
NON-IMMERSION THEOREMS FOR COMPLEX AND QUATERNIONIC 
PROJECTIVE SPACES 

BY s. FEDER* 

1. Introduction 

Let M be a differentiable m-manifold, and let f be a differentiable map of M 
into euclidean ( m + k )-space. We call f an immersion if its jacobian has rank 
m at every point of M. We write J.11 ~ Rm+k to denote the existence of an im
mersion. In treating the immersion problem it is only natural to resort to K
theory, the cohomology theory of real (complex) vector bundles. Using a refine
ment of the methods of [2] we prove the following theorems. 

THEOREM 4. CPn £1;; R 4n- 2a(nl for n odd where a(n) is the number of l's in the 
dyadic expansion of n, ( n > 3). 

THEOREM 5. HPn £1;; R8n-2 a(nl- 2, where a(n) is the number of l's in the dyadic 
expansion of n, ( n > 3). 

Theorem 5 is related to a conjecture in the theory of immersions. Let T(RPn) 
be the tangent bundle of the real projective n-space. I. M. James [3) has proven 
that if n = 2' - 1, then g-dim ( -TRPn) > n - q, where 

q = 2r if r = 1, 2 mod 4 

q = 2r + 1 if r = 0 mod 4 

q = 2r + 2 if r = 3 mod 4. 

On the other hand consider the fibration 

RP.,i - RP4n+a - HP n . 

Since RP 3 is parallelizable we have the inequality 

g-dim ( -THPn) 2:: g-dim ( -rRP4n+a), 

B. J. Sanderson has conjectured that 

g•dim (-THPn) = g-dim ( -TRP4n+a), 

Theorem 5 implies that either Sanderson's conjecture is false or the result of 
James is not the best possible ( consider for example the fibration RP 3 - RP 127 -

HPa1). 

2. The Grothendieck ring 

We define the Grothendieck rings KO(X) and KU(X) for a finite, connected 
CW-complex X as universal solutions for homomorphisms from the semi-group 

* Supported in part by National Science Foundation grant GP-5804. 

62 



THEOREMS FOR PROJECTIVE SP ACES 63 

8(X) of isomorphism classes of real ( complex) vector bundles into abelian groups. 
Thus we get a group K(X) and a map 0:8(X) -t K(X), such that for any 
homomorphism 'P of 8(X) into an abelian group A, there exists a unique homo
morphism if.,, making the following diagram commutative: 

✓ 

K(X) 
/ 

/,t, 

K(X) is a ring with multiplication induced by tensor product of bundles. Oper
ations in vector bundles provide us with operations in the ring K ( X). We will be 
concerned here only with exterior powers and "spinification," a non-stable opera
tion. For elements of 8(X), the exterior powers have the following formal proper
ties: (a) )..0(x) = 1, (b) )..1(x) = x, (c) )..\x + y) = L}=o )..\x))..i-\y), and 
(d) )..\x) = 0, for i > d1m x. These operations extend to the ring K(X). Define 
)..t(x) = L%.o )..\x)t\ where tis an indeterminate. Then (a), (b), (c), and (d) 
imply 

)..t(X + y) ,= )..t(x))..t(y). 

If Vis a real vector space, then )..;V 0 C '.::::'. )..\V 0 C). This gives us the com
mutative diagram 

Xi 

KU(X) -----+ KU(X), 

where Eu denotes complexification. 
If a real vector bundle i; is such that w1(0 = 0 and w2(0 = 0, then it admits 

a spin representation Li(/;). Li.(0 is then a complex, self-conjugate bundle, and 
representation theory (e.g. [6]) provides us with the following relation: 

akLi(O • Li(/;) = )..0(1;,.) + )..1(1;,.) + · · · + )..\!;ii) = )..1(/;u), 

where i;,. = Eu(/;) is the complexification of i;, k is the dimension of i;, and ak = I, 2 
fork even or. odd respectively. 

This relation immediately implies the following theorem. 

THEOREM 1. If f:M"' -t Rm+k is an 1:mmersion, 11 = (ni + k) - r(M) its 
normal bundle, and W1 (II) + Wz ( //) = 0' then there exists a self-conjugate element 
x E KU(M) such that akx2 = )..1(11,.). 

3. Applications to CPn and HPn 

We now apply Theorem 1 to the cases when Mis the complex projective space 
CP n and the quaternionic projective space HP n . 
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Let H be the canonical Hopf bundle over CP n and let y = H - 1; then 
KU(XPn) = Z[y]/yn-l (e.g. [7]). The tangent bundle of CPn satisfies the fol
lowing complex bundle equation: 

r(CPn) E0 1 = (n + l)H. 

If CPn C R2n+2\ then v = 2n + 2k + 2 - (n + l)H. If n is odd, then w2(v) = 
0 (w1(11) = 0 because CPn is simply connected). Asin[2], we let x = H + H - 2. 
xis then the generator of the subalgebra of self-conjugate bundles in KU(CPn) 
and x[n/21+1 = 0. Since n is odd, we have x<n+1>12 = 0; since His a complex vector 
bundle, Eu(H) = H + H. Thus we have 

At(llu) = (1 + t) 2n+2H 2(1 + tH)-(n+l\1 + tH.)-(n+l)' 

and, using the fact that HH = 1, we get 

( t )-(n+l) 
At (vn) = (1 + t) 2k 1 + (l + t)2 X • 

Substituting t = 1, we have 

A1(11,.) = 22k( 1 + i)-(n+l) ' 

and Theorem 1 implies that A(v) = 2\1 + x/4)-<n+l)/2 is an element of 
KU(CPn), We check the coefficient of x<n-l)/2 and get 

±2'(:; ~)2•-. 
This must be an integer; and, since the highest power of 2 dividing (a!b) is 
a(a) + a(b) - a(a + b), we must have 

k + 1 - n + a (n; 1) + a(n; 1) - a(n -1) ~ 0. 

Here of course a(i) is the number of l's in the dyadic expansion of i. We have 
also a(n - 1/2) = a(n - 1) = a(n) - 1; thus the inequality becomes 

k ~ n - a(n). 

Since this calculation would not change if we assumed CP n C R2n+2H1 (because 
~+1 = 2), we have the following theorem. 

THEOREM 2. CP n $ R4n- 2a(n)-l for n odd. 

When Mis a quaternionic projective space HP,., the condition on the Stiefel
Whitney classes is always fulfilled. Let hn denote the complex bundle associated 
to the canonical quaternion line bundle by the inclusion Sp(l) c U(2). Let 
z = hn - 2; then KU(HP,.) = Z[z]/zn+l = 0 (e.g., [7]). 

The tangent bundle of HPn satisfies the following bundle equation (e.g. [9]): 
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T(HPn) EB 7J EB 1 = (n + l)hH, 

where ri is the 3-dimensional real vector bundle associated to hH by the double 
covering Sp(l) - S0(3). 

If HPn 5;;; R4n+2\ then v = 4n + 2k + 1 + ri - (n + l)hH. Since hH is a 
self-conjugate complex vector bundle, Eu(hH) = 2hH. Thus we have 

At(Vu) = (1 + t)4n+2k+l(l + thH + t2)- 2(n+I\t( rJu), 

and At( 7/u) = 1 + triu + t2riu + t3. A short character computation shows that 
7/u + 1 = (hH)2; therefore, 

( t )-2(n+I) 
r,.i(riu) = (1 + t) 2k-2 1 + (l + t)2 Z ( (1 - t) 2 + t(z + 2)2). 

Substituting t = 1, we get 

A1(vu) = ik ( 1 + ir 2Cn+l) ( 1 + ;)2, 
and again Theorem 1 implies that 6-(v) = 2k[l + (z/4)rcn+ 1>[1 + (z/2)], where 
zn+I = 0, is an element of KU(HPn). Hence the expression for A(v) must yield 
a polynomial with integral coefficients. The coefficient of zn is 0, so we check the 
coefficient of zn-I_ This can be seen to be 

± 2k . 2-2Cn-1) [(2n-1) _ 2 (2n - 2)] = ± 2k-2(n-I) (2n - 1) 1 . 
n-1 n - 2 n 2n - 1 

The highest power of 2 dividing (2n;1) is a(n) + a(n - 1) - a(2n - 1) = 
a(n) + a(n - 1) - a(2(n - 1) + 1) = a(n) - 1. Thus, in order for A(v) 
to be an element of KU(HPn), we must have 

k - 2(n - I) + a(n) - 1 2':: O; 

and so 

k 2:: 2n - a(n) - 1. 

Since the calculation would not change if we assumed HP n 5;;; R4n+2Hi, we have 
proved the following. 

T 3 Hp rf- R8n-2a(n)-3 
HEOREM : n :::j= • 

Using the results of [1] and a technical lemma, B. J. Sanderson and R. L. E. 
Schwarzenberger had previously derived the results of Theorem 2 and Theorem 
3 in [8]. Somewhat better theorems were also obtained by Mayer in [5]. 

4. Main results 

For an even-dimensional bundle v with w1(v) + w2(v) = 0, A(v) splits into a 
sum A+ ( v) + A-( v), and we have the following relation ( see [6]) : 

A+(v)·A-(v) = Ak-\vu) + Ak-\vu) + 
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The sum ends with A0( v,,), if k is odd, and with A1( v,,), if k is eveh, where 2k is 
the dimension of v. Since 

and 

L1 = Ao - A1 + · · · + A2\ 

for a bundle of dimension 2k, we get the following equalities: 

A1 - L1 = 4A + A-, if k is even; 

A1 + L1 = 41'.i + A-, if k is odd. 

Since (A++ A-) 2 = A1, we have (A+ - A-)2 = L1, if k is even, and 

(A+ - A-)2 = - L1 , 

if k is odd. If CP n C R 2n+2\ we have 

Ahn) = (1 + t) 2k (1 + (l ~ t)2 x)-(n+ll; 

since x<n+ll/ 2 = 0, we have, after expanding the second term, (1 + t) n-i in the 
denominator; and, if 2k > n - 1, then L1( vn) = 0. By Theorem 2, k ~ n - a(n); 
therefore A_1(vn) = 0 if n > 3. For n > 3, we have thus A+(vn) = A-(vn), and 

A1(vn) = 41'.i+(vn)A+(vn), 

and 

A +(v) = 2k-1 ( 1 + i r(n+l)/2 

Thus k ~ n - a(n) + 1. This yields the following theorem. 

THEOREM 4. CPn % R4n- 2a(n) if n > 3 (n odd). 
Similarly if HPn ~ R4n+z\ we have 

A1(vn) = (1 + t) 2k- 2 (1 + (1; t)2zr 2
(n+l) ((1 - t)2 + t(z +2) 2 ). 

Since, zn+i = 0, after expanding the second term we get (1 + t) 2n in the 
denominator, and, if 2k - 2 > 2n, then A_1( vn) = 0. By Theorem 3, k ~ 2n -
a(n) - 1, so L1(vn) = 0, if n > 3. And again for n > 3 we have A+ = A- and 
A1(v,,) = 4A+ A+_ This gives k ~ 2n - a(n). We have thus proved the following 
theorem. • 

THEOREM 5: For n > 3, HPn $ R 8n- 2a(n)- 2_ 

COROLLARY. If n = 2\ HP n Q:; R 8"-4( q > 1). For n = 2r + 1 Theorem 4 im
plies that CPn g;; R4"- 4 and since CPn C R 4n-a for n odd [4] the best embedding 
and immersion fo;, such a dimension coincide. 

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY, AND 
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