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Introduction 

In order to generalize in a certain direction the theorem of continuous de
pendence of solutions of ordinary differential equations with respect to param
eters, J. Kurzweil introduced the notion of a generalized Perron integral for 
functions with values in euclidean spaces [l] and for functions with values in 
Banach spaces [2]. In the present work we prove in a different way some of 
Kurzweil's results concerning the properties of the integral, especially in connec
tion with sufficient conditions for existence of the integral. After that-and this 
is our main objective-we prove a theorem on continuous dependence of solu
tions of ordinary differential equations in a Banach space and relate it to func
tional differential equations, generalizing results such as those in [3]. Of course, 
ordinary differential equations are to be understood in a generalized sense, based 
upon the concept of the above mentioned integral. 

1. Definition of the integral 

For a given pair of real numbers tr < t2 , let us say that a set M c [t1 , t2] X 
[t1 , t2] belongs to a family m(t 1, t2) if there exists a real positive function o(t) 
defined on [tr, t2] such that t E [tr, t2] ands E [t - o(t), t + o(t)] n [tr, t2] imply 
( t, s) E M. Geometrically such sets are like neighborhoods of the diagonal in the 
square [tr, ,~] X [tr , t2]. Let B designate a partition of the interval [ti, ,t2] of the 
form tr = ero ~ 71 ~ err ~ 72 ~ • • • ~ Tk ~ erk = t2 , where er i < er i+I for i = 
0, 1, • · · , k - l. A partition Bis said to be subordinate to a set M E m(t1, t2) 
if (Ti,s) E Mforer;_ 1 ~ s ·~ er;,i = 1, ···, k. ForagivensetM E m(t1,t2) 
we denote by <B(M) the class of all partitions of [tr, t2] of the above type and 
subordinate to M. 

It is immediate from the definitions that if M1, M2 E m(t1, t2) and Mr c M2 
then <B(M1) c <B(M2). It is also easy to prove [l] that for every M E m(t1, t2) 
the class <B.(M) is not empty. 

Let U(t, s) be a function with domain in some set M E m(t1, ~) and values 
in a real Banach space X with norm II 11-To every subdivision B E <B(M) we 
make correspond to the function U(t, s) the element L(B) E X defined as 

L(B) = LJ=I [U(Tj' erj) - U(Tj' erj_r)] 

using the subdivision B. 

DEFINITION 1.1 The function U:M ---), X belongs to the class K(M) if with 
every E > 0 we can associate a set M. E m(t1, t2) such that M. CM and 11 L(B1) -
L(B2) 11 < e whenever B; E <B(M.), i = 1, 2. 
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If the function U E K(M), for some set M E :Jrr(t1, t2), we shall say that 
U(t, s) is K-integrable in [t1, t2] or, simply, U E K. The definition seems to be 
dependent on the set M considered; actually this dependence is only apparent, 
and the integrability depends on the local behaviour of U ( t, s) in the diagonal 
of the square [t1 , t2] X [t1 , t2]. 

Since the space X is complete, it is not difficult to see that the following lemma 
is true. 

LEMMA 1.1 U E Kif ancl only if there exists a unique element J;: :DU E X such 
that with every E > 0 we can associate a set M. E :Jfl ( t1 , t2) such that if the sub
division B E CB(M.), then II J;i :DU - L(B) II < E. 

This element J ;::Du E X will be called the Kurzweil integral of the function 
U(t, s) on [t1, t2]. If t1 = t2, define J;: :DU = O; and if t1 > t2, define J;: :DU = 

- J;; :DU if the last one is defined. 
If one denotes by :Jrla(t1, t2) a subclass of :Jfl(t1, t2) corresponding to a special 

choice o(t) =a> 0 and if, in Definition 1.1, we restrict to :Jrla(t1, t2), a special 
class Ka c K is obtained. This class can in some way be considered as the class of 
functions integrable in the generalized sense of Riemann. In fact, if one takes 
U(t, s) = f(t)s, the corresponding elements L(B) represent the ordinary Rie
mann sums; and J;: :Df(t)s exists if and only if J;: f(t) clt exists in the Riemann 
sense, and in such case they coincide. 

The following properties of the Kurzweil integral have been proved in [1] 
and [2]. 

( 1 ) If U E K on [ t1 , ~], a E R1, then 

J;: :DaU = a f:i :DU. 

(2) If U1, U2 E K, on the same interval [t1, ~], then U1 + U2 E Kand 

J:i :D( U1 + U2) = J;: :DU1 + J;: :DU2. 

(3) If t1 :::; ta :::; t4 :::; t2 and U E K on lt1 , t2l, then U E K on [ta , t4]. 
( 4) If t1 < ta < ~ , U E K on [t1 , ta] and also on lta , t4], then U E K on 

[t1 , t2] and 

(5) Let U E Kon every interval [t1 , t] with t1 :::; t < t2, and suppose that 

limt-t 2 [J;1 :DU - U(t2, t) + U(t2, t2)] = L E X, 

then U E K on [t1, t2] and J;: :DU = L. Reciprocally, if U E K on [t1, t2] and 
ta E [ t1 , t2l, then 

limt-t 3 [J;1 :DU - U(ta, t) + U(ta, ta)] = J;~ :DU. 

Property 5 implies that J;1 :DU depends continuously on tat t = ta if and only 
if U(ta, t) depends continuously on tat t = ta. 

Later on, we shall need the following theorem. 
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THEOREM 1.1 If U(t, s) E Xis defined on a set Af E m1:a(t1, t2) and au /as = 
u(t, s) exists and is continuous on M, then U E "on [t1 , t2] and 

fl~ 'J)U = fl~ u(t, t) dt, 

the last one in the Riemann sense. Moreover, if M = [t1 , t2] X [t1 , t2], then 

limi➔oo I:}:1 u ( er i-I , er j) - u ( er i-I , er i-I) 

(I.I) = lim;➔oo L}:1 U(er;, er;) - (Uer;, er;-1) 

= fl~ u(t, t) dt, 

where er1 = ti+ j/2\t 2 - ti), j = 0, I, • • • , 2;. 

Proof. From the hypothesis we can assert that, given e > 0, there exists a set 
M. E m1:a(t1, t2) such that 

(a) II (t - t4)-1[U(ta, t) - U(ta, t4)] - u(ta, t4) II < e/[3(t2 - ti)], 
for (ta, t), (ta, t4) EM., t ~ t4; 

(b) II u(t, ta) - u(ta, ta) II < e/[3(~ - t2)l, 
for (t, ta) E M. ; 

(c) II L'=I u(er;-1, er;-1) (er; - er;-1) - fl~ u(t, t) dt II < e/3, 
for every partition B E CB(M.). 

Take then any partition B = (ero, T1, er1, • • • , Tk, erk) E CB(M.). We have 
now 

II L'=I [U(r;, er;( - U(r;, er;-1)] - fl~u(t, t) dt II 

~ L'=I II U(r;, er;) - U(r;, er;-1) - u(r;, er1-1)(er1 - er;-1) I/ 

+ L'=1 II [u(r;, er;-1) - u(er;-1, er1-1)](er; - er;-1) II 

+ II L'=I u(er;-1, er;-1)(er1 - er;-1) - fl~ u(t, t) dt II < e, 

which proves the first part of the theorem. In order to prove relations ( 1. 1), it is 
sufficient to take subdivisions B such that r 1 = er;_1 or r; = er; and use the last 
inequality. 

COROLLARY. If Ui(t, s) and U2(t, s) are defined on some M E m1:a(t1, ~), 
aUi/as and aU2/as both exist and are continuous on M, and aUif as = aU2/as on 
s = t, then U1 , U2 E " and 

2. Sufficient conditions for the existence of the Kurzweil integral 

The conditions under which Theorem 1.1 asserts the existence of the generalized 
integral f!~ 'J)U are certainly rather strong and of no interest as far as generaliza
tion is concerned. In this section we shall study existence of the integral under 
conditions of continuity of U(t, s) with certain restrictions in the moduli of con
tinuity. 

Let a > 0 be fixed, and let y;( 0) be a non-negative continuous function defined 
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on [0, al, f(0) = 0 and ,,-ith the series 

(2.1) 

being uniformly convergent on [O, a]. Let us set 

\Jf(0) = I: - iJt - . 00 i (0) 
j=l 0 21 

for 0 < 0 ::; a and \JI(0) = 0. Then \Jf(0) ---; 0 as 0 ---; o+. In fact, consider 
0 E [a/2H 1, a/2k] for k = 0, 1, 2, · · · , and write /; = 2k0. Obviously, \JI( 0) = 
L~k+I (2j/Oi/t(l;/2') ::; LJ=k+l (2H 1/a)i/t(l;/2'), as/; E [a/2, a]. From the 
uniform convergence of (2.1) it follows the existence of a k0 such that 
k > k0 implies \JI( 0) < E for O E [a/2k+i, a/2k], and this proves the desired re
sult. 

Related to functions like the ones above, we will later on need some other func
tions which we introduce here. By wi or w;, i = 1, 2, 3, we shall denote real posi
tive functions, continuous and increasing in some interval O ::; 0 ::; 00 , that 
vanish at 0 = 0 and are hounded below by linear functions. These functions will 
be such that if we take 

i/t(O) = w3[2w1(0)]w2(0) 

and define \JI( O) as before in terms of ift( 0), these functions satisfy all conditions 
mentioned there. By the symbol :r (fl, w1 , w2 , w3 , o-), we mean all functions F(x, t), 
defined and continuous in some region Q c X X R and values in X, and such 
that 

and 

II F(x2, "2) - F(x2, t1) - F(x1, t2) + F(x1, t1) II 
::; w2 ( I t1 - t2 I ) wg( II X1 - X2 11 ) 

for all admissible values of the arguments and I t2 - t1 I ::; Oo . 
We can now state an existence theorem for the generalized integral. 

THEOREM 2.1 Let U(t, s) with values in a Banach space X be defined and con
tinuous on a set Q = [t1 , "2] X [t1 , t2l, and suppose that 

II U(t + 0, s + 0) - U(t + 0, s) - U(t, s + 0) + U(t, s) II ::; f(O), 

for 0 ::; 0 ::; a and all arguments in Q. Then the Kurzweil integral f:; 'J)U(t, s) 
exists and the fallowing estimates hold: 

(2.2) II f~: f 'DU - UCX1' A2) + U(\1, A1) II ::; ½(A2 - A1)'Y(A2 - A1), 

and 

(2.3) II f~; 'DU - U(\2 l A2) + U(\2, A1) II ::; ½(\2 - A1)'Y(A2 - A1), 

for t1 ::; A1 ::; A2 ::; "2 . 
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Theorem 2.1 will be proved by means of the following approximation lemma. 

LEMMA 2 .1 Under the hypothesis of Theorem 2 .1, there exist junctions Uk : Q -+ X, 
k = 1, 2, 3, •·•,that converge uniformly in Q to U(t, s), such that aU1c/as exist 
and are continuous in Q, and fulfilling the following condition: given E > 0 there 
exists a K ( 1:) such that 

II Uk(t + 0, s + e) - Uk(t + 0, s) - Uk(t, s + 0) + U(t, s) II :s; i/!(0) 

if k > K(1:) and t + 0, t, s + 0, s E [t1 + 1:, t2 - e]. 

Proof. Let {Pk} be a sequence of positive numbers tending to zero with k-+ oo. 

Let ]k(t, s) 2. 0, fork = 1, 2, 3, • • • , be real functions with continuous partial 
derivatives in R2 and support in the Pk neighbourhood of the origin and such that 
f R2 ]k( t, s) dt ds = 1. Such functions are easily constructed. Let W ( t, s) be a con
tinuous extension of U ( t, s) to all R2• For every k and ( t, s) E Q, let 

Uk(t, s) = fR2]k(t - r, s - <T)W(r, <T) drd<T. 

Then one has 

II Uk(t, s) - U(t, s) II = II f R2]k(t - r, s - <T)[W( r, <T) - W(t, s)] dr d<T II 

:::; SUP(t-r) 2 +(H) 2 :::aPk II W(r, <T) - W(t, s) II, 

which tends to zero with k -+ oo uniformly with respect to ( t, s) E Q in view of 
the continuity of TV. It is an easy matter to check that 

auk(t,s)_f aJk(t-r,s-CT)W( )d d 
as - R2 as T, CT T <T. 

Finally, let e > O; by the definition of Uk(t, s) we have 

II Uk(t + 0, s + 0) - Uk(t + 0, s) - Uk(t, s + 0) + Uk(t, s) 11 

II fR2]k(t - r, s - <T)[W(r + 0, <T + 0) - W(r + 0, CT) 

- W(r, <T + 0) + W(r, <T)] drd<T II :s; fR,]k(t - r, s - <T)i/!(0) clrdCT, 

for t + 0, t, s + 0, s E [t1 + 1:, t; - 1:] and k large enough so that Pk :s; 1:, and 
the lemma is proved. 

Proof of Theorem 2.1 Let Uk(t, s), k = 1, 2, • • • , be as inLemma2.l. We know 
from Theorem 1.1 that, for any i\1 , i\2 , t1 :::; i\1 :::; i\2 :::; t2 , the integrals 
ft~ 'JJUk(t, s) exist. We also lmow from the same theorem that if we put 
L;( Uk , i\1 , i\2) = I:}:1 [Uk( CT 1-1 , <T J) - Uk( <TH , <T J-1)] for a convenient parti
tion of [i\1 , i\2], then 

ft~ 'JJUk( t, S) = lim;➔oo L;( Uk , i\1 , i\2). 

It is not difficult to see that 

L;+1C Uk, i\1, i\2) - L;( Uk, i\1, i\2) 

= I:;:-;;1 [U,.(µ;' µ; + 0) - Uk(µ;'µ;) - Uk(µJ- 0, µJ + 0) + Uk(µ; - 0,µi) ], 
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,vhere µi = A1 +(:X.2 - A1) j/2i + (A2 - A1)/2i+1, 8 = (A2 - A1)/2i+i. If t1 < 
A1 S A2 < t2, then, using Lemma 2.1, we know that for k > K( f), where f = 
max {:X.1 - t1, ½ - A2}, we have 

and, hence, 

\\ fti 'JJUk(t, s) - Uk(A1, A2) + Uk(A1, A1) \\ = \\ lim;➔co L; - Lo\\ 

(2.4) 
S t II Li+1 - Li \\ _:S t 2iy; (A22:/ 1) = ~ (A2 - A1)'1'(A2 - A1). 

In a similar way one gets 

(2.5) \\ Jti 'JJUk(t, s) - Uk(A2, A2) + Uk(A2, A1) \\ S ½(A2 - :>-.1)'1'(:X.2 - :>-.1). 

Both estimates (2.4) and (2.5) are valid for any :>-.1, \ 2 with t1 < A1 S A2 < t2, 
as long as k is big enough depending on \ 1 , A2 . 

Let O < o S a, and let B = (uo, n, u1, • • • , Tkup) be a partition of [:>-.1, :>-.2] 
with 

(2.6) uo = A1 < u1 < · · · < up = A2, Ti S <Ti, Ti - u,;.....1 < o, <Ti - T; < O. 

Putting L(U, B) = Lf=1 [U( T;, u;) - U( T;, a-;_ 1)], and applying (2.4) and 
(2.5) to the subintervals [u,;.....1, r;l, [r;, ui], one has 

II Jti 'JJU"(t, s) - L(U1,, B) II 

= 11 Lf=1 [f::_1 'JJUk - Uk( Ti' T;) + Uk( Ti' O"i-1) 

+ f~; 'JJUk - Uk( T;, <Ti) + Uk( T;, r;)] II 

S Lf=i½[( T; - u;_1)'1'( T; - u;-1) + (ui - r;)\Jr(u; -r;)] 

A2 - A1 ( ) S - 2- SUPo<t~o \Jr t . 

If B1 , B2 are two partitions of [:>-.1 , ;\2] fulfilling (2.6), then 

(2.7) II L(U1c, B2) - L(U1c, B1) \I S (:>-.2 - :>-.1) supo<t~• \Jr(t). 

By Lemma 2.1, Uk(t, s) ---+ U(t, s) uniformly on Q, and consequently 

and 

(2.8) \I L( U, B2) - L( U, B1) \I S (A2 - A1) SUPo<t ~• 'lr(t). 

Since w(B) ---+ 0 as 8---+ 0, it follows that U(t, s) is integrable on [A1, :\2] (see 
Lemma 1.1). 

From (2.7) and (2.8) we have 

\\ f~i 'JJUk(t, s) - L(Uk, B1) II S (:>-.2 - :>-.1) supo<t;a;• w(t) 
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and also 

II f~i 'J:JU(t, s) - L(U, B1) II:=:::; (r,2 - >-1) supo<t;:;;~ '¥(t). 

Since o is arbitrarily small and L( Uk, B1) - L( U, B1) with k - oo, one gets 

f~i 'J)Uk(t, s) -)- f~i '£JU ( t, s). 

Passing to the limit ask - oo in (2.4) and (2.5), one obtains relations (2.2) 
and (2.3), for t1 < >-1 :=:::; >-2 < t2 ; and, using property 5 of §1, one gets (2.2) and 
(2.3) for t1 :=:::; >-1 :=:::; A2 :=:::; t2, and the theorem is proved. 

3. Generalized ordinary differential equations in Banach space 

As before, X is a real Banach space, and n is an open subset of X X R2 with 
the property that with every point (x, t, t) E n we can associate a number 
o > 0 such that (x, t, s) E n for It - s I < o. Let F(x, t, s) be a function de
fined on n and with range in X. 

DEFINITION 3.1 We say that a function x(t), defined on (t1 , t2) and with range 
in X, is a solution of the generalized differential equation 

( 3.1) 
dx 
dt = 'J:JF(x, t, s) 

if (x(t), t, t) E n,for all t1 < t < "2, and 

(3.2) x(t4) = x(ta) + f!! 'J:JF(x(t), t, s) 

for all t1 < ta < t4 < t2 . 

Let n* be an open subset of X X R1 with the property that (x, s), (x, t) E 
n* {=} (x, t, s) E n, and let f(x, t) be a continuous function on n* with range in 
X. Consider now the classical equation 

(3.3) 
dx 
dt = f(x, t), 

where dx/dt means the derivative of x at t. A continuously differentiable function 
x(t), defined on (t1 , "2) and with range in X, is a solution of (3.3) if (x(t), t) E n* 
and if d::c(t)/dt = f(x(t), t) for t1 < t < t2. In order to relate equation (3.3) 
with a generalized equation, let us set up the following generalized equation: 

(3.4) !~ = 'J:J[f; f(x, r) dr], 

where, of course, the integral sign is to be interpreted as a Riemann integration. 
We then have the following. 

THEOREM 3.1 A function x(t) defined on (t1, ~) and withrange in Xis a solution 
of (3.3) on (t1, t2) if and only if it is a solution of (3.4) on (t1, t2). 

Proof. Suppose x(t) is a solution of (3.3). Let (ta, t4) bea bounded subinterval 
of (t1 , 0,). Clearly, for every e > 0, there exists a i5 > 0 such that I r2 - r1 I < o 
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and that 71 , 72 E (ts , t4) and (x( 72), n) E n* imply 

(3.5) 

Then take M1 E :Jrr(t3 , t4) such that ( T2, 71) E M1 implies ( 72 - 71) < o, 
(x(72), 71) En*, and let {CTo, a1, 0"1, • • ·, ak, O"k} E IB(M1). Using (3.5) and 
the fact that x(t) is a solution of (3.3), we can write 

II x(t4) - x(ts) - L}=1 f:L1 f(x(aj), CT) dCT II 

< L}=1 f:L1 llf(x(CT), CT) - f(x(aj), (T II dCT 

~ f((T· - 0"·-1) < L-, J 3 = f' 
- j=l f4 - ta ' 

and therefore x(t) is a solution of (3.4). 
If now x(t) is a solution of (3.4), then, for every subinterval (ts, i4)c (t1, t2), 

we have 

x(t4) - x(ts) = f;! :nf1J(x(t), CT) dCT; 

on the other hand, using Theorem 1.1, we know that 

f;! :nf;J(x(t), CT) cfo = f;!f(x(t), t) dt, 

and this implies then that x( t) is a solution of (3.3). 
Note. Consider the generalized equations 

(3.6) dx 
dt = :n[j(x, t)s] 

and 

(3.7) 

where to is a fixed point in (t1, t2). The functions J;J(x, CT) dCT, f(x, t)s, and 
J;0 J(x, CT) dCT that appear in the equations (3.4), (3.6) and (3.7) are defined on 
some M E :m:(t1, t2) and have continuous first derivatives, with respect to s, 
which are equal to f(x(t), t) for s = t. Then, by the Corollary to Theorem 1.1, 
the corresponding integrals are equal, and therefore equations (3.3), (3.4), (3.6) 
and (3.7) are all equivalent. 

4. Relation with functional differential equations of retarded type 

For the sake of completeness we shall describe functional differential equations 
of retarded type; further references to this topic can be found in the bibliography 
of [3]. 

For any given non negative numbers a, b, and r, we denote by X[r, a, b] and 
X[r) respectively the spaces of continuous functions defined on [a - r, a + b] 
and [-r, OJ and with range in R". Both are real Banach spaces with the usual 
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supremun topology. For every y E X[r, a, b] and a :::; t :::; a + b, denote by Yt 
the element of X[r] which, as a function of 0 E [-r, O], is given y(t + 0). Now, if 
f('P, t) is a function with domain in some open subset of X[r] X R1 and range in 
Rn, and if y(t) denotes the right hand derivative of a function y(t) E Rn at the 
point t, then a functional differential equation of retarded type is a functional 
relation of the form 

( 4.1) y(t) = f(Yt, t). 

If, given a point ('P, a) in the domain off, there exists a number b > 0 and a 
function y E X[r, a, b] such that (Yt, t) is in the domain off for a :::; t < a + b 
and 

(a) Ya = <p and 

(b) y(t) = f(Yt, t), as t < a+ b, 

we say that y is a solution of ( 4.1) on ( a, a + b) with initial condition ( 'P, a). 
The type of equations just described includes, among others, the so called dif

ference-differential equations ( see [3]). 
The relation among functional equations such as ( 4.1) and generalized ordinary 

differential equations in Banach spaces can be found in [4]. 
Let X 1 be an open set contained in X[r, a, bl, and define 

{
J:J(x., s) ds; a S r:::; t:::; a+ b 

(4.2) F(x, t)(r) = J!J(x,, s) ds; a St Sr:::; a+ b 

O; a - r :::; r :::; a or a - r S t S a, 

for all x E X1. Of course, in order that ( 4.2) is well defined, we suppose that for 
x E X1 we have x, in the domain of f('P, t) for all a S s S a + band that the 
resulting function is integrable. Thus, for each (x, t), (4.2) defines an element 
F(x, t) E X[r, a, b]. 

Consider the generalized equation 

(4.3) 
dx 
dt = 'J)F(x, t), 

where F(x, t) is given by ( 4.2). And let us suppose that the function f('P, t) 
satisfies 

( 4.4) 

and 

(4.5) I J;~ [f(x.1, s) -f(x.2, s)] ds I:::; w2( I r2 - 71 I) 
·SUpq:;;s:;;T 2 wa( I/ (x1 - X2), II), 

for a :::; 71 S r2 :::; a + b, and I 72 - 71 I :::; a-, for some positive a- and x, x1, 
x2 E X1 ; see the beginning of §2 for the definitions of w1 , w2 , w0 . 
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Under these conditions we have the following theorems. 

TnF!OREM 4.1 Let y(t) be a solution of (4.1) in the interval (a, a+ b), and de
fine 

x(t)(T) ={y(T); 
y( t); 

a-rSTStsa+b 
a - r S t S T S a + b. 

Then x(t) E X[r, a, b] is a solution of (4.3) in (a, a+ b) and satisfies 

II x(t1) - x(½) II S w1( I t1 - t2 I ) 
for all t1 , t2 E ( a, a + b), I t1 - t2 I S rr. 

THEOREM 4.2 Let x( t) be a solution of ( 4.3) in ( a, a + b) with 

II x(t1) - x(t2) II S w1( J t1 - t2 I), 
and I t1 - t2 I S rr; then the function 

t1 , tz E ( a, a + b), 

( T) = {X (a) ( T) ; 
y X(T)(T); 

a-rSTSa 
aSTSa+b 

is a solution of (4.1) in (a, a + b), and I y(t1) - y(t2) I S w1( I t1 - "l?. I), 
t1, t2 E (a, a+ b), and J t1 - t2 I < rr. 

For the proofs of these theorems see [4]. 

5. Continuous dependence of solutions 

We shall now consider the problem of continuous dependence of solutions for 
equations of the form 

(5.1) 
dy 
dT = '.DF(y, t)' 

with respect to initial conditions and parameters. 
Together with equation (5.1), consider equation 

(5.2) 
dx 
dT = '.DG(x, t); 

and let us suppose that 

and 

with w3 linear. 
Define the function -,r,-* ( 17) for O < 17 < rr to be 

( see the beginning of §2). 
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LEMMA 5.1 Let y(i) and x(t) be regular solutions (solutions with modulus of con
tinuity w1 and w1 respectively) respectively of (5.1) and (5.2) in an interval [to, t1]. 
Let in be a natural number such that .6. = (t1 - t0)/m < u, and suppose that 
sup { II F(x, t) - G(x, t) II; (x, t) E n} = {3 < oo; then 

II x(t1) - y(t1) II :-s; II x(to) - y(to) II (1 + ~(A) )m 

(5.4) 
+ [~w*(.6.) + 2{3] (1 + wlA)r- 1. 

2 w2(A) 

Proof. Consider a subdivision to = i;o < i;i < i:2 < · · · < !;n = t1 with 
I /;; - i;i-1 I = A. For any to :-s; i; :-s; t1 , we have 

x(i;) = x(to) + f;0 i>G[x(r), s] 

and 

y(O = y(to) + f;0 i>F[y( r), s]. 

Let us first estimate (using Theorem 2.1): 

II n:+ 1 i) /G[x(r), s] - F[y(r), s]} II :-:::; II n:+l i) {G[x(r), s] - F[y(r), s]} 

- G[x(i;;), i:i+1l + G[x( /;;), !;;] + F[y(i;;), /;;+1] - F[y( /;;), /;;] II 
+ II F[y(i;J, !;;] - F[y(i;;), /;;+1l - F[x(i;;), /;;] + F[x(i;;), i;,+1] II 
+ II F[x(i;i), i;;] - F[x(i;;), /;;+1l + G[x(!;,), i;;+1l - G[x(i;;), /;;] II 

:-:::; i w*(.6.) + II x(i;.) - y(i;;) II w2(A) + 2{3. 

Therefore, 

11 x(h) - y(i;1) 11 :-:::; 11 x(to) - y(to) 11 + 11 n~ i>G[x(r), s] - i>F[y(r), sJ 11 

:-s; II x(to) - y(to) II (1 + w2(.6.)) + i w*(.6.) + 2{3. 

In the same way, and using the former estimates, 

11 x(i;2) - y(i;2) 11 :-:::; 11 x(h) -y(h) 11 + 11 nf i>G[x(r),sl - i>F[y(r),sl 11 

~ llx (to) - y (to) II ( 1 + w2).6.)) + ~ w*(.6.) + 2{3 

+ ~ w* (.6.) + II x(/;1) - y(i;i) II w2(A) + 2{3 

:-s; \I x(to) - y(to) II (1 + w2(A))2 + [iw*(A) + 2{3] [1 + (1 + wl.6.))]. 

Following this procedure, it is easy to see that 

II x(t1) - y(t1) II = II x(i;,,.) - y(!;m) II :-:::; II x(to) - y(to) II (1 + w2(A) )m 

+ [iw*(.6.) + 2{3}1 + (1 +w2(A)) + (1 +w2(.6.))2 

+ · · · + (1 + w2(A) r- 1] ; 
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and, upon summing the geometric progression that appears at the end, one ob
tains the desired conclusion ( 5.4). 

It is clear from the way the proof has been carried out that estimate ( 5.4) is 
actually valid in all the interval [to, t1]; that is, we can replace t1 in the left hand 
side of (5.4) by any i E [to, t1] and the same estimate holds. 

Let us now consider equation (5.1) together with equations 

(5.5) :n = '£JFn(Yn, t), n = 1, 2, 3, · • • , 

where the functions F n E 5' ( 0, w1 , w 2 , w 3 , rr) ( this in particular could be the same 
class as that of F) and where Fn(x, t) converge uniformly to F(x, t) in Q for 
n - oo. Then the following theorem, which is a weak form of continuous de
pendence on parameters, follows directly from the lemma just proved. 

THEOREM 5.1 Let y(t) be a regular solution of (5.1) in [to, ti], with y(t 0 ) = y0 ; 

ancl suppose that, for a given sequence Yno - y0 (n = 1, 2, • • • ), equations (5.5) 
have regular solutions Yn(t) in [to, t1] with Yn(to) = Yn°, if the condition 

\Jr*( ) (1 + w2(n))~-1 - 1 0 
'17 '17 () - ' W2 'I'/ 

w1·th '11 - o+, isfullfillecl; then Yn(t) -y(t) uniformly in [to, t1]. 

The condition on \Jr*( '17) that appears in the theorem is of course natural in 
terms of our lemma. Similar conditions have been imposed, for example, by Kurz
weil [,5]. 

Observe that Theorem 5.1, implies that the initial value problem (5.1) with 
y( 10) = y° has at most one regular solution. 

6. Application to functional equations 

Let us consider functional differential equations 

(fi.1) 

and 

(6.2) 

y(t) = f(Yt, t) 

where f and F satisfy conditions such as ( 4.4) and ( 4.5) in some convenient in
terval, with functions w1 , w2 , and w 3 for all f n and functions w1 , w2 , w3 ( w3 linear) 
for f. We suppose that the functions f and f n have common domain in some open 
subset of X[r] X R1 and range in Rn and that 

(6.3) J;ifn(Ys, s) ds - J;U(Ys, s) els 

uniformly in all variables. 
Let cp, 'Pn E X[r] with 'Pn - cp; and suppose that equations (6.1) and (6.2) have 

solutions y(t) and yn(t) with initial conditions (a, .p) and (a, 'Pn) respectively in 
some common interval ( a, a + b). Let w* ( '17) be defined as in ( 5.3). 
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As a consequence of Theorems 5.1, 4.1 and 4.2 we have the following theorem. 

THEOREM 6.1 Under the former conditions, if 

77\JF*(77) (1 + w2(77) r-l 

w2(77) 
- 1 

- 0 

with '11--'> o+, then the solutions yn(t) of equations (6.2) converge uniformly to the 
solution y(t) of (6.1) in (a - r, a+ b). 

As a very simple illustration consider the following equations 

(6.4) 

where O < a < 1, and 

(6.5) 

n = 1, 2, 3, • • • , 

y(t) = y(t - 1). 

It is easy to see that solutions of equations (6.4) with initial condition yn(t) = 0 
in -1 S t SO converge uniformly to y(t) = 0 in any finite interval. Certainly, 
this case is not covered by continuous dependence theorems like that in [3). 
Nevertheless, conditions of Theorem 6.1 are satisfied if one takes w1 ( 77) = 77 ", 
0 < 'l/ < u, and w2 , w3 linear. 
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