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1. Introduction 

In the last few years retarded differential equations have attracted the .atten
tion of many mathematicians, but although theorems related to the topics in
dicated in the titl!'l of this paper have been proved for different special cases (see 
references [2] through [11]), it is difficult to find in the current literature theorems 
that are general enough to cover most of the interesting applications of retarded 
differential equations 

If one translates retarded differential equations to the language of functional 
differential equations, as for example is done in [5] and [8], it is not difficult to 
prove general existence and uniqueness theorems as extensions of the correspond~ 
ing ones for ordinary differential equations. This is what we endeavour to do here 
even for the case of infinite retardations. The theorems to follow are applicable, 
of course, to ordinary differential equations; to so-called differential-difference 
equations, i.e., equations of the form 

( 1) i; (t) = J[t, x(t), x(t - r1), • • ·, x(t - Tn)], t :2: 0, 

where O $ r 1 ::::; r2 ::::; • • • ::::; Tn and Tj = ri t) are continuous functions of t; 
and also to more general past dependence equations, as for example 

(2) x(t) = -a f x(t - n), 
n-0 2n 

t :2: 0 

or 

(3) x(t) = j(t, x j [t - 1, t], x j [O, t], x I (-oo, t]), t, :2: 0, 

where x I [a, b] means the function x restricted to the interval [a, b]. 

2. Notation and definitions 

As usual Rn will denote n-dimensional euclidean space with some norm I j. ' 
We shall be concerned with linear spaces of continuous functions defined on closed 
intervals [a, b] or half open lines ( - oo, b] with values in Rn. In the case of a 
closed interval [a, b], the topology of the corresponding space of functions will 
be the usual uniform one; that is, if xis a continuous function on [a, b], then the 
topology is defined by the norm II x II given as 

II x II = sup { I x(t) I, a :::; t :::; b}, 

and the resulting space is a Banach space. In the case ( - oo, b], the topology will 
be given by a metric p defined as follows: if x and y are continuous functions on 
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( - oo , b], then 

p(x, y) = sup {min (T\ II x - y Ilk); k = 0, 1, 2, • • ·}, 

where II x - y Ilk = sup { I x( t) - y( t) I; b - k - 1 ::::; t :=; b - k). Such a metric is 
complete, and convergence is equivalent to uniform convergence on all compact 
subsets of ( - oo, b]. In this topology, a function x will be said to be bounded by 
H if 11 x Ilk < H fork = 0, 1, 2, • • • . Notice that this concept of boundedness is 
stronger than the usual one for this space. 

In the sequel we consider a given number r, 0 :=; r :=; oo , which we call the total 
lag. In specific cases this number is the maximum retardation needed at any time 
in the differential equation; for instance, in ordinary equations r = 0; in example 
(1),r = sup{r,.(t),t 2:'.: O};in(2) and(3),r = oo. 

Given two nonnegative numbers a and b, we denote by C[r, a, b] the space of 
continuous functions from [a - r, a + b] into Rn or from ( - oo, a + b] into Rn, 
if r = oo; by C[r, a, b, H], we denote the subset of C[r, a, b] bounded by H. A 
space that will play a special role is that for a = b = 0, that is, of continuous func
tions defined on [ -r, O] or ( - oo, OJ; this space we shall simply denote by C[r] or 
C[r, H] for a bounded subset. The space C[r] will be our phase space exactly in 
the same way as Rn is for ordinary differential equations. Actually, for r = 0, 
C[r] = Rn. For every t, a:=; t :=; a+ b, we define a transformation from C[r, a, b] 
into C[r] which we call the t-restriction, and we denote its image by x 1 , given by 
the following rule: if x E C[r, a, bl, then Xt is the function of 0 defined by x(t + 0) 
for -r :=; 0 :=; 0, clearly Xt E C[r]. It is a routine matter to check that Xt is con
tinuous in t, in the sense that if tn ~ t, n ~ oo , then Xtn ~ Xt in the topology of 
C[r]. By f(t, if;) we shall designate a function with domain [O, T) X n, n open in 
C[r, H], and range in Rn, where O < T :=; oo and O < H :=; oo. 

We should remark at this point that function spaces other than the ones 
mentioned may be of interest in the applications and also other topologies may be 
useful. However, the class we consider seems to be the most important, certainly 
is the simplest and brings out most of the essential elements necessary for generali
zations. 

Let f( t, if;) be a function as indicated above, and let x( t) denote the right hand 
derivative of a function x( t) E Rn at the point t, then a retarded differential equa
tion (functional differential equation) is a functional relation of the form 

(4) x(t) = f(t, Xt). 

Given any point ( a, <P) in the domain off( t, if;), we say that ( 4) has a solution 
with initial condition ( a, <P) if there exists a number b > 0, a+ b :=; T, and a func
tion x = x( a, <P) E C[r, a, b], such that 

Xa = <P, Xt E n, a ::;; t < a + b, and 

x(t) = f(t, Xt), a::;; t < a+ b. 

3. Existence 
' In this section we shall extend a classical existence theorem of ordinary differ

ential equations to equation ( 4). 



RETARDED DIFFERENTIAL EQUATIONS 31 

THEOREM 1. If f( t, YI) is continuous on [O, T) X SJ, and ( a, cp) is any point in the 
domain off( t, YI), then there exists a solution of ( 4) with initial condition ( a, cp). 
Furthermore, the solution is continuously differentiable for t > a. 

Proof. In order to give the proof, we have to consider separately the cases 
r < oo and r = oo, because of the different topologies. We shall give the details 
for the case r = oo, the other being a simplified version of this one. The proof will 
make use of Schauder's fixed point theorem on an operator W acting on a subset 
of C[- oo, a, b], a + b < T, and defined as follows: 

(5) W[x](t) = x(t) + J!__oof*(s, Xs) ds, 

with - oo < t S a + b, where 

< 0 S O[ - oo < t S a] 
(6) x(t) 

= {
cp(t - a) = cp(0); - oo 

and 

(7) 

,p(O); a < t S a + b 

(O; (-oo,a) X SJ 
f*(t, Y1) = ~ 

lf(t, Y1); [a, a+ b] X SJ. 

Clearly, if W[x] is such that W1[x] E SJ, a S t < a + b, and had a fixed point, 
the theorem would be proved. 

For any positive numbers band M, denote by D[b, M] the subset of C[- oo, a, b] 
determined by the conditions 

(8) 
(x(t) = x(t); -oo <ts a 

XE D[b, M] {=}~ 

l!x(t) - cp(O)I = lx(t) - x(a)f < M; a St Sa+ b. 

First we want to prove that b and M can be chosen in such a way that f( t, Xi) is 
bounded for all a S t S a + b and x E D[b, M]. Now, since f( t, YI) is continuous 
at ( a, cp), there exists a neighborhood Va X V <P in [O, T] X Q such that ( t, VI) E 
Va X V<P implies f f(t, Y1)I < A for some constant A. Let the neighborhood V,pof 
cp be described as the set of VI E Q such that p( cp, VI) < TN < po/2, 
po = dist ( cp, aSJ), for some convenient integer N > 0. It is immediate from the 
definition of the metric p that, if VI satisfies the condition 

sup {lcp(0) - V1(0)1; -N - 1 s 0 s O} < rN-l' 

then VI E V <P . Let b * be chosen such that I cp( 0) - cp( 01) I < rN- 2, for j 0 - 0 j < b * 
and 0, 0' E [-N - 1, OJ, and let M = TN- 2 • Then, for all x E D[b*, Ml, we have 

sup {jcp(0) - xi(O)I; a St Sa+ b*, -N - 1 s 0 SO} < rN-i, 

and therefore x1 E V<P. So, with the added provisions that a + b* < T and 
[a, a + b *] C Va , we have 

(9) lf(t, X1)I < A; a S t S a+ b*, x E D[b*, M]. 
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Finally choose b ::::; b * in such a way that 

( 10) bA::::; M, 

a°:d let D[b, M, A] be the subset of D[b, M] of functions that satisfy 

(11) 

It_is a routine matter to check that D[b, M, A] is a convex compact subset of 
C[ oo·, a, b] with the induced topology. Making use of ( 6)-( 11), one sees immedi
ately that, for all x E D[b, M, A], we have W[x] E D[b, M, A]. On the other hand, 

(o; - 00 < t::::; a 
(12) I W[x](t) - W[y](t)I ::::; i 

lf! lf(s, x,) - f(s, y,)I ds; a::::; t ::::; a+ b, 

for all x, y E D[b, M, A]. But when t ranges over [a, a+ b] and x, over D[b, M, A], 
then ( t, Xt) ranges on a compact subset of [a, a + b] X C[ oo] on which f is then 
uniformly continuous. This fact and ( 12) imply that W is continuous on 
D[b, M, A]. Now, as stated at the beginning, we use Schauder's fixed point 
theorem to complete the proof of Theorem 1. 

4. Continuity and uniqueness 

Consider the functional differential equations 

(13) 

and 

(14) 

X(t) = f(t, Xt) 

y(t) = g(t, Yt), 

where f and g are continuous locally bounded functions into Rn with domain 
[0,, T) X n _and f is locally lipschitzian with respect to the second variable with 
Lipschitz function k( t). According to Theorem 1, for any pair of points ( a, <P) 
and (a', <P1 ) in the common domain off and g, there exist numbers band b' and 
functions x = x( a, <p) and y = y( a', /) defined on a - r ::::; t ::::; a + b and 
a' - r ::::; t ::::; a' + b', respectivel\f, and such that x( a, <p) satisfies ( 13) and 
y(a',<P') satisfies (14), with the corresponding initial conditions. Let k(t) be the 
Lipschitz function of f associated with a region in n which contains all the 
elements Xt, a ::::; t ::::; a+ b, Yt, a' ::::; t ::::; a' + b'. Let a, (3 be positive numbers 
such that I a - a' I = a, II <p - / II = (3 (p( 'P, /) = (3 in the case r = oo), B a 
local common bound for f and g and 'Y a local bound for If( t, VI) - g( t, VI) 1-In 
order to be more specific let us suppose that a ::::; a' < a + b ::::; a' + b'. We can 
now·prove 

THEOREM 2. With the former conditions and notations, the solutions x and y of 
( 13) and ( 14) respectively satisfy the relation 

• • • 1 f 1 k(s)ds (p(Xt, Yt); 
(fr;') [E(a)/3 + Ba + (b + a - a h]e a ~ 

II Xt - Yt II; if r < oo 

if r=oo 

for a' ::::; t ::::; a + b; where E( a) is a continuous function of a, E( a) -,, 1 as a -,, 0. 
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Proof. Again we consider only the case r = oo, the other being simpler. Using 
( 5) for both solutions x and y and subtracting them, we obtain 

I x(t, a, cp) - y(t, a', /)I 
~ I x(t) - y(t)I + I J:oof*(s, x.) ds - J:.oo g*(s, y.) ds r 
~ lx(t) -y(t)J + IJ:.oo[f*(s, x.) -f*(s,y,)]dsl 

+ IJ:.oo [f*( s, y.) - g*( s, y.)] ds I 

~ lx(t) -y(t)J + J:.ook*(s)p(x.,y.)ds 

+ J:.oo lf*(s, y.) - g*(s, y,)J ds, 

on the interval - oo < t ~ a+ band where y(t) and g* are defined in the same 
way as x(t) andf* by (6) and (7), and k*(t) = 0 fort < a, k*(t) = k(t) for 
t > a. 

From this inequality we immediately get 

p[xt(a, cp), Yt(a', /)] ~ p(Xt, Yt) + J! k(s)p(x., y,) ds +Ba+ (b + a - a'h, 

for a' ~ t ~ a + b. On the other hand, clearly p(Xt, Yt) ~ e( a)fJ, for some con
tinuous function e( a) - 1 as a - 0. Substituting this in our last inequality, we get 
( 15) by using Gron wall's Lemma, and Theorem 2 is proved. 

COROLLARY 1. Suppose that f is continuous on [0, T) X n and is locally 
lipschitzian with respect to the second variable with Lipschitz function k(t). If 
x( a, cp) and x( a, cp') are solutions of ( 15) with initial values ( a, cp) and ( a, cp'), 
respectively, then 

r < oo 

and 

[ ( ) ( ')] ( ') f !k(s)ds p Xt a, cp , Xi a, cp ~ p cp, cp e ; r = oo 

for all t 2:: a in the common domain of the definition of x( a, cp) and x( a,/). 

COROLLARY 2. Suppose that f( t, if;, A) is continuous for I A I < Ao and 
( t, if;) E [0, T) X n and is locally lipschitzian in if;. Then the solution x(A, a, cp) of 
x( t) = f ( t, Xt , A), I A I < Ao , with initial value ( a, cp), is continuous in A. 

Certainly a uniqueness result under a Lipschitz condition can be obtained fro:m 
( 15) by considering the case a = fJ = 'Y = 0, but some comment is in order. 
Since the phase space C[r] is determined by the total lag r, it might well happen 
that when considering the solution to some functional equation at some starting 
time t = a the initial function cp E C[r] carries superfluous information. For ex
ample, if one is interested in an equation of the form x(t) = f(x l[0, t]) at the 
initial time t = 0, the phase space would be C[ oo], and therefore the initial point 
would be a function cp( 0) defined on - oo < 0 ~ 0. Nevertheless, it is clear tha~ 
the solution of such an equation at t = 0 should depend only on cp( 0), all the other 
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values of <P being of no consequence to the equation, and that therefore the unique
ness should be stated in terms of <P( 0). Therefore we shall prove the following. 

THEOREM 3. Let f be continuous and locally lipschitzian with respect to the second 
variable in [0, T) X Q. If, for a given a E [O, Tl, f( t, Xt), t ~ a, depends only on the 
values of Xi( 0) for -ro =:; 0 =:; 0, 0 =:; ro =:; r, then the solution of ( 4) is uniquely 
determined by ( a, { <P} ) , where { <P} represents the class of functions <P E Q that coincide 
in -ro =:; 0 =:; 0. 

Proof. Given two functions <P1 ~ <P2 in the same class { <P}, we know that there 
exist unique solutions x<1l = x( a, <P1) and x<2l = x( a, <P2) of ( 4) such that 
Xa <tl = <Pi and Xa <2l = <P2 and satisfying the equation in some interval a =:; t < a 
+ b =:; T. Suppose that x<1\t) ~ x<2l(t) for at least some t E [a, a+ b). Con
struct the function x E C[r, a, b] defined as follows: 

( x<1\ t); a - ro =:; t < a + b 
x(t) = i 

Lx<2l(t); a - r =:; t =:; a - ro. 

Then, because of the hypothesis, xis a solution to ( 4) with initial condition ( a, <P2 ) 

and different from x<2l. This is a contradiction and the theorem is proved. 

It is not difficult to see that continuity theorems under a uniqueness condition 
(as for example Th. 7.4, Ch. I, in [1]), can be easily obtained and we shall not give 
any details. 

5. Other Lipschitz conditions 

For r =:; oo, Theorem 2 gives a unified treatment of the relationship between 
the solutions of ( 13) and ( 14) with respect to the initial values when one assumes 
f( t, <P) is locally lipschitzian in <P relative to the metric p. For the case when r is 
finite, Theorem 2 is sufficient for most applications. Unfortunately, when r = oo, 

a local Lipschitz condition relative to the metric p is too severe. To illustrate this 
point, consider the linear system 

x(t) = f(xt) 

f(<P) = f'L,,L(0)<P(0)d0, L(0) ~ 0, f~ooL(0)d0 < oo. 

The function! is certainly defined on the set Q of all bounded functions in C[ oo ]. 

Inn, is f( <P) locally lipschitzian in <P with respect to the metric p? More precisely, 
for any finite H > 0, does there exist a constant KH such that 

If( <P) I :::; KHp( <P, 0), for <P in C[ oo, H]? 

To show that this is not the case, it is sufficient to show that there is a kernel func
tion L( 0) and no constant K such that 

lf(<P)I :::; Kp(<P, 0) for <P in C[00], sup {I <P(0)1, - oo :::; 0 =:; 0} = 1, 

since f( <P) is linear in <P· Suppose that such a K did exist. For any positive real 
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numbers A < 1, e, 7, let 

{
A when - 7 < 0 < 0 

cp(O) = g(O) when - 7 - e:::; 0:::; 

1 when O :::; -7 - e 

35 

-7 

whereg(O) is a decreasing continuous function with g(-7 - e) = 1, g(-7);;\, 
For this cp, 

f(cp) = Af(]__TL(O) dO + f=:OL(O) do+ µ(e, A, 7), 

where µ( e, A, 7) -;, 0 as e -;, 0 uniformly in A, 7. If A = Tk and 7 k, then 
p(cp, O) = Tk and, therefore, for every integer k, it would be necessary to have a 
constant K such that 

2-k J[]_k L(O) dO + I=~ L(O) do+ µ(e, r\ k) < KTk. 

It is cle!j,r that there exist integrable kernels L(0) for which this is not true. 
For such a simple equation as the above, one would certainly expect an exist

ence and uniqueness result in 11, and this indicates the need for a less restrictive 
definition of lipschitzianity. At first glance one might also expect the same proper
ties for an even larger class of functions than Q. In fact, the domain of definition of 
f contains many unbounded functions in C[ oo ]. However, if this larger class of 
functions is chosen, the function f will not be continuous. This remark simply 
serves as a word of caution for the case r = oo . 

Consider again systems ( 13) and ( 14), but under the following hypothesis. Let 
Q be the set of all bounded functions in C[r, H], and suppose that f and g are.\)on
tinuous functions with domain [O, T) X Q and range in R" such that f and g are 
bounded on [O, 7] X (Q n C[r, H1]) for every 7 < T, H 1 < H. Also, suppose that 
for every H1 < H, there is a function kH1 ( t), continuous for O :::; t < T, such that 

(16) lf(t, cp) - f(t, \lt)/:::; ku1(t) sup {/cp(O) - \lt(O)/, -r:::; 0 :::;.o}, 
for O :::; t < T and cp, \lt in Q n C[r, H1]. According to Theorem 1, for any pair lof 
points (a, cp) and (a', cp') in the common domain off and g, there exist numbers 
band b' and functions x = x(a, cp), and y = y(a', cp'), defined on a - r:::; t:::; 
a+ band a' - r :::; t :::; a' + b', respectively, such that x satisfies (13) and. y 
satisfies ( 14), with the corresponding initial values ( a, cp) and (a', cp1 ). For 
definiteness, suppose that a:::; a'< a+ b:::; a'+ b'. Let k(t) be the Lipschitz 
function off associated with a region S in Q which contains all the elements. Xt , 

a :::; t :::; a + b, Yt, a' :::; t :::; a' + b'. Suppose that Bis a common bound for.f 
and gin [a, a' + b'] X S, /f(t, \lt) - g(t, it,)/ < 'Yin [a, a' + b'] X S, ~nd 

I 
a= a - a. 

THEOREM 4. With the former conditions and notations, the solutions x and y of 
( 13) and ( 14) respectively satisfy 

sup {lxt(0) - Yt(O)/, -r:::; 0:::; O} 
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~ [E(a) sup { I cp(0) - /(0)1, -r ~ 0 ~ O} +Ba+ (b + a - a'),,]ef!k(sJd•, 

for a'~ t ~a+ b, where E(a) is a continuous function of a, E(a)-,, las a -,,0. 

The proof is the same as the proof of Theorem 2. For a = 0 and 'Y = 0, we ob
tain the analog of Corollary 1 which yields continuity with respect to the initial 
function. The analog of Corollary 2 is also easily stated. Theorem 3 is also valid 
with the weaker Lipschitz condition ( 16). 

In the case r = oo and with the Lipschitz condition of ( 16), we have been 
forced to consider only bounded functions in C[ oo ]. In general, it is necessary to 
consider functions which may be unbounded. The above results can be improved 
in the following way. Suppose that g( 0), - oo < 0 ~ 0 is any given function in 
C[ oo], and let n be the set of functions rp in C[ oo] such that ,pg is bounded. The 
metric is defined in C[ oo] in exactly the same way, and the Lipschitz condition of 
( 16) may be repiaced by 

lf(t, cp) -f(t, iJ;)I ~ kn 1(t) sup{lrp(0)g(0) - if;(0)g(0)1, -oo < 8 ~ O}. 

The estimates in Theorem 4 will then involve an additional function of t and all 
supremums taken with the function g inside. 

6. Continuation 

Let us suppose that f( t, if;) is continuous and bounded in some domain 
[0, T) X n. Let x( a, rp) be a solution of ( 4) with initial condition ( a, rp) in the 
domain off and defined in an interval a ~ t < a+ b ~ T. 

THEOREM 5. Under the former conditions, the solution x( a, rp) of ( 4) has a hrnit as 
t -,, ( a + b )- ; and, if Xa+b E n, then the solution can be extended to the right of 
a+ b. 

Proof. The proof is exactly the same as that for Theorem 4.1, Chapter I, of [1]. 
Let n be the set of bounded functions in C[r]. If f( t, if;) is continuous on 

[0, oo) X n, is linear in if;, and if there is a function k(t) continuous fort ~ 0 
such that 

IJ(t, t)I ~ k(t) sup {I if;(0)1, -r ~ 0 ~ O}, 

then Theorems 4 and 5 imply that the solutions of 

x(t) = f(t, Xi) 

can be continued up to + oo . Theorem 2 does not imply this property except for r 
finite. 
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