
NON-IMMERSION THEOREMS FOR COMPLEX AND QUATERNIONIC 
PROJECTIVE SPACES 

BY s. FEDER* 

1. Introduction 

Let M be a differentiable m-manifold, and let f be a differentiable map of M 
into euclidean ( m + k )-space. We call f an immersion if its jacobian has rank 
m at every point of M. We write J.11 ~ Rm+k to denote the existence of an im­
mersion. In treating the immersion problem it is only natural to resort to K­
theory, the cohomology theory of real (complex) vector bundles. Using a refine­
ment of the methods of [2] we prove the following theorems. 

THEOREM 4. CPn £1;; R 4n- 2a(nl for n odd where a(n) is the number of l's in the 
dyadic expansion of n, ( n > 3). 

THEOREM 5. HPn £1;; R8n-2 a(nl- 2, where a(n) is the number of l's in the dyadic 
expansion of n, ( n > 3). 

Theorem 5 is related to a conjecture in the theory of immersions. Let T(RPn) 
be the tangent bundle of the real projective n-space. I. M. James [3) has proven 
that if n = 2' - 1, then g-dim ( -TRPn) > n - q, where 

q = 2r if r = 1, 2 mod 4 

q = 2r + 1 if r = 0 mod 4 

q = 2r + 2 if r = 3 mod 4. 

On the other hand consider the fibration 

RP.,i - RP4n+a - HP n . 

Since RP 3 is parallelizable we have the inequality 

g-dim ( -THPn) 2:: g-dim ( -rRP4n+a), 

B. J. Sanderson has conjectured that 

g•dim (-THPn) = g-dim ( -TRP4n+a), 

Theorem 5 implies that either Sanderson's conjecture is false or the result of 
James is not the best possible ( consider for example the fibration RP 3 - RP 127 -

HPa1). 

2. The Grothendieck ring 

We define the Grothendieck rings KO(X) and KU(X) for a finite, connected 
CW-complex X as universal solutions for homomorphisms from the semi-group 
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8(X) of isomorphism classes of real ( complex) vector bundles into abelian groups. 
Thus we get a group K(X) and a map 0:8(X) -t K(X), such that for any 
homomorphism 'P of 8(X) into an abelian group A, there exists a unique homo­
morphism if.,, making the following diagram commutative: 

✓ 

K(X) 
/ 

/,t, 

K(X) is a ring with multiplication induced by tensor product of bundles. Oper­
ations in vector bundles provide us with operations in the ring K ( X). We will be 
concerned here only with exterior powers and "spinification," a non-stable opera­
tion. For elements of 8(X), the exterior powers have the following formal proper­
ties: (a) )..0(x) = 1, (b) )..1(x) = x, (c) )..\x + y) = L}=o )..\x))..i-\y), and 
(d) )..\x) = 0, for i > d1m x. These operations extend to the ring K(X). Define 
)..t(x) = L%.o )..\x)t\ where tis an indeterminate. Then (a), (b), (c), and (d) 
imply 

)..t(X + y) ,= )..t(x))..t(y). 

If Vis a real vector space, then )..;V 0 C '.::::'. )..\V 0 C). This gives us the com­
mutative diagram 

Xi 

KU(X) -----+ KU(X), 

where Eu denotes complexification. 
If a real vector bundle i; is such that w1(0 = 0 and w2(0 = 0, then it admits 

a spin representation Li(/;). Li.(0 is then a complex, self-conjugate bundle, and 
representation theory (e.g. [6]) provides us with the following relation: 

akLi(O • Li(/;) = )..0(1;,.) + )..1(1;,.) + · · · + )..\!;ii) = )..1(/;u), 

where i;,. = Eu(/;) is the complexification of i;, k is the dimension of i;, and ak = I, 2 
fork even or. odd respectively. 

This relation immediately implies the following theorem. 

THEOREM 1. If f:M"' -t Rm+k is an 1:mmersion, 11 = (ni + k) - r(M) its 
normal bundle, and W1 (II) + Wz ( //) = 0' then there exists a self-conjugate element 
x E KU(M) such that akx2 = )..1(11,.). 

3. Applications to CPn and HPn 

We now apply Theorem 1 to the cases when Mis the complex projective space 
CP n and the quaternionic projective space HP n . 
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Let H be the canonical Hopf bundle over CP n and let y = H - 1; then 
KU(XPn) = Z[y]/yn-l (e.g. [7]). The tangent bundle of CPn satisfies the fol­
lowing complex bundle equation: 

r(CPn) E0 1 = (n + l)H. 

If CPn C R2n+2\ then v = 2n + 2k + 2 - (n + l)H. If n is odd, then w2(v) = 
0 (w1(11) = 0 because CPn is simply connected). Asin[2], we let x = H + H - 2. 
xis then the generator of the subalgebra of self-conjugate bundles in KU(CPn) 
and x[n/21+1 = 0. Since n is odd, we have x<n+1>12 = 0; since His a complex vector 
bundle, Eu(H) = H + H. Thus we have 

At(llu) = (1 + t) 2n+2H 2(1 + tH)-(n+l\1 + tH.)-(n+l)' 

and, using the fact that HH = 1, we get 

( t )-(n+l) 
At (vn) = (1 + t) 2k 1 + (l + t)2 X • 

Substituting t = 1, we have 

A1(11,.) = 22k( 1 + i)-(n+l) ' 

and Theorem 1 implies that A(v) = 2\1 + x/4)-<n+l)/2 is an element of 
KU(CPn), We check the coefficient of x<n-l)/2 and get 

±2'(:; ~)2•-. 
This must be an integer; and, since the highest power of 2 dividing (a!b) is 
a(a) + a(b) - a(a + b), we must have 

k + 1 - n + a (n; 1) + a(n; 1) - a(n -1) ~ 0. 

Here of course a(i) is the number of l's in the dyadic expansion of i. We have 
also a(n - 1/2) = a(n - 1) = a(n) - 1; thus the inequality becomes 

k ~ n - a(n). 

Since this calculation would not change if we assumed CP n C R2n+2H1 (because 
~+1 = 2), we have the following theorem. 

THEOREM 2. CP n $ R4n- 2a(n)-l for n odd. 

When Mis a quaternionic projective space HP,., the condition on the Stiefel­
Whitney classes is always fulfilled. Let hn denote the complex bundle associated 
to the canonical quaternion line bundle by the inclusion Sp(l) c U(2). Let 
z = hn - 2; then KU(HP,.) = Z[z]/zn+l = 0 (e.g., [7]). 

The tangent bundle of HPn satisfies the following bundle equation (e.g. [9]): 
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T(HPn) EB 7J EB 1 = (n + l)hH, 

where ri is the 3-dimensional real vector bundle associated to hH by the double 
covering Sp(l) - S0(3). 

If HPn 5;;; R4n+2\ then v = 4n + 2k + 1 + ri - (n + l)hH. Since hH is a 
self-conjugate complex vector bundle, Eu(hH) = 2hH. Thus we have 

At(Vu) = (1 + t)4n+2k+l(l + thH + t2)- 2(n+I\t( rJu), 

and At( 7/u) = 1 + triu + t2riu + t3. A short character computation shows that 
7/u + 1 = (hH)2; therefore, 

( t )-2(n+I) 
r,.i(riu) = (1 + t) 2k-2 1 + (l + t)2 Z ( (1 - t) 2 + t(z + 2)2). 

Substituting t = 1, we get 

A1(vu) = ik ( 1 + ir 2Cn+l) ( 1 + ;)2, 
and again Theorem 1 implies that 6-(v) = 2k[l + (z/4)rcn+ 1>[1 + (z/2)], where 
zn+I = 0, is an element of KU(HPn). Hence the expression for A(v) must yield 
a polynomial with integral coefficients. The coefficient of zn is 0, so we check the 
coefficient of zn-I_ This can be seen to be 

± 2k . 2-2Cn-1) [(2n-1) _ 2 (2n - 2)] = ± 2k-2(n-I) (2n - 1) 1 . 
n-1 n - 2 n 2n - 1 

The highest power of 2 dividing (2n;1) is a(n) + a(n - 1) - a(2n - 1) = 
a(n) + a(n - 1) - a(2(n - 1) + 1) = a(n) - 1. Thus, in order for A(v) 
to be an element of KU(HPn), we must have 

k - 2(n - I) + a(n) - 1 2':: O; 

and so 

k 2:: 2n - a(n) - 1. 

Since the calculation would not change if we assumed HP n 5;;; R4n+2Hi, we have 
proved the following. 

T 3 Hp rf- R8n-2a(n)-3 
HEOREM : n :::j= • 

Using the results of [1] and a technical lemma, B. J. Sanderson and R. L. E. 
Schwarzenberger had previously derived the results of Theorem 2 and Theorem 
3 in [8]. Somewhat better theorems were also obtained by Mayer in [5]. 

4. Main results 

For an even-dimensional bundle v with w1(v) + w2(v) = 0, A(v) splits into a 
sum A+ ( v) + A-( v), and we have the following relation ( see [6]) : 

A+(v)·A-(v) = Ak-\vu) + Ak-\vu) + 
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The sum ends with A0( v,,), if k is odd, and with A1( v,,), if k is eveh, where 2k is 
the dimension of v. Since 

and 

L1 = Ao - A1 + · · · + A2\ 

for a bundle of dimension 2k, we get the following equalities: 

A1 - L1 = 4A + A-, if k is even; 

A1 + L1 = 41'.i + A-, if k is odd. 

Since (A++ A-) 2 = A1, we have (A+ - A-)2 = L1, if k is even, and 

(A+ - A-)2 = - L1 , 

if k is odd. If CP n C R 2n+2\ we have 

Ahn) = (1 + t) 2k (1 + (l ~ t)2 x)-(n+ll; 

since x<n+ll/ 2 = 0, we have, after expanding the second term, (1 + t) n-i in the 
denominator; and, if 2k > n - 1, then L1( vn) = 0. By Theorem 2, k ~ n - a(n); 
therefore A_1(vn) = 0 if n > 3. For n > 3, we have thus A+(vn) = A-(vn), and 

A1(vn) = 41'.i+(vn)A+(vn), 

and 

A +(v) = 2k-1 ( 1 + i r(n+l)/2 

Thus k ~ n - a(n) + 1. This yields the following theorem. 

THEOREM 4. CPn % R4n- 2a(n) if n > 3 (n odd). 
Similarly if HPn ~ R4n+z\ we have 

A1(vn) = (1 + t) 2k- 2 (1 + (1; t)2zr 2
(n+l) ((1 - t)2 + t(z +2) 2 ). 

Since, zn+i = 0, after expanding the second term we get (1 + t) 2n in the 
denominator, and, if 2k - 2 > 2n, then A_1( vn) = 0. By Theorem 3, k ~ 2n -
a(n) - 1, so L1(vn) = 0, if n > 3. And again for n > 3 we have A+ = A- and 
A1(v,,) = 4A+ A+_ This gives k ~ 2n - a(n). We have thus proved the following 
theorem. • 

THEOREM 5: For n > 3, HPn $ R 8n- 2a(n)- 2_ 

COROLLARY. If n = 2\ HP n Q:; R 8"-4( q > 1). For n = 2r + 1 Theorem 4 im­
plies that CPn g;; R4"- 4 and since CPn C R 4n-a for n odd [4] the best embedding 
and immersion fo;, such a dimension coincide. 
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