NON-IMMERSION THEOREMS FOR COMPLEX AND QUATERNIONIC
PROJECTIVE SPACES

By S. FeEpER*

1. Introduction

Let M be a differentiable m-manifold, and let f be a differentiable map of M
into euclidean (m + k)-space. We call f an immersion if its jacobian has rank
m at every point of M. We write M © R™* to denote the existence of an im-
mersion. In treating the immersion problem it is only natural to resort to K-
theory, the cohomology theory of real (complex) vector bundles. Using a refine-
ment of the methods of [2] we prove the following theorems.

TreorEM 4. CP, Q‘; R for n odd where a(n) is the number of 1’s in the

dyadic expansion of n, (n > 3).

Turorem 5. HP, ¢ R¥2 72 where a(n) is the number of s in the dyadic
expansion of n, (n > 3).

Theorem 5 is related to a conjecture in the theory of immersions. Let 7(RP,,)
be the tangent bundle of the real projective n-space. I. M. James [3] has proven
that if n = 2" — 1, then g-dim (—rRP,) > n — g, where

qg=2r if r=1,2mod4
g=2r+1 if r=0 mod4
=2 +2 if r=3 mod4.
On the other hand consider the fibration
RP3; — RPy s — HP, .
Since RP; is parallelizable we have the inequality
g-dim (—7HP,) > g-dim (—7RPyn3).
B. J. Sanderson has conjectured that
g-dim (—7HP,) = g-dim ( —7RPuus3).

Theorem 5 implies that either Sanderson’s conjecture is false or the result of
James is not the best possible (consider for example the fibration RP; — RPyy; —
HPs).

2. The Grothendieck ring

We define the Grothendieck rings KO(X) and KU(X) for a finite, connected
CW-complex X as universal solutions for homomorphisms from the semi-group
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&(X) of isomorphism eclasses of real (complex) vector bundles into abelian groups.
Thus we get a group K(X) and a map 6:8(X) — K(X), such that for any
homomorphism ¢ of §(X) into an abelian group A, there exists a unique homo-
morphism ¢, making the following diagram commutative:

& (X) K(X)

. \\ //
@ N ¥
A

K(X) is a ring with multiplication induced by tensor product of bundles. Oper-
ations in vector bundles provide us with operations in the ring K(X). We will be
concerned here only with exterior powers and “spinification,” a non-stable opera-
tion. Ior elements of §(X ), the exterior powers have the following formal proper-
ties: (a) N(z) = 1, (b) N(z) = z, (¢) N'(z + y) = 2i=N(2)\"/(y), and
(d) N(z) = 0,fors > dim z. These operations extend to the ring K(X). Define
M(z) = Do N(2)t', where ¢ is an indeterminate. Then (a), (b), (¢), and (d)
imply :
Mz 4 y) = M()Ne(y)-

If V is a real vector space, then 'V ® C = \(V ® (). This gives us the com-
mutative diagram

KO(X) —— KO(X)

Jeu | J{ﬂt
KU(X) —— KU(X),

where ¢, denotes complexification.

If a real vector bundle  is such that wi(£) = 0 and wy(£) = 0, then it admlts
a spin representation A(£). A(S) is then a complex, self-conjugate bundle and
representation theory (e.g. [6]) provides us with the following relation:

aAE)-AE) = N'(&) + V(&) + - + N(&) = M),
where &, = €,(£) is the complexification of £, k is the dimension of ¢, and ax = 1, 2
for k even or odd respectively.
This relation immediately implies the following theoremi.
Taeorem 1. If fiM™ — R™* is an mmmersion, v = (m + k) — 7(M) s
normal bundle, and wi(v) + wi(v) = 0, then there exists a self-conjugate element
x € KU(M) such that axz® = M(w.,).

3. Applications to CP, and HP,

We now apply Theorem 1 to the cases when M is the complex projective space
CP, and the quaternionic projective space HP,, .
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Let H be the canonical Hopf bundle over CP, and let y = H — 1; then
KU(XP,) = Z[yl/y"" (e.g. [7]). The tangent bundle of CP, satisfies the fol-
lowing complex bundle equation:

7(CP,) ®1 = (n + 1)H.

If CP, € R™"™ thenv = 2n 4 2k + 2 — (n + 1)H. If nis odd, then wy(») =
0 (wi(») = 0 because CP, is simply connected). Asin[2], weletx = H + H — 2.
x is then the generator of the subalgebra of self-conjugate bundles in KU (CP,,)
and '+ = 0. Since 7 is 0dd, we have z"™/* = 0; since H is a complex vector
bundle, ¢,(H) = H + H. Thus we have

MN(m) = (1 + )21 + tH)™ "1 + 7)™,
and) usj-ng the fact that HH = ]_, we get

B o t —(n+1) .
Substituting ¢ = 1, we have
z —(n+1)
M(vn) = 2%(1 + ‘—L> ,

and Theorem 1 implies that A(») = 2(1 4+ z/4)""*"* is an element of
KU(CP,). We check the coefficient of 2" ™"* and get

n—1
+2%tn — 12,
2

This must be an integer; and, since the highest power of 2 dividing (
a(a) + a(b) — a(a + b), we must have

k+1—n+a(";1>+a(7112—1>—a(n—1)20.

Here of course a(¢) is the number of 1’s in the dyadic expansion of 7. We have
alsoa(n — 1/2) = a(n — 1) = a(n) — 1; thus the inequality becomes

kE>n— aln).

) s

RZ n+2k+1

Since this calculation would not change if we assumed CP, (because

Ooy1 = 2), we have the following theorem.
TreoreMm 2. CP, & R*"**™7 for n odd.

When M is a quaternionic projective space HP, , the condition on the Stiefel-
Whitney classes is always fulfilled. Let hx denote the complex bundle associated
to the canonical quaternion line bundle by the inclusion Sp(1) < U(2). Let
2 = hg — 2; then KU(HP,) = Z[z/z"™ = 0 (e.g., [7]).

The tangent bundle of HP, satisfies the following bundle equation (e.g. [9]):
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T(HP,) ® 7@ 1 = (n + 1)ha,

where % is the 3-dimensional real vector bundle associated to hy by the double
covering Sp(1) — SO(3).

If HP, C R*™*™ then v = 4n + 2k + 1 4+ 5 — (n + 1)hg. Since hy is a
self-conjugate complex vector bundle, €,(hz) = 2hyx . Thus we have

At(”u) — (1 + t)4n+2k+l(1 + thH + t2>_2(n+l)>\t<77u),
and A(n.) = 1 4+ tn, + ' + &% A short character computation shows that
ne + 1 = (hg)?; therefore,
ohs ¢ —2(n+1) . )
M) = U+ 0 (14 gee) (= 07+ 1+ 27),

Substituting ¢ = 1, we get

N (V ) _ 2% <1 " 'f_>_2("+1) (1 + ?—)2
1o 4 2/

and again Theorem 1 implies that A(») = 21 4 (2/4)]""™[1 + (2/2)], where
2"t = 0, is an element of KU(HP,). Hence the expression for A(») must yield
a polynomial with integral coefficients. The coefficient of 2" is 0, so we check the
coefficient of 2" . This can be seen to be

¥ o—2a-D | [2n—1 _ 2n — 2\ | _ —2—1) [2n — 1 1
+£2° -2 [(n—l) 2(n—2>]_i2 ( n >2n—1'
The highest power of 2 dividing (*% ") is a(n) + a(n — 1) — a(2n — 1) =

a(n) + a(n — 1) — a(2(n — 1) + 1) = a(n) — 1. Thus, in order for A(»)
to be an element of KU(HP,), we must have

E—2n—1) 4+ a(n) —1 > 0;
and so
k>2n— a(n) — 1.

R4n+2k+1

Since the calculation would not change if we assumed HP, C , we have

proved the following.
TarorEM 3: HP, ¢ R™ %W~

Using the results of [1] and a technical lemma, B. J. Sanderson and R. L. E.
Schwarzenberger had previously derived the results of Theorem 2 and Theorem
3 in [8]. Somewhat better theorems were also obtained by Mayer in [5].

4. Main results

For an even-dimensional bundle » with wi(v) 4+ we(») = 0, A(») splits into a
sum A*(») + A (»), and we have the following relation (see [6]):

AT (YA () = N ) + NP )
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The sum ends with X’(»,), if k is odd, and with \'(».), if k is evewn, where 2k is
the dimension of ». Since
M= A EN N
and
A= N — A4 NP
for a bundle of dimension 2k, we get the following equalities:
M — A = 4ATAT, if ks even;
M4 Ao = 4AYAT, if K is odd.
Since (AT + A7)? = N\, we have (AT — A7)® = Ay, if k is even, and
(A" — AT = —\,
if & is odd. If CP, < R™™"™, we have

¢ —(n+1)
Me(vn) = (1 4+ t)™ (1 - mw) ;

since z"""”* = 0, we have, after expanding the second term, (1 4+ ¢)" " in the

denominator; and, if 2k > n — 1, then \_;(»,) = 0. By Theorem 2,k > n — a(n);
therefore A_y(v,) = 0if n > 3. For n > 3, we have thus A¥(»,) = A (), and

>\1(Vn) = 4A+<Vn)A+(Vﬂ)7

. _ 1 x —(n+1)/2
AT(») = 2 14 .

and

4
Thus k > n — a(n) + 1. This yields the following theorem.

TurorEM 4. CP, & R*" 7™ ifn > 3 (n odd).
Stmilarly if HP, & R™™, we have

—2(n+1)
MGa) = (147 (1 + U—Lyz) (1 =" + 1z +2)7.
Since, 2" = 0, after expanding the second term we get (1 + ¢)*" in the
denominator, and, if 2k — 2 > 2n, then \_4(v,) = 0. By Theorem 3, &k > 2n —
a(n) — 1,50 \a(z,) = 0,if n > 3. And again for n > 3 we have AT = A and
M(7,) = 4AYAY. This gives k > 2n — a(n). We have thus proved the following
theorem. "

TuroreM 5: For n > 3, HP, & R* ™7,

CoroLrLARY. If n = 29, HP, $ R *(¢ > 1). Forn = 2" + 1 Theorem 4 im-
plies that CP, & R*"* and since CP, < R*""* for n odd [4] the best embedding
and immersion fos such a dimension coincide.
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