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Introduction 

Let Rn be a real n-dimensional Euclidean space where Ix I denotes the 
Euclidean norm of x E Rn. Let X be the set of all functions x( t) defined and con
tinuous on the compact interval [T1, T2] with values in Rn; i.e., x: [T1 , T2] - Rn. 
X will be considered as a Banach space with the norm Ix Ix = SUPtE [Ti,Tzl I x(t)j. 
Let 0 < h < T2 - T1, and denote by H the space of functions y(t) defined and 
continuous in [ - h, 0], with values in Rn, and the norm defined by 
Yn = SUPtE[-h,OJ I y(t)I for every y EH. 

If x EX, define Xt EH fort E [T1 + h, T2] as follows: Xt(rr) = x(t + er), for 
- h ~ rr ~ 0. In other words Xt is the restriction of x to the interval [t - h, t]. 

Let X 1 be a subset of X with the following property: if x = x(t) for t E 
[T1 , T2] is an element of X1 and if t E [T1 , T2], then 

x = x(t) = {x(~) for t E ['.7'1, t] 
x( t) for t E [t, T2] 

is also an element of X1 . LetH1 be a subset of H such that x E X1 implies Xt E H1 
fort E [T1 + h, T2]. Consider the functional equation 

(1) dx/dt = f(xt, t) 

where f:H 1 X [T1 + h, T2] - R" and, for any fixed x E X1 , f( Xt , t) is Lebesgue 
integrable in t E [T1 + h, T2]. Further, suppose that the primitive function of 
f(xt, t) has the following moduli of continuity for fixed x1, x2 E X1 : 

(2) IJ;if(x.1,rr)drrj ~ w1(T2 -Ti), 

(3) I J;i [f(x.1, rr) - f(x.2, rr )] du I :=::; w2( T2 - T1) SUP•E[, 1 ., 21 ws{ l(x1 - x2).lnl, 

for T1 + h :::; T1 :::; T2 ~ T2 and T2 - T1 ~ rr *, where rr * > 0 depends only on 
T1 , T2, h. The functions w1 , w2 are continuous and increasing on [0, rr *]; W3 has the 
same property on [O, oo ], w,(O) = 0, L1=1 2\/;(71/2;) uniformly convergent for 7/ 
E [0, er*], if;( 7/) = w3( w1( 7/) )w2( 7/). Note that one can take w;( 7/) = /3;,,ti, /3; , ai 

> 0, j = 1, 2, 3, a1a3 + a2 > 1. If especially a; = 1 for j = 1, 2, 3 and f is con
tinuous in H1 X [T1 + h, T2], then the usual conditions for existence and unique
ness of solutions of ( 1) are fulfilled [5]. 

It is the aim of this paper to show that equation ( 1) is a special case of a 
generalized ordinary differential equation in Banach spaces introduced by J. 
Kurzweil [I], [2]. The idea of associating a generalized equation to an equation of 
type ( 1), where w;( 71) are linear, belongs to J. Kurzweil. This paper contains a 
generalization of this result to the case of moduli w; (71) stated above. 
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Some basic definitions and results of the theory of generalized differential equa
tions will be stated in the following section. 

1. Generalized differential equations in Banach spaces 

The generalization of the concept of a differential equation is based on a more 
general definition of the integral of Riemann-Stieltjes. 

Let T* < T* and S = S[T*, T*] be the system of sets SC R2 with the following 
property: for every TE [r*, T*] there exists o(T) > 0 such that (T, t) ES, if 
T, t E [T*, T*], IT - t I ::; o( T ). Let U( T, t) be a function defined on some 
S E S[T*, T*] with values in a Banach space Y. 

Let A be a finite sequence of numbers { ao , T1 , a1 , • • • , Tk , <Tk}, T* = ao < 
a1 < · · · < ak = T *, T, E [ai-1 , a.] for i = 1, 2, • • • , k. A is called a partition of 
[T* , T*] subordinate to S E S if (Ti, t) E S for i = 1, 2, • • • , k, t E [a.-1, a.]. 

Denote by A(S) the set of all A subordinate to S, and let B(A) = 

L~=l U( T;, a;) - U( T;, a;-1) for A E A(S). 

DEFINITION 1. U ( T, t) is K-integrable if, for every e > 0, there exists S E S[ T * , r *] 
such that I B(A1) - B(A2)IY < e whenever A1 , A2 E A(S). It is easy to prove [2] 
that U is K-integrable if and only if there exists a unique vector b E Y such that, given 
e > 0, thereexistsanS E S[T*, T*] such that A E A(S) implies IB(A) - b IY < e 

and bis denoted by J;: :DU( T, t). 

It can be shown that if U(T, t) = u(T)a(t), with u continuous and a with 
bounded variation in [T*, T*], then J;: :DU exists and is equal to the integral of 
Riemann-Stieltjes J ;:u(T) da(T). If aU(T, t)/at = u (T, t) is continuous, then 
J;: :DU = J;: u( T,. T) dT. If ff ( T, t) = f( T )t, with Y = R" and f( T) Perron
integrable, then J;. :DU= J;J(T) dT (see [l]). 

In [2] the following existence theorem was proved. 

THEOREM 1. Let U( T, t) be defined and continuous on [T* , T *] X [T* , T *], and 
let if;( 'Y/) 2: 0 be defined for rJ E [O, u], with u > 0, if;( 0) = 0, and L1=1 2;if.,( rJ/2i) 
uniformly convergent on [O, a-]. Suppose that 

(1.1) I U(T + r,, t + rJ) - U(T + rJ, t) - U(T, t + rJ) + U(T, t)Jy::; if;(rJ), 

for0 < rJ =s; <T, (T + r,, t + rJ), (T + 'Y/, t), (T, t + rJ), (T, t) E [h, T*] X [T*, T*]. 
Then J;: :DU( T, t) exists and 

( 1.2) I Hi :DU - U(X1 , A2) + U(X1 , A1) I Y ::; ½(X2 - A1)'1r(X2 - A1) 

and 

(1.3) I Jti :DU - U(X2' A2) + U(X2' A1)ly ::; ½(X2 - A1)'1r(A2 - Ai), 

for T*::; A1 < A2::; T*, where'lr(rJ) = L1=1 (2i/rJ)if;(rJ/2i). Moreover, '1r(71)--,, 0 
for 71--,, O+. 

Consider an open subset Y1 of Y and a continuous function F: Y1 
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X ( T1 , T2) ---,. Y. A function x( t) defined on ( t1 , t2) c ( T1 , T2) is called a solution 
of the generalized differential equation 

( 1.4) dx/dT = 'JJF(x, t) 

in the interval (t1, t2), with the initial condition x(to) = Xo E Y1, to E (t1 , t2), 
if for every t3 , t4 E ( t1 , t2) one has 

x(t4) - x(ta) = f:!'JJF(x(T), t). 

Existence, uniqueness, and continuous dependence theorems for (1.4) were 
given by J. Kurzweil (in [1], [2], and [3]) for Y = Rn, and adequate modifications 
of the proofs allow the extension to Banach spaces [4]. 

2. Equivalence theorems 

Letf(xt, t) be as in (1) and define 

{ 
J;1+hf(x.-, CT) dCT for TE [T1 + h, t], t E [T1 + h, T2] 

(2.1) F(x, t)(T) = Hi+hf(x.-, CT) dCT for TE [t, T2], t E [T1 + h, T2] 

0, for T or t E [ T1, T1 + h] 

for every x E X1 . 
Thus, for x, t fixed, F(x, t) is an element of the function space X defined in 

the Introduction, and F(x, t)(T) E Rn is the value of F(x, t) at the point 
T E [T1 + h, T2]. First of all, it will be shown that F(x, t) is continuous in X 1 X 
[T1, T2]. Let (xi, ti) E X1 X [T1, T2l, for i = 1, 2, / X1 - X2 [x, / t1 - ~/sufficiently 
small. Then, for a sufficiently fine partition T1 + h = CTo < CT1 < · · · CTk = t1 , 

I J~1
1+hf[(x1).-, CT] dCT - H2

1+hf[(x2).-, CT] dCT / 

::; / L!=1 J:;_1 {f[(x1).-, CT] - f[(x2).-, CT]} dCT I + I f:~f[(x2).-, CT] dCT I 

::; wa{[x1 - X2[x}L~=1w2(CTi - CTi-1) + w1([t2 - t1[). 

From this the continuity of F(x, t) follows easily. 

THEOREM 2.1. Let Ht) be a solution of (1) on [t1, ~] C [T1 + h, T2]; i.e., 
~ E X1 is continuous in [T1, T2] and satisfies the equation ( 1) in ( t1, t2). Define for 
every t E [T1, T2] 

(2.2) 
(HT) for T E [T1, t] 

x(t)(T) = ~ 
l Ht) for T E [t, T2]. 

Then x( t) E X is a solution of the generalized equation ( 1.4), with F given by 
(2.1) in [t1, t2] and [ x( t4) - x( ta) /x ::; w1( t4 - ta), for t1 ::::; ta ::; t4 ::; ~, [ t4 - ta / 
::; CT*. 

Proof. Let [ta, t4] C [t1, t2]. It will be proved that f:! 'JJF(x(s), t) exists and 
that 

(2.3) 
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According to the property following Definition 1, it is sufficient to prove that for 
any e there exists a set S E S[ts, t4] such that, if A = { ta = uo, /;1 , u1 , • • • , Uk = t4} 
is subordinate to l(S), then 

(2.4) I x(t4) - x(ta) - L!=1F(x(l;,), 11,) - F(x(l;,), Ui-1) Ix< e. 

Using (2.1) one obtains, for i = 0, 1, • • • , k, 

[F(x(l;,), u,) - F(x(l;,), 1Ti-1)](r) = O, for TE [T1, Ui-1] 

(2.5) = f~,_J{[x(l;,)].-, u} du, for TE [ui-1, u,], 

= J:!_if{ [x(l;,)].-, u} du, for T E [u;, T2]. 

As l;(t) is a solution of the functional equation (1), it holds that 

i;(r2) - l;(r1) = J;~J(l;.-, u) du, 

for r1, r2 E [t1, ~]. From this it follows, in view of (2.2), that 

{
o, for T E [T11 Ui-1] 

(2.6) [x(u,) - x(ui-i)](r) = f::-if(l;.-, u) du, for TE [ui-1, u,] 

J.-,_J(l;.-,u)du, for TE [u,, T2]. 

Combining ( 2.5) and ( 2.6), one can write 

(2.7) 

{x(u,) - x(ui-1) - F[x(t,), u,] + F[x(t,), Ui-1]}(r) 

{
o, for rE[T1,Ui-1] 

= f::-1 {f[l; .. 1 u] - f[x(r.) .. 1 u]} du, for T E [ui-11 u;] 

f .-,_1 {f[l;.-, u] - f[x(l;,).-, u]} du, for t E [u,, T2]. 

Using hypothesis (3), one obtains 

(2.8) 

I J~,_1 {f[l;.-, u] - f[x(l;,).-, u]} du I 
S w2( T - u i-1) sup.-E [.-,_1,rJ wa{ I [l; - x( l;,) ].-IH} 

S w2(r - Ui-1) sup.-e[.-,_1,rJ wa{supi,E[.--h,.-J I [l; - x(l;,)](t'J) I} 
S w2(r - Ui-1)wa{sup.,E[.-,_1-h,rl I [l; - x(l;;)](t'J) I} 
S w2(r - Ui-1)wa{w1(r - Ui-1)}, 

for T E [ui-1, u,], u,. - Ui-1 S u*. 
The last inequality follows from the fact that i;( t'J) = x( l;,) ( t'J), for t'J E [T1 , !;,], 

and x(l;,.)(t'J) = l;(l;,), for t'J E [!;., T2], and from (2), where x1 is replaced by l;. 
From (2.8) it follows that the norm of the left hand side in (2.7) has the bound 
w3{w1(u,. - ui-1) }w2(u,. - ui-i), for all r E [T1, T2]. Summing the expressions in 
the left side of (2.7) for i = 1, 2, • • • , k, one obtains 

(2.9) 
I {x(t4) - x(ts) - LZ=1F(x(l;,.), u;) - F(x(l;,), Ui-1)}(r) I 

S L~=1wa{w1(u, - Ui-1)}W2(u,. - Ui-1), 
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if the norm max;=1.---,k (u; - CTi-1) of A is small enough or (which is the same) 
if Sis chosen adequately. 

It will be proved that the right side of (2.9) is arbitrarily small if the norm of 
A is sufficiently small. Indeed 

k 

L c.,3{c.,1(ui - CTi-1)}c.,2(CTi - u.-i) 
ic;::,l 

< c.,a{c.,1(u; - u,-1) }c.,2(u, - CT;-1) (t t) _ max -----~----- 4 - a 

(2.10) 
i=l,• • •,k <Ii - U'i-1 

But from Theorem 1 it follows that 

'¥('11) = Li=l (21/'11)Y1('11/21) 

tends toward zero for '11 - O+ , which implies if;( '11) /'11 - 0, for '11 - O+ . Thus ( 2.3) 
is proved. 

Finally, by (2.2) and (2), 

I x(t4) - x(ta) Ix = sup,E[T1 ,T2J I [x(t4) - x(ta)](r) I 
= SUPte[t 3 ,t 4J I !;(t) - !;(ta) I :s; "'1(t4 - ta), for t4 - ta :s; u*, 

which proves Theorem 2.1. 

Now it will be proved that the converse of Theorem 2.1 is also true. 

THEOREM 2.2. Let x(t) be a soluticm of the ge:neralized equaticm (1.4), with F 
give:n by (2.1), in the interval [t1, t2] C [T1 + h, T2] with the property I x(t 4) -
x( ta) Ix :s; "'1( t4 - ta) for t1 ::; ta :s; t4 :s; tz, t4 - ta :s; u * and with thr-im:tial ccm
diticm 

(2.11) x(4)(r) = x(4)(4) for T E [t1, T2]. 

Define 

{
x(t1)( r), for T E [T1, t1] 

(2.12) !;(r) = x(r)(r), for T E [t1, t2] 
x(t2)( r), for T E [tz, T2]. 

Then !;(r) is a soluticm of (1) in [t1, t2], !;(r) = x(t2)(r) for r E [T1, T2], and 
I !;( t4) - !;( ts) I :s; w1( t4 - ts) for t1 :s; ts :s; t4 :s; t2, t4 - ts :s; er*. 

For the proof, the two following lemmas will be needed. 

LEMMA 2.1. Under the hypothesis of Theorem 2.2 it holds that 

(2.13) x(t)( r) = x(t)(t), for r ~ t, r E [T1, T2l, t E [t1, t2]; 

(2.14) x(t)(r) = x(r)(r), for t ~ r, r E [T1, T2]t E [t1,t 2. 
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Proof. To prove (2.13) it is sufficient to show that 

[x(t4) - x(ta)](n) = [x(t4) - x(ta)](T1), 

for ta :s; t4 ::; T1 :s; T2, T1, T2 E [T1, T2]; ta, t4 E [t1 , ½], for ta :s; t4 ::; ti :s; t2, ti,½ 
E [ Ti, T2]; ta , t4 E [t1 , t2], taking into account ( 2.11). But 

x(t4) - x(ta) = f!!~F(x(i;), s), . 

and, for every e > 0, there exists an S E E[ta , t4] such that A = { ta = a-o :s; l;i ::; 
a-1 :s; • • • ::; <Tk = t4} E A(S) implies that 

(2.15) I x(t4) - x(ta) - Lt=1F(x(i;i), <Ti) - F(x(I;;), <Ti-1) Ix< e/2. 

Further, by (2.1), the sum in (2.15) evaluated at T2 is equal to that at T 1, 

and consequently, 

I [x(t4) - x(t3)](T2) - [x(t4) - x(ta)](T1) I 

:s; I [x(t4) - x(ta)](T2) - LZ=i[F(x(I;;), <Ti) - F(x(i;i), <Ti-1)](T2) I 

+ I L~=i[F(x(l;i), a-;) - F(x(l;i), <Ti-1)](T1) - {x(t4) - x(ta)](T1) I < e, 

if Ti ~ t4, which proves (2.13). 

Similarly, (2.14) is obtained if the sum in (2.15) is evaluated at T = ta, which 
yields 

I [x(t4) - x(ta)](ta) I <; for every e > 0. 

LEMMA 2.2. If the hypotheses of Theorem 2.2 are satisfied, then 

I J;: ~F(x(i;), s) - F(x(t4), t4) + F(x(t4), ts) Ix 
(2.16) 

::; [( t4 - ta) /2]'1'( t4 - ta) 

for ti :s; ts :s; t4 :s; t2 , t4 - ta :s; <T *. 

Proof. Using Theorem 1, especially (1.3), for U(i;, s) = F(x(I;), s), one ob
tains (2.16) withip('J1) = wa(w1(r,))w2(?J). 

Proof of Theorem 2.2. In view of (2.14) it is sufficient to prove that 

(2.17) 

for every e > 0 and t1 ::; ta :s; t4 ::; t2 . 
By (2.12) and (2.1), 

f:;J(i;u,<T)du = f:!f[x(t4)u,u]d<T 
(2.18) "'k 

= L.,i=1 { F[x( t4), <T ;] - F[x( t4), u i-1]} ( t4), 

where ta = <To :s; u1 ::; • • • ::; <T1c = t4. From ( 2.13) it follows that 

(2.19) 
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By hypothesis, 

(2.20) 

From (2.18), (2.19), (2.20), and Lemma 2.2 it follows that 

I Ht4) - Ht3) - f::J(t,, CT) dCT I ::; I {L7=d::_1 ~F(x(O, s) 

- I:!=1 F[x(t4), CTi] - F[x(t4), CTi-1]} (t4) I 

which implies (2.17) and proves the theorem. 
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