as f_1g_1 through E_2' , as E_2' is induced from $E_2 \to E_1$. Thus we have the commutative diagram

in which the top row are fibers to the maps g, $E_2' \to K(Z, n + 1)$ and $E_2 \to E_1$. Now the class $\operatorname{Sq}^4 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^1 \alpha_1$ transgresses to zero in $H^*(E_1)$, by the previous lemma; we choose $w \in H^*(E_2)$ so that it restricts to $\operatorname{Sq}^4 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^2 \alpha_1 + \operatorname{Sq}^2 \alpha_2 + \operatorname$ $\operatorname{Sq}^2 \alpha_2 + \operatorname{Sq}^1 \alpha_1$ in the fiber $K_1 \times K_2 \times K_3$.

Then (E_2, w) is the universal example of λ_n . Consider the commutative diagram

in which the horizontal sequences are exact in the range which concerns us. Let $u' = f_1^* u$. Now it is known [2] that $g_1^* \alpha_1 = \alpha * \alpha$ and $g_1^* \alpha_2 = \alpha * \operatorname{Sq}^2 \alpha$, where α is the fundamental class of K(Z, n). Thus

$$g_1^*(\operatorname{Sq}^4 \alpha_1 + \operatorname{Sq}^2 \alpha_2) = \operatorname{Sq}^4 \beta * \beta + \operatorname{Sq}^2 \beta * \operatorname{Sq}^2 \beta + \beta * \operatorname{Sq}^4 \beta + \operatorname{Sq}^2 \beta * \operatorname{Sq}^2 \beta$$
$$= \operatorname{Sq}^4 \beta * \beta + \beta * \operatorname{Sq}^4 \beta.$$

But $i_3^*(s(\operatorname{Sq}^4 \beta \cup \beta)) = \operatorname{Sq}^4 \beta * \beta + \beta * \operatorname{Sq}^4 \beta$ also. Thus the lifting g_1 can be chosen so that $g_1^*w = s(\operatorname{Sq}^4 \beta \cup \beta)$. That is, $\alpha \cup \operatorname{Sq}^4 \alpha \in \lambda_n \alpha$.

4. The towers

We wish to construct modified Posnikov towers for $\sum_{k=1}^{k} K(Z, n)$, beginning with the map $\Sigma^{k}K(Z, n) \xrightarrow{f} K(Z, n + k)$. Note that the kernel of f^{*} includes all $\operatorname{Sq}^{I} \alpha$, α the basic class of K(Z, n + k), where I is of excess >n (and less than k,

but here k is large); thus we must kill these classes by adding homotopy groups in the fibers of our towers. Next, the cokernel consists of the k-fold suspension of various cup-product classes, $\operatorname{Sq}^2 \alpha \cup \alpha$, $\operatorname{Sq}^3 \alpha \cup \alpha$, \cdots . (It turns out that $\operatorname{Sq}^2 \alpha \cup \alpha$, $\operatorname{Sq}^4 \alpha \cup \alpha$, and some class in dimension 2n + 6 are crucial for our purposes.)

Hence these (cup-product) classes must be added to K(Z, n + k), unless they occur as secondary or higher order operations based on relations between classes introduced in the fibers of towers. Thus the tower for $n \equiv 0(8)$ has two Z_2 groups (α_1, α_2) added at i = 1, and i = 3 at the first stage, E_1 . Their k-invariants are $\operatorname{Sq}^{n+2} \alpha$ and $\operatorname{Sq}^{n+4} \alpha$. Then $\operatorname{Sq}^{n+1} \alpha$ pulls up to E_1 and is killed at the second stage. E_2 is formed by adding $3 - Z_2$ groups $(\beta_1, \beta_2, \beta_3)$ at i = 0, 2, 3, and k-invariants $\operatorname{Sq}^{n+1} \alpha$, $\operatorname{Sq}^2 \alpha_1$, and $\operatorname{Sq}^1 \alpha_2 + \operatorname{Sq}^{2,1} \alpha_1$, respectively. We then find $\operatorname{Sq}^2 \beta_1 = 0$, yielding the operation φ , where $\varphi(S^k \alpha_n) = S^k(\operatorname{Sq}^2 \alpha_n \cup \alpha_n)$, and next, $\operatorname{Sq}^4 \beta_1 + \operatorname{Sq}^2 \beta_2 + \operatorname{Sq}^1 \beta_3 = 0$, yielding the operation λ , where $\lambda(S^k \alpha_n) =$ $S^k(Sq^4 \alpha_n \cup \alpha_n)$, (section 3). One computes and finds that this takes care of all cup-product classes except for one in dimension, i = 6. Thus one more class, s_1 , must be added for i = 6, and we know it corresponds to a spherical cohomology class. The balance of the tower for i = 0 is a straightforward computation. One reads off the homotopy groups in the usual way: e.g. $\pi_3(n)$ has order 4, because both α_2 and β_3 occur in this dimension. Then as the k-invariant of β_3 involves $\mathrm{Sq}^{1} \alpha_{2}, \pi_{3}(n) = Z_{4}.$

This is the general pattern, with two exceptions. First, Z_4 -groups occur for $n \equiv 7$ and $n \equiv 6(8)$, without being built up. That these classes are of order 4 was known from the previous cases; as a check, one can easily compute the corresponding MP-towers with integral coefficients. The second exception is that the class labeled β_3 in the tower for $n \equiv 2(8)$ corresponds to a spherical cohomology class. One can discover this by the process of elimination; in fact we know no better way to discover it. A little thought convinces one that this would not be unlikely, however. Thus, the quaternary operation φ_2 in dimension i = 6 detects a cup-product class; $\mathrm{Sq}^1 \varphi_2$ detects another cup-product, and it is to this class that the relation $\mathrm{Sq}^7 \alpha_1 + \mathrm{Sq}^6 \alpha_2$ would otherwise have led. Thus β_3 is added to kill a class which needs killing only through a fluke. This is the usual situation where there is a differential in the Adams spectral sequence.

The towers

<i>n</i> =	= 0(8)								
i 0 1 2	$\pi_i \ Z \ Z_2 \ Z_2 \ Z_2 \ Z_3$	$\mathrm{Sq}^{n+2} lpha$	α_1	$\operatorname{Sq}^{n+1}\alpha$	$eta_1 \ eta_2 \ eta_2$	$\mathrm{Sq}^2eta_1\!:\!arphi$			
3 4 5 6	$egin{array}{c} Z_4 \\ 0 \\ 0 \\ Z_2^s + Z_4 \end{array}$	$\operatorname{Sq}^{n+4}\alpha$	α_2	$\begin{array}{c}\operatorname{Sq}^{2}\alpha_{1}\\\operatorname{Sq}^{1}\alpha_{2}+\operatorname{Sq}^{2,1}\alpha_{1}\end{array}$	β3	$\mathrm{Sq}^4eta_1 + \mathrm{Sq}^2eta_2 + \mathrm{Sq}^1eta_3$:	λ 21		γ_2
	~2 1 ~1					$\mathrm{Sq}^{3,1}eta_3$	/1	$\mathrm{Sq}^{1}\gamma_{1}$	12

* An element of order 4.

$n \equiv 7$	(8)									
$i \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6$	$egin{array}{c} \pi_i & Z_2 & 0 & \ Z_2^s + Z & Z_2 & \ Z_2^s + Z & 0 & \ Z_2^s + Z & 0 & \ Z_2^s & \ \end{array}$	Z ₂ S ₁ Z ₄ S ₁ S ₁	$q^{n+1}lpha$ u 22 q^2s_1 +	· Sq ^{n+2,2}	$lpha_1$ $lpha_2$ lpha	s	q ^{2,1} α ₁	eta_1	Sq³βı	γ_1^*
n = 6(8)										
i 0 1 2 3 4 5 6	$\pi_i \\ Z \\ Z_2 \\ 0 \\ Z_2 \\ Z_2^s \\ Z_4 \\ Z_2^s$	${\operatorname{Sq}}^{n+1}lpha {\operatorname{Sq}}^{n+2}lpha {\operatorname{Sq}}^{n+2}lpha$	$lpha_1 \ lpha_2$	Sq ² Sq ²	$\alpha_1 + \mathrm{Sq}^1 \alpha_1$	¥2	:	arphi eta_1	Sq²β1	γ1*
$n \equiv 50$ $\dim 0$ 1 2 3 4 5 6	(8) $ \begin{array}{c c} \pi_{i} \\ Z_{2} \\ 0 \\ Z_{4} \\ 0 \\ Z_{2}^{s} \\ 0 \\ Z_{2}^{s} + Z_{2}^{s} \end{array} $		$\mathrm{q}^{n+1} \alpha$ $\mathrm{q}^{n+3} \alpha$	$ \alpha_1 $ $ \alpha_2 $ $ Sc $ $ Sc $ $ Sc $ $ Sc $	$rac{1}{2}lpha_2:arphi$ $rac{1}{2} ce{1}^{2,1}lpha_1+\mathrm{S}$ $rac{1}{2} ce{1}^{7}lpha_1+\mathrm{S}\mathrm{S}\mathrm{S}\mathrm{S}$	$q^1 \alpha_2$	eta_1 eta_2	Sq^4	$S^1\!eta_1 + \mathrm{Sq}^1\!eta_2$	γ1
$n = 40$ $\dim 0$ 1 2 3 4 5 6	(8) $\begin{array}{c} \pi_{i} \\ Z \\ Z_{2} \\ Z_{3} \\ Z_{4} \\ 0 \\ 0 \\ Z_{2^{s}} \end{array}$	$\mathrm{Sq}^{n+2}lpha$ $\mathrm{Sq}^{n+4}lpha$ s_1	α1 α2	$\mathrm{Sq}^{n+1}lpha$ Sq^2lpha_1 $\mathrm{Sq}^{2,1}lpha_1$	$+$ Sq ¹ α_2	eta_1 eta_2 eta_3	Sq^2eta_1 Sq^4eta_1	$\dot{\varphi}$ ϕ + Sq ²	$eta_2 + \mathrm{Sq}^1eta_3$: λ
$n \equiv 3($ dim 0 1 2 3 4 5 6	$ \begin{array}{r} \pi_i \\ Z_2 \\ 0 \\ Z_{2^s} + Z_2 \\ Z_2 \\ Z_8 \\ 0 \\ Z_{2^s} \end{array} $	${f Sq^{n+1}lpha}\ {f s_1}\ {f Sq^{n+2,2}lpha}\ {f Sq^{n+5}lpha}\ {f Sq^{n+5}lpha}\ {f s_2}$	$a + Sq^{2s}$ + Sq^{n+3}	α_1 α_2 α_3 α_3	$\mathrm{Sq}^{2,1}lpha_1$ $\mathrm{Sq}^{4,1}lpha_1$ - $\mathrm{Sq}^{6}lpha_1$ +	⊢ Sq¹α Sq³α₂	β1 β2 χ3 : φu	s Sq Sq	$^{p}\!eta_{1}:arphi_{x}$ $^{p,1}\!eta_{1}+\operatorname{Sq}^{1}\!eta_{2}$	γ1