THE GEOMETRIC DIMENSION OF REAL STABLE VECTOR
BUNDLES

By S. GrrLErR AND M. MABOWALD*

Introduction

Let X be a finite {-dimensional CW-complex, and let £ be an m-plane bundle
over X, with m > ¢. We know from the classification theorem for plane bundles:
(see [12], 19.3), that a lower bound for the number of sections that ¢ admits is:
m — t. We will say that codim (£) > k, if there exists a bundle 5 of dimension
t — kwitht = 9 @ (m + ¢t — k). Therefore the codimension is a nonnegative:
function, for bundles of dimension m > t.

Suppose £ is trivial over the g-skeleton of X, then it seems reasonahle that &
should have positive codimension. The main object of this paper is to prove the
following results.

TrEOREM A. Let | logs t | denote the integral part of logs t. If £ is trivial over the
(g — 1)-skeleton of X, then

codim (£) > min (¢ — 2| log.t| — 5, | /2| — 1).

A sharper but more complicated result is actually proved and is stated as
Theorem 7.17.

Consider now the following problem. Given a fixed integer k and a complex
X of dimension ¢, find the least ¢ such that any bundle ¢ over X trivial over the
g-skeleton of X has codim (&) > k.

If we apply Theorem A directly, we see that ¢'increases as ¢ increases.

The next theorem, then, should be viewed as a stability result. Let a(m) =
the number of ones in the dyadic expansion of m.

TaEOREM B. Given integers a, k and n with k < n, there exists an integer ¢ =
q(a, k, n) such that if dimension X ist = s2" + n, where a(s) = a,andn < 27,
any stable bundle £ trivial over the q-skeleton of X has codim (£) > k.

Again a much sharper result than Theorem B is obtained and is stated as

Theorem 7.19.
If we let X = S°, in Theorem A we obtain the following result of Barrat and

Mahowald [4],

Cororrary C. If £ is a (¢ + 1)-plane bundle over S°, then codim (§) >
it/2| — 1,4t > 16.

The results of (7.17) are actually needed for ¢ = 20. Corollary C implies
strong results about the metastable homotopy of O(n) and these implications
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. are given in [4]. Another consequence of Theorem A is the following result in
differential topology.

CoroLLARY D. If M* is a differentiable mamfold such that the stable tangent
bundle is trivial over the (¢ — 1)-skeleton, then M* immerses in R2To a7 2lo82t),

This result should be compared with the beautiful result of M. Hirsch [7]
which says that if M’ is a m-manifold, then M" immerses in ¢ + 1. For such
manifolds our result gives only M’ immerses in R***",

The method used in proving Theorems A and B is a sharper version of the
modified Postnikov tower introduced in [8]. That presentation lacked sufficient
generality for our purposes, and since a part of [8] has to be slightly modified to
get this generality, we give a short development of it here. The main new result
in this direction is Theorem (2.11), and this result is the key to our applications.
While we have all the machinery set up for obstruction theory we will prove
the following theorem.

TaeoreM E. Real projective space RP™ for n = 0 mod 4 and n # 27 immerses
in R™°.

This result uses only the method of this paper and in no way involves Theorem
A or B.

1. The transgression in a fibre space

Let F 2 T 2 B be a fibre space, and set b = p(F). Denote by 5: (T, F) —
(B, b) the relative projection, and consider the map of the cohomology sequences
induced by 7,

oy B gt ) S R, P S BT —>
e b
— H*(B) 53 B*(b) 2 H*(B,b) &5 H*(B) —
Define, for k > 0,

(L.1) T"(F) = 6 'p"* "H*(B)
and
(1.2) =*(B) = j"p* e H* (F).

The elements of T*(F) < H*(F) are called transgressive, those of =*(B) C
H*(B) are called suspension elements.
The map j;*5* 6 induces the transgression

(1.3) TN (F) — 2%(B)/ii* (Ker 5%),
and the mapping 657" induces the suspension
(1.4) o:3%(B) — T X(F)/i*H* (T).
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o and 7 together yield an isomorphism,

(1.5) L TR SHEY(E) =2 2F(B) /5" (Ker ).
From the diagram it is easy to identify =*(B)d as Ker p*; thus
(1.6) TNF) /" H 7 (B) = (Ker p*/ji* (Ker p%))".

2. Totally transgressive fibrations

By a g-totally transgressive fibration we will understand a fibre space F -
T & B such that, with Z,-coefficients,

(2.1) H *( F) forms a simple system of coefficients over B and for k& < ¢;
(2.2) p*:H*(B) — H*(T) is onto; and
(23) T(F) = H''(F).

The following are examples of ¢-totally transgresswe fibrations. Let C =
K(Z,, q); then QC — PC — C is 2¢-totally transgressive. More generally, if
X is (¢ — 1)-connected, then QX = PX — X is 2¢-totally transgresswe

More important for our purposes is the fibration

(2.4) Vui — BSOu— — BSO,

where BSO,, is the classifying space for orientable m-plane bundles and. Vank
is the Stiefel manifold of k frames in n-space. This fibration is 2(n — k)-totally
transgressive according to Borel (see [ 1, ( 18.3)).

First we show what the kernel of p* :H*(B) — H*(T) is, in a g-totally trans-
gressive fibration.

We recall the notion of an- S -sequence considered by Massey and Peterson

(in [10], p. 56). Let S be a graded algebra over Z,. If s, «--, s,, -+, are
elements of S, (s, -+, s,) will denote the ideal generated by s, - - - , s, . The
sequence i, - - -, 8, -+ is called an (8, ¢)-sequence if s;11 is not a zero divisor
in 8/(s1, -+, s) in dimensions <g¢, for< = 0,1, --- , n, --- ; that is, if there
isno z € S such that 8,11 € (81, -+, 8i), where deg -+ deg si;a < ¢. The
ideal (s1, ---, 8x, ---) associated with an (S, ¢)-sequence will be called a
q-Borel ideal. ‘

ProposiTION 2.5. Suppose F -5 T B B is a g-totally tmnsgressive fibration,
where F is (n — 1)-connected and ¢ < 2n — 1. Let X = X" T4 X%e
a subspace of H*(B) representing 7( Z"’_l H*(F)). Then (X) is a q-Borel ideal
and Ker p* = (X) in dimensions <q.

Proof. Consider the spectral sequence of the fibration. We have E,* =
H'(B) ® H'(F). Let us restrict to the triangle » + s < ¢. Then since F is
(n — 1)-connected and H*'(F) is transgressive for k < ¢, we obtain E, "
= B/’ if r > 0 and B, ,"? C B

Therefore in dimensions <q we have

Buyn = HY(B) ® (H'(F) + 2i% H*(F) + En™).



88 S. GITLER AND M. MAHOWALD

Now we have E,.;""? = E. "% Therefore the differential d,; is determined by
its value dpys(H"(F)) = X"™. Let 2 € X" and y € H?(B), withn + 1 +
p < ¢. Then zy # 0. For, if zy = 0, we have d,1(£) = z; 50 dpa(yZ) = 0
and y£ € E,1"'" is a cocycle under d,.1 and, therefore, a d,, cocycle for m >
n -+ 1. Moreover, yZ survives to E, '"; but, by (2.2), B, = 0if s > 0 and
r+s<q.
It follows that
Enz = H'(B)/(X™™) ® (H'(F) + 2i5hu H'(F) + B,
We apply the same arguments successively, as above, until we reach
Epn = H'B)/(X"™™ + -+ + X" ® (H'(F) + Eo1™).

Now E,,""" is totally transgressive, since 5*: H%(T) — H(F) is trivial. There-
fore,
Ego = H*(B)/(X™ + -+ + X%) = B,
with (X" + ... 4+ X9) a ¢g-Borel ideal, and (2.5) follows.
We have also the following proposition.

ProrosiTioN 2.6. Let F be (n — 1)-connected and B simply connected and
F — T — B a fibre space such that
(a) T*(F) = H*(F) fork < q — 2, where ¢ < 2n — 2.
(b) Let X = X" + -+ 4+ X', where X*™* is a subspace of H**(B)
representing T(H*(F)), and suppose that (X) is a (¢ + 1)-Borel ideal. Then
T NF) = HT\(F).

Proof. Consider the spectral sequence of the fibre space. We have H* '(F) =
B D o DB = B = TT(F). Therefore we need to show that

0 1 k,q—Fk
di:Ep ' — B

is trivial for 2 < k < ¢ — n.
Consider k = ¢ — n. Then B, *° = «-- = E,u" " and, by (a), B =
«oo = B, s0 we have a commutative diagram

—n,0 0, g—n,
En+1q " ® En+l " _M) En+1 "
jl ® dut1 ldn+l
q—n,0 n+1,0 Mo g+1,0
Eoi"™" ® Enpa By Bt

Moreover, E, """ = H*'(B). Therefore, by (b), dni1(Bars™™")
X" H*™(B), and u is an isomorphism. Since ¢ — 7 < n, dgniEen """ —
E,_." ™" must be trivial, and B, ™" = H*(B)/X"""H" "(B).

Now make the following induction hypothesis: for3 < k < ¢ — n,
1) Eko.q—l = Ek+10'q_1 — . — EqO,q—l = Tq_l(F),

I
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and, for3 < k < q — n,
2)  Bprpn®™ = H™Y(B)/(X"MH"™(B) + --- 4+ X**H*(B))
Consider then
dr—1:E 0 s B 1k_1'q_k+1.

k—1,0 —1,0 —1,0 0,g—k+1 0,g—k+1 __
We have E, oy ES = oo = B and B> = B =
0,g—k+1 . .
s =By e by (a). Therefore we have a commutative diagram,

51,0 0,q—k+1 k—1,g—k+1
E q—k+2 ® E q—k+2 'ﬁ> Eq—k+2
ll ® derwte ldq—kﬂ
k—1,0 q—k+2,0 gq+1,0
Eq s ® By pie B Bepn™

Moreover, u is an epimorphism and, by (b) and (2), po(1 ® dg—+2) is a mono-
morphism; and therefore u is an isomorphism.

Now3 < k< q—mn,s0k < n;but ¢ — k > n, hence dy_, is trivial and, by
(b), EBprs™™® = H™™(B)/(X)*", and the induction is complete.

Given a cohomology class x € H"(Y), a representation of this class is a mapping
f:Y — K(Z, ,n) such that f*y = z, wherey € H"(K(Z,,n)) is the fundamental

class. More generally, it is a representation of a set of classes z1, - - - , & , where
z; € H*(Y) is a mapping f:X — C, where C = Hi;l K(Z,, n;) such that
v = a;,fori =1,2, .- k and where v; is the image in H*(C) of the funda-

mental class of K(Z, , n;).
Let now F -5 T 2 B be a g-totally transgressive fibration, where F is (n — 1)-
connected and B is simply connected. We assume that ¢ < 2n. Let y;, ¢ = 1,
-, m be a set of generators over the Steenrod algebra A, , of H *(F) in dimen-
sions <¢ — 1. Let 2; be a representative of ry; in H*(B) and let f: B — C be a
representation of the set {x.}. Then f induces a principal fibre space 2C %> E 2 B
and we have the following diagram:

(27) 2 E

F—sr—?,p-J ,¢.

Since fp is null-homotopie, we can lift p to a mapping h:T — E such that
v = h/F:F — QC is a representation of the set {y;}. We now make (T, F) —
(E, QC) into a fibre pair with fibre F; .

Proposition 2.8, In dimensions <q, we have that

Ker p* = Ker pl*



90 S. GITLER AND M. MAHOWALD

and
Ker p* = Ker g,

Proof. From (2.7), it is clear that Ker p,;* < Ker p*. Now since F > T 5 B
is g-totally transgressive, we may apply (2.5). With the notation of (2.5), we
have that Ker p* = (X) is a ¢-Borel ideal. Moreover, Ker p* is an algebra over
A5(B), in the sense of §1 of [6], and it has, as a system of generators over 4,(B),
the elements z; , -+ - , Znm . But z; = f*y;, and thus pl*xi = p*f*y; = 0 implies
Ker p* < Ker p,". Now the second part follows since Ker p* is a ¢-Borel ideal.

Consider now, from (2.7),

p*E_’-’, E

| 7 b

Tr—2—B |,

where p*F is the induced principal fibre space over T. Because of the existence of
h, p*E is homeomorphic to QC X T, and we can thus form a commutative dia-
gram,

QC X T —— E
(2.9) lq " l”‘

T—2? B
And we can change this diagram up to homotopy, so that both » and p are inclu-
sions and (E, QC X T) — (B, T) is a relative fibre space with fibre QC.
ProposiTioN 2.10. In dimensions <gq, we have that v* is a monomorphism.

Proof. We have that (B, T) and QC are both (n — 1)-connected, so that we
have the Serre-exact sequence,

. H™(B, T) L5 H™(E) — H™(QC X R) — ---
in dimensions <2n — 1.

Now suppose z € (Ker »* N Ker h*)™, where m < ¢. Then, there exists
y € H™(B, T) with j*y = z. But j* is the composition H™(B, T) ﬁH"‘(B) 1N
H™(E), so that p,"(k*y) = z. Now h*z = r*p,*(k*y) = p*(k*y) = 0. But, by
(2.8), we have p,"(k*y) = z = 0.

We may now state the main theorem of this section.

TarOoREM 2.11. Suppose that F 5% TP Bisa g-totally transgressive fibration,
where B is simply connected, F is (n — 1)-connected and ¢ < 2n — 1. Then the

associated fibre space F1 — T b, B s also g-totally transgressive.

Proof. First note that in (2.7) we have that F; — F % QC is (¢ — 1)-totally
transgressive, since v* is an epimorphism in dimensions <¢ — 1, by construction,
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and both F and QC are (n — 1)-connected. Therefore we have exact sequences
0 — H'(Fy) — H*(QC) 25 HY(F) — 0,
fork < ¢ —1,and
0— H'(Fy) - HY(QC) —» H(F) — --- .
Using the cohomology sequence of the pair (QC, F), we obtain
(2.12) T H*"'(F,) = H*(QC, F), for k< gq.
Again referring to diagram (2.7), we next show that 7;:QC — E induces a homo-
morphism
(2.13) i*: (Ker h* /5, (Ker 1))* — H*(QC, F),
for k < ¢, where j,:E — (E, *), is the inclusion. From #w = hi, it follows that

0" (Ker h*) = 0; so 4" (Ker *) € H*(QC, F). Moreover, in the diagram

m g, *) " BT, Ry

o

5*

H*(0C, *) 5 HY(F, Fy),
we have that 7" is an isomorphism for k < 2n. Therefore, R¥*(z) = 0 implies
%'z = 0, and, therefore, 4,*(j,* Ker *) = 0. Now (2.12) and (2.13) give a com-
mutative diagram,

T () T:_1> (Ker h*/js* (Ker h*))*

(2.14) l"‘ 11
H N (F) > H*(QC, F),

for k < ¢, where « is the inclusion.
We first prove that F; — T — E satisfies, for £ < ¢,
(¢) K*:H*(E) — H*(T) is onto, and
(d) HY(F,) = T\(F,).
The assertion (¢) follows clearly from the hypothesis and the fact that

P = pih.
To prove (d) it suffices to show that 4* in (2.14) is an epimorphism, for
k < ¢. The fibrations QC — E 5 B and F — T — B give a commutative diagram,

H*'(Q0) 7\ (Ker /5 (Ker ,%))*

(2.15) J”* lg
H(F) 5 (Ker p*/j* (Ker %)),
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where the vertical isomorphism follows from (2.8) and the horizontal one, from
the hypothesis and (1.5). Now take z € H*'(QC, F); then its image,
y € H"(QC), isnon-zeroif z is non-zero. Now v*y = 0, so 7' (y) = 0,by (2.15).
But by (1.5) we have

HH90) /i *H " (B) = (Ker p*/jr* (Ker 51%)),

and therefore y = 4,"z, where z € H* *(E). If h*2 = 0, we are finished, for then
4*[2] = x. However, if h*z # 0, choose w € H*'(B), with p*w = A%; so
Bz — pi*w) = 0 and 4% (2 — p*w) = 42 = v, and thus 4,z — p*w] = z.
Therefore (d) is satisfied.

In order to prove (2.11) it suffices to show that

(2.16) T NF,) = H \(F,).

Notice that condition (d) is condition (a) of (2.6). Let X = X" + ... 4+
X" be as in (2.6) for the fibre space F; — T — E. Then we need to verify that
(X)isa (¢ — 1)-Borelideal in H*(E).

Now notice that H*(QC X T) is an A,(B)-algebra. Take a basis wy, --- , w,
of X with dim w; < dim w;y; . Then in (2.9) we have, since dim w; < ¢ — 1 <
2n — 1,

(2.17) v(wi) = 22" (aus + Big)vs # 0,
where a;; € A X 1 is non-zero for at least one j, 8;; € A @ H"(B), and H*(B)
denotes the positive elements of H*(B). Moreover, the elements »*w; and
> aiv; = % w; are linearly independent in H*(QC X T) and H *(QC) respec-
tively because of (2.10) and (2.12). Therefore the elements ¢ *w; satisfy no rela-
tion

2oufw; Xt —0, &€ HY(T)
in A*(QC) @ H*(T), which is a free 4,(B)-module in dimensions <¢ -+ 1 on

generatorsy;, X 1,2 =1, --- ,m.
Now we cannot have a relation
(2.18) diiaw; =0  in dimensions <q +1,

where the w; all have the same dimension p, because, if we apply (2.17), we ob-
tain

V(i aw) = 2t ai 25 (i + Bii)vs) = 0;
and, since B;; € A @ H'(B), this implies
Diadw: X a; = 0.
Also, we cannot have a relation
(2.19) Dt = D per bywy,

where dim w; = p and dim w, < pforallk = 1, 2, --- | {, because, again upon
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application of (2.17), we would obtain
288 jmaian + Bi)vi = 2ok = baons + Bai)vi
or
2ot ai(an + Bi)vs = Dk bilans + Bii)vi
forj =1, ---, m. Now dim ax; < dim «;; for each k and each ¢, and
Bi € A ® H'(B);

so we cannot have a relation among the a;;7v; and the Bi;v; . Therefore we would
obtain

Za;w; = 0, dim w; = D,

which contradiets the previous statement (2.18) unless the a; = 0.

Now clearly a;w; = 0 imples a; = 0, and (2.18) and (2.19) carry the induc-
tion to show (X) is a (¢ + 1)-Borel ideal. Thus (2.16) holds and the proof of
(2.11) is complete.

CoroLLARY 2.20. Let F 5 T % B be a g-totally transgressive fibration, where F s
(n — 1)-conmected, B is simply connected and ¢ < 2n — 1. Then there exists a
sequence of principal fibrations

‘—)Ekﬂ)Ek_l'—)"' —>E1ﬂ>Eo= B

with QCy , the fibre of pr, a product of K(Z, , m),m < ¢ — 1, and fibre maps
hi: T — Ey with fibres Fy, , where Fo = F, hy = p which are g-totally transgressive.
Moreover pihy, = hy—y and Fy, — Fr_y — QC), are (¢ — 1)-totally transgressive fibra-
tions.

3. Modified Postnikov towers

Let F % T 2 B be a fibre space. Then a modified Postnikov tower through
dimension ¢ of this fibre space, in short a ¢t-M.P.T. (see [8], §2), is a sequence of
fibre spaces,

En—q—"—)En_l'—) —>E1—vq—l>B,

and maps p;: T — E; such that

(8.1) gpi = pia;

(3.2) the fibre of ¢;, C; is a product of Eilenberg-Maclane spaces K(II, k),
where Il = Z or Z, , where p is a prime and k < ¢; and

(38.3) the fibre of p;, F; is ¢(7)-connected, where i(n) > ¢ — 1, and if
t:F;y C F,, then *:H*(F,) — H*(F.4) is trivial for k < ¢.

Let [X, Y] denote the set of homotopy classes of maps X — Y. It follows from
(3.1), (3.2) and (3.3) that if X is any CW-complex of dimensions <¢ — 1, then
[X, T) = [X, E,]; and if dimension of X is¢, then [X, T] 225 [X, E,] is onto.

Since the fibre space C, — E,. - E,_; is a principal fibre space, it is classified
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by a map fm:En1 — D, , where C,, = @D, . If D, = TIK(II;, 7), let v;" €
H’(D.,., ;) be the image of the fundamental class of K(II;, 7). The k-invariants
of the fibration C,, — E,, — E,._; is the set of cohomology classes {k;”}, where
k" = fm'y;". A mapping g: X — E,_; can be lifted to E,, if and only if ¢*k,™ = 0,
for all j.

Now we show that under special circumstances a -M.P.T. ean be constructed
in a manner slightly different from that given in [8].

Let us take Z, as coefficients and assume that in the fibre space F 5 T2B
the fibre F is (n — 1)-connected and that H*(F') is free over the algebra generated
by S¢° and Sq!in dimensions < { — 1 < 2n — 2.

TarorEM 3.4. Suppose F 4 T2 Bis t-totally transgressive, then 1 has a i-

modified Postnikov tower.

Proof. Consider the sequence of fibre spaces
(3.5) E, Y™ E,,— - --—>E-%B

constructed in Theorem (2.20). Then we have that C, — Ej 2 E,_, is a principal
fibre space, with C; a product of Eilenberg-Maclane spaces K(Z,, m), with
m < t — 1. Moreover, we have fibre spaces F, — T Py B, and

Fy ~%Z’-'Jc_lﬂﬂ* Cro1,

which are respectively t-totally transgressive and (¢ — 1)-totally transgressive.
In particular we have exact sequences

0 — HYF) 5 HYCom) 25 HY(Fry) — 0,
through dimension ¢ — 1.

Moreover, v, was chosen so that
N
0 — Ty (Fig1) = M (Fi) 5 Ty (Cayr) — 0,

where 7y, is the least integer n < n, < ¢ — 1, with I, (F3) 2 0. Therefore,
starting with Fo = F and ny = n, we have a sequence of proper inclusions

and since IL,(F) is finite by hypothesis, this sequence must terminate in zero;

Le., there exists ky with n;, > n + 1. If we continue this process, we obtain
an integer m, so that (3.5) is a t-modified Postnikov tower of F % T 2 B.

4. Determination of the k-invariants

In this section we recall the connection between successive k-invariants in a
modified Postnikov tower. We assume that all the cohomology groups are taken
with Z,-coefficients.

Let w:B — C be a map and p:E — B, the principal fibre space induced by w
with fibre QC. A mapping f: X — B can be lifted to a mapping ¢: X — F if and
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only if wf is null-homotopic. Now such a ¢ is not unique, in fact, given any map
h:X — QC, we obtain another lifting, ¢': X — E, as the composite

(4.1) X4 xx xR, 00 xEAE,

where d is the diagonal mapping and p is the multiplication given by the principal
structure. Moreover, up to homotopy, all liftings X — E can be obtained from ¢
as we vary h in the homotopy classes of maps X — QC, (see [11], (2.9)).

Now let wy, --- , wn be classes in H*(B), with dim w, = ¢ + 1, and let
w:B — C be a representation of this set of classes. Form the associated principal
fibre space p:E — B. Then a mapping f: X — B lifts to E if and only if f*w;, = 0,
fork =1, --+,m.Lety € H'(E), where ¢ < 2 min (g;). Then, as we vary the
liftings g: X — E of f: X — B, we obtain a set of classes ¢*y in H/(X). We denote
this set by ®(y, f). Thus ®(y,f) € H*(X). We begin by determining the structure
of this set.

Let A5(B) be the split extension algebra of 4, and H*(B) as considered in
§1 of [6]. Since we have, QC X E 4 E 2 B, H*(E) and H*(QC X E) are As-(B)-
modules. Consider the mapping p*: H*(E) — H*(QC X E); then we can write

(4.2) Fy) =10y+iyel+ 3y @y’

where 7:QC — E is the inclusion and the 4,/ X y.” are positive dimensional classes
of H*(QC) and H*(E), respectively. Let v, , fork = 12, -- -, m, be the funda-
mental classes of QC, and let H*(QC) be the subspace of positive dimensional
classes of H*(QC). Then it is easy to see that in dimensions <2 min (g) =
2 min (dim ), B*(QC) @ H*(E) is a free Ay(B)-module on generators i,
-+, ¥m . Therefore (4.2) can be rewritten as

(4.3) By =10 y+ D i (o + Bu)ves
where the o) are elements of 4, ® 1 C A(B) and the 8; are elements of A,
® H*(B). X

The mapping f: X — B induces f*: 45(B) — A45(X). Let g: X — E be a lifting
of f:X — Band g’ = u(h X g)d, another such lifting; then it follows that

(4.4) g (y) — ¢* () = 2 (Fou + f8u)h v 5
but f*ak = o .
Therefore if we let
(4.5) Qy, ) = 2= (o + B H™(X)
be the subgroup generated by all the elements of the form azx + f*Bz, for all
x € H*(X)and k = 1, --- , m, we have obtained the following proposition.

ProrosttioN 4.6. The set ®(y, f) is actually o coset, namely the coset of ¢*(y)
in HY(X) modulo Q(y, f), where g is any lifting X — E of f: X — B.

Because of (4.6), Q(y, f) is called the indeterminacy of y induced by f.
Now let us consider a ¢-totally transgressive fibration F — T -4 B, where F is
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(n — 1)-connected and ¢ < 2n — 1. Form, as in (2.20), the principal fibre space
QC — E B B, and let h: T — E be a lifting of ¢, with fibre F; . Then F; — T hE
is again {-totally transgressive. Let u:QC X E — E be the multiplication in the
principal structure. We have then the following theorem.

THEOREM 4.7. Let & € H'(Fy), where ¢ < t — 1; then 7(z) 0 and, for any
class y € HY(E) representing t(x), we hav

(4.8) ) =18 Yy + 21:';1 (o -+ Bi)vr,

where ax € Ay ® 1, 81 € Ay @ H*(B), and the ai only depend on the coset T(z).
Moreover

(4.9) Dot (o + Be)-wp =0

is a relation tn H*(B), where the w, induce the principal structure E — B. Con-
versely, given the relation (4.9), there is a unique class y € HY(E) with h*(y) = 0
and u*(y) satisfying (4.8). Furthermore, if we vary the elements By but leave the oy
fized in*(4.9), the corresponding element y' € HY(E) differs from y by an element
of ker h™.

Theorem 4.7 is the precise relation between the successive k-invariants in a
t-modified Postnikov tower.

Progf. Since F; —» T hgis t-totally transgressive, 7(z) # 0. Now, we are in
the situation of (4.3); therefore, for y € 7(x), u*(y) has the form (4.8). Since F;
is the fibre of the relative fibre space (T, F) — (E, QC), it follows that if
v,y € 1(z), 4y = 4™y and the a; in (4.8) only depend on the coset 7(z).

To see that (4.9) follows, we note that we have the following commutative
diagram

QW XESBE

Pl

E-25B
where 7 is the projection onto the second factor. We can make the above diagram
into a fibre pair (E, QC X E) — (B, E) with fibre QC (all up to homotopy type).

But both QC and (B, E) are (n — 1)-connected and p* is a monomorphism, so
that we obtain short exact sequences,

0 — HYE) %5 HY(9C X E) ™ H™(B, E) — 0.

Let j:B — (B, E) be the inclusion. Then j*70u*(y) = 0; but this is relation
(4.9), as can be easily checked. Now we prove the converse. Recall from (2.9),
that we have a fibre pair (£, QC X T) — (B, T) with fibre QC. Consider the ele-
ment

o= Do (o + q*ﬁk)’yk in HYQC X T).
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We have the exact sequence
—HY(E) X5 HYQC X T) ™ H™™(B, T) — H"™(E)—,

and we now show that 7o = 0. Let jo:B — (B, T') be the inclusion; then 7,* is
a monomorphism in dimensions <¢, and jo*roa = Z(ax + Bx)-wy, = 0. There-
fore there exists y € HYE), with »*y = o. Thus in particular A"y = 0, and,
hence, by (2.10), y is unique. Now »* = (1 X &)*u* and (1 X k)™ is an iso-
morphism H*(QC) ® H*(E) — HA*(@C) ® H(T) in dimensions <t — 1.
Therefore u*y satisfies (4.8).

Finally, suppose that

D (ar + B )we = 0

is another relation in H*(B). Let 5’ be the unique element in H(E) associated
with this relation. It is clear that 4,*(y — ') = 0. Now, in the fibration
F; — T — E, if we let z, 2’ be the unique classes in H*'(Fy), with 7(z) = [y]
and 7(z') = [¢], we have 4,*7(x — z) = 7, (z — 2') = 0, where 75, is the
transgression in the fibration F; — F — QC; but 75, is a monomorphism, so that
@ =2 andy — ¢ € Ker k™. Therefore the proof of (4.7) is complete.

We finally mention how one determines the relations (4.9). Suppose that we
have two steps

E, —»,gp _?,p

N>

where h; has fibre F'; and p; has fibre QC; , for ¢ = 1, 2. Assume that we know
the k'-invariants, i.e., that we know u,*(%,') and, therefore, »,*(k,"). Take now an
element x € HY(F;); then in the fibre space Fy — F1 — QCs, 75, () = Zowys -
Therefore it follows from (4.9) that the element

T k! € H™(Ey)

can be completed to a relation of the form

(4.10) ok, + Do Bk =0,
where the 8, € A ® H*(B). Since the elements in the A,(B)-module generated
by the k', r = 1, -- -, m arein the Kernel of A", it follows from (2.10) that it

suffices to complete ZZ’LI a,vl*(krl) to a relation in H *(901 X T). This we ac-
complish if we assume that we know the structure of H*(T) as an A,-module.
The relation must be of the form

(4.11) v am™ (k') + 26" (k') =0,

where the 8, € A @ H*(B); therefore (2.10) implies that (4.10) follows from
(4.11).
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This process will be clarified when we actually apply it to the determination
of the k-invariants for the fibration BSOg_; — BSO in §6.

5. Resolutions over the Steenrod algebra

Let F be an (n — 1)-connected space, and let ¢ be an integer such that ¢ < 2n.
Let

(5.1) 0—HF)—C&c, &y & ...

be an A-free resolution of H *(F) in dimensions <t¢. We assume all maps in the
resolution to be of degree zero.
With (5.1) there is associated a sequence of spaces and maps

(5.2) —Fy 2 F — ... 5 F = F
such that
Fon 224 F, & K,
is a fibre space
Cr = H*(Ky)
through 2n — 1 dimensions as As-modules, with a shift in dimension of —k, and
g THY(Ki) — H*(Fy)
is an epimorphism in dimensions <t. In addition, the short exact sequences
(5.3) 0 — H*(Fi) ™ H*(K:) 25 H*(F,) — 0

are the short exact sequences that correspond to (5.1) under Cj, = H*(K}).
Indeed, K; is a product of Eilenberg-Maclane spaces of type K(Z,, m) one
for each A,-generator of C; and in the dimension of that generator minus k.
It is now clear that e:Co — H*(F) determines a mapping go:F — K, and F, is
the fibre of go . Since g™ = ¢ is onto, we have the short exact sequence of the fibre

space F; 2 F -2 K, in dimensions <t. Therefore, from the following diagram,

0 — H*(F)) ™ H*(K,) &5 H*(F) — 0

NI M

Cz—d—2> Cy a4 Co —= H*(F) -0

it follows that we can define ¢1:Cy — H™(F;) of degree —1, making the left
square commutative. In turn, ¥4 determines a mapping ¢::F1 — K;. Note that
Y1 is an epimorphism, so that we can continue the process described.

Under reasonable circumstances, in the sequence (5.2) the 2-torsion in the
homotopy groups in dimensions <t is being killed.

For instance we have the following result, essentially due to Adams (see [1],
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Th. 3, p. 62). Let & be the exterior algebra generated by Sq'; then & C 4, , and
we have the following proposition.

Prorosition 5.4. Let F be an (n — 1)-connected space such, that in dimensions
less than or equal to t, where t < 2n, we have H*(F; Zp) = 0, for p an odd prime,
and H*(F) is &free. Then F, is min(t, n — 1 + q(r))-connected, where q(r) is
given by

2r if r=0 mod 4
g(r) =<2r — 1, if r=1 mod 4
2r — 2, if r=2'3 mod4.

For our main application, we will work with: V44, . There is a sharper form of
(5.4) for these, which depends on k and is given as Proposition (7.12).

We now use the resolutions in the situation envisaged in Theorem (3.4) as fol-
lows. Given an A,-free resolution of H*(F) as in (5.1), the fibres of py: T — Ej
can then be chosen to be the Fy constructed from the resolution as above. This
gives us two things. First, it tells us how rapidly they will converge to E; second,
it gives us the information required to obtain the relations among the k’-invari-
ants which produce the k**-invariants as in (4.7).

Namely, assume that we know »;*(%°); then look at di41:Ciyx — Ci. Let ¢ be
an Aj-generator of Ciys, S0 that dijic = ox'ci’, where o € A, and the ¢ are
the Aj-generators of C;. Then take vf*(ak'kki) and add to it in order to make a
relation in Im(»;*). This gives a relation among the k°, as in (4.7), which pro-
duces the &,

6. Applications to vector bundles over real projective spaces

To illustrate the techniques developed earlier in this paper, we will outline
how one determines the k-invariants of Vg3 — BSOg.s — BSO and give an
application to RP", the real projective n-space.

First note that the homotopy of Vg3 is finite and has only two torsion in di-
mensions less than 16k -+ 6. Moreover, H*(Vewys) = H*(RP°/RP***) in the
same range. We start by constructing a resolution of H*(RP*/RP***) in dimen-
sions <8k + 8§,

0 «— H*(RP*/RP™?) & ¢, & ¢, & ¢, & ¢,

Using the action of 4, in H*(RP®), it is not hard to show that we can take C,
to have generators a; , of dimension 8 + 3 and a,, of dimension 8k + 7. Now,
C; has three generators: by , of dimension 8% + 6; by, of dimension 8% + 7; and
bs , of dimension 8% + 8. Moreover, dib; = Sq°Sq'ay , diby = Sq'as, dibs = Sq'as +
Sq*Sq'a; . Similarly, C, has two generators: e, , of dimension 8% -+ 8, and e, , of
dimension 8k + 9. The differential operator is given by dwes = Sq’by, deer =
Sq'bs + Sq'Sq’b:. Now, C; has one generator f, of dimension 8% -+ 10, and
dgf = Sqle2 + quel .
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2] . . . . .
Therefore we must have two k'-invariants, three k™invariants, two k*-invari-
ants, and one k*-invariant.
It is clear that the k'-invariants are

(6.1) k' = Wasia and ks = Wepts .

Now, to determine the k*invariants, we use d; and the Wu formulae to obtain
the following relations:

SASq Watra = WoWars = (W3Sq") Winpa ;
Sq'Wekss = WilWeis; and
Sq' Waess + Sq"Sq Warss = (Wi + Wo') Ways + (WiSq”" + WaSq') Wy .
Therefore the relations that produce the k*-invariants are the following:
B (89" + Wo)Sd'k' = 0; k':(8q" + Wa)k' = 0; and
ks’ :Sq'ky' + [(8q* + Wi + Wy)Sq" + S (WaSq)k' = 0
Now, to determine the k*invariants, we consider

(k') = Sq2sq171 ®1+ Sql'yl ® W,,
V2*<k22) = Sq4'Yl ® 1 + Y1 ® W4 , and
Vz*(7032) = Sqlw ® 1+ Sq4Sq1'Yl ® 14+ Sqlvl
® (Wa+ W5') 4+ 8q'(Sq™n ® W»)

And we use dq:C; — € in order to know that

n*(Sq'k") = 89°Sqm ® W2 + Sq'v: @ Wy’
satisfies a relation in Tm(»,"), namely,

v (Wik') = Sq8q'vs ® Wa + Sq'vi @ W,
so that »"((Sq® 4+ W.)k) = 0 and, hence,
(6.3) k1 (Sq® + W)k = 0.

Similarly,
v (Sq'ks’ 4+ Sq’Sq'k’) = S¢’Sq'y: ® Wi + Sq'ys @ WL,
satisfies a relation in Im(»,"); namely, we have
" (Wik') = 8q°8q'vs ® Wi + Sq'v1 @ Wl ,

so that » [Sq'ks’ + (S9°Sq" + W3)ki'] = 0 and, hence,

(6.2)

(6.4) ki':8q'ks + (Sq°Sq' + Wa)ki® = 0.
In the same way, one easily shows that
(6.5) k*:8q'ks’ + (8¢° + Wk = 0.

We can thus write a table for the k-invariants.
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TABLE OF K-INVARIANTS FOR BSOg, 3 — BSO (1N piMENsioNs < 8k 4+ 8)
bt = Wera, k' = Was
k*:(Sq” + Wo)Sq'k' =0, k’:(Sq* + Wok' =0
ks’ :Sa'ke' + [(8q” + Wi + W2')Sq" + Sq' (WaSq)Ikt' = 0
kP (Sq® + Wk = 0; k' :Sq'%ks + (SqSqw + Wik’ = 0
ki':8q'k’ + (Sq® + Wo)k® = 0
In a similar way, one obtains the following table.

TABLE OF k-INVARIANTS FOR BSOg7 — BSO (1IN pmMENsions < 8k + 12)
bt = Was .
F’: (8q" + W2)Sa'ks' = 0;  k:":[(8q" + WaSq® + W.)Sq' + 8q'(WaSq*) k' = 0
ki (SqE 4+ W)k’ = 0; k':Sq'ks” + (Sq° + Wo)Sq'k® = 0
ki':8q'k’ 4+ (89" + W)kt = 0
We now prove the following theorem.

TrEOREM 6.6. If n = 0 mod 4 and n s not a power of two, then RP™ immerses
in R

Proof. We give only the proof for the case n = 0 mod 8, the other case being

entirely analogous.

By (1.1) of [2], it suffices to show that (2n — 4)¢ has (n + 1)-sections.
Therefore we have the problem of whether f:RP" — BSO(2n — 4) lifts to
BSO(n — 5), where f is the classifying map for = (2nn— 4)£. We have then

RP"

B8O, 5 — E; — Ey — Ey — BSOsp—4 ,

and we need to lift f three stages. The k-invariants for this problem are those of
table 1. The Stiefel-Whitney classes of 5 are such that Wi(n) = Wa(y) =
Wos(n) = Wa(n) = 0and Wa(n) 5 0. Therefore the k'-invariants of » are zero,
and we can lift f to fo: RP™ — E,. The k-invariants are k’(n) € H" *(RP™),
k'(n) € H"(RP™), and k;’(y) € H"(RP™"), and they are defined modulo the
indeterminacy which is {(0, 2", 0), (0, 0, z")}. Therefore k,*(5) has zero in-
determinacy and is in fact zero, since Sq’k,*(n) = 0 (because of the defining rela-
tion for k;*), but Sq’z" " 5 0. Therefore, we may choose appropriately f, , such
that f; lifts to fi: RP" — E; .
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Now k*(n) € H"'(RP™) and k.’(y) € H"(RP") modulo the indeterminacy
(0, ™). Thus k*(5) has zero indeterminacy. Now 7 is induced from the bundle
(2n — 4)¢ over RP™"'. If g is the classifying map for this bundle, it is clear that
g lifts to g:: RP™™ — E; . However, in RP™", k,*((2n — 4)&) satisfies the defin-
ing relation for k‘; and thus Sq’k*((2n — 4)¢) = 0 in H"™(RP"""), but
Sq*z" " # 0, Hence k,°((2n — 4)¢) = 0 and, by naturality, &’(n) = 0. There-
fore a proper choice of f; lifts to fo: RP" — E, . Here we meet a single obstruction
k'(n) € H*(RP™) modulo Sq'z" " = z", and thus a proper choice of f; lifts to
fs:RP" — E; . But this implies then that f lifts to f: RP" — BSO,_; , and so the
proof is complete.

Remark. It is clear from the preceding proof that, if # is an m-plane bundle over
RP™ withm > n + 1 and n = 0 mod 4, such that Wi(4) = 0 fors =1, 2,
n — 4,n,and Wy(n) # 0, then, over RP", o’ (theinduce( bundle) hasm — n + 5
sections.

7. Geometric dimension of virtual bundles

Let X be a finite CW-complex. We novg\lj"ecall briefly the construction of the
Groethendieck-Atiyah-Hirzebruch group KO(X).

Let &(X) denote the set of equivalence classes of real vector bundles over X,
two bundles being equivalent in the sense of fibre bundle equivalence. The
Whitney sum gives §(X) the structure of an abelian monoid. Let F(X) be the
free abelian group with generators the elements in §(X). Let R(X) be the sub-
group of F(X) generated by the elements r = {£ @ 7} — {§ — {7}, where ® is
the Whitney sum. Then KO(X) = F(X)/R(X), and we have a natural mapping
0:8(X) — KO(X). The mapping from &(X) to the natural numbers which as-
signs to a bundle its d1mens1on induces d: KO(X) — Z and we define KO(X ) =
Ker d. The elements of KO(X ) are called virtual bundles. The group KO(X ) has
a natural filtration by skeletons Let X? be the ¢g-skeleton of X. Then the inclusion
X?* C X induces KO(X) — KO(XQ), and we denote by K0q+1(X) the kernel of
this map; its elements are said to hgl//e Sfiltration q + 1.

Following Atiyah (2], given x € KO(X), we define the geometric dimension of
z, gd(x), to be the least integer n such that x + = is in the image of 6, andthe
codimension of z, codim (x) by codim (z) = dim X — gd(x).

Irll\’ghis section we study the relation between filtration and geometric dimension
in KO(X). -

Recall that to every x € KO(X) there corresponds a unique, up to homotopy,
map ¢,:X — BO. If € KO,(X), then the composition X — X — BO is
null-homotopiec.

Let BO(q) be the space obtained from BO by killing its first ¢ — 1 homotopy
groups. We have a sequence of fibrations

(7.1) BO(q — 1) — BO(q) — --- — BO(2) — BO(1) = BO,

and we denote by hy ,:BO(¢') — BO(q) the composition of the above maps.
Note that BO(2) = BSO.
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It is clear that # € KO,(X) if and only if ¢.:X — BO can be lifted to
&.: X — BO(gq). Therefore we may consider the diagram

BSO,

(7.2) l
BSO(q) P22, BSO,

and since our methods are limited to determining a modified Postnikov tower for
BSO,, — BSO in dimensions <2n — 2, we may raise the following problem.

ProBLEM 7.3. Gwen iniegers n and t, with n < t < 2n — 2, find the least in-
teger ¢ = q(n, t) such that hyo: BO(q) — B8O restricted to the t-skeleton of BO(q)
admaits a lifting to BSO,

It is clear that if dim X < ¢andz € KO (X) with ¢ > ¢(n,t), then gd(z) < n.

We will now determine an upper bound for ¢g(n, t).

R. Stong has determined the ecohomology over Z, of BO(q) in [13]. Since his
results are basic for what follows, we will recall here his results.

Let ¢ = 0,1, 2, 4 mod 8, and let D, be the algebra

(7.4) D, = H*(K(1,(BO), q)/1(Qq¥a),
where

Sq® if ¢=0,1 mod8

Q, =<S¢" if ¢g=2 mod8

Sq° if ¢g=4 modS8§

and I(Qzy,) denotes the ideal generated by @z, -

Let ¢(q) denote the number of integers s such that 1 < s < gand s =0, 1,
2, 4 mod 8, and let a(n) be the number of ones in the dyadic expansion of n.
Then we set

(7.5) By = Zofhei™0: | (i — 1) + 1> o(q)],

the polynomial algebra on generators hy 1" 0; , where the 6; € H*(BO) are certain
classes such that 6; = W; modulo decomposable elements and are defined in [13],
page 528.

Stone’s TrEOREM 7.6. If ¢ = 0, 1, 2, 4 mod 8, then as an algebra,
H*(BO(¢q)) =D, ® E,.
Stong also studied the action of 4, in H*(BO(q)) and he obtained (see [13],
p. 543) the following.

In the subalgebra that corresponds to D,
under the tsomorphism (7.6), every element
s obtained from the tmage of v, by the action
of Az, cup products and sums.

(7.7)
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From (7.7) it follows easily that, if ¢ > ¢, and if we identify H*(BO(q))
with D, ® FE, and let (D,) denote the ideal generated by D, , then

(7.8) (Dy) les in the kernel of hg o™
We now suppose that & is odd and let 2" < ¢ < 2". Then we consider
(7.9) E,—~E,_, — ---— FE — BSO

to be a modified Postnikov tower for BSO, — BSO in dimensions <t < 2n — 1.
From (3.4) we know s <t — n — 1. Let K™ denote the set of k*-invariants
of (7.9). Thus K" < H*(E,), and

r € K™ implies dim z < ¢,

(7.10) for ¢=0,1,---,s—1.
Let ¢1 be the least integer such that
(711) in H*(BO(qv)), he*0; = 0, for
- n+1<i<t Notice that

r = o(q).
Now consider the diagram
E,

I

BO(g) &5 BSO,

where fi = hg, 5. Then K' C (D,,). Let ¢, be the integer following ¢, with
¢ =0,1,2,4mod 8. Then, by (7.8), hg,,o; (K*) = 0 and, hence, in the diagram

BO(Q2) E]_

]

BO(q) 5 BSO

we can find f»: BO(¢;) — E:, making the diagram commutative.

We now apply the same argument to 4 , and in this way we obtain a sequence
of successive integers, congruent to 0, 1, 2, 4 modulo 8, ¢, ¢z, -+, ¢s41, and
maps fiy1 . BO(giy1) — Ei such that pefess = fihgy,y.q - Since

GJasy1,0 :BO(gs41) — BSO

is the composition hg,,,,¢,°" * *9hgy,0:%h4,,2, We have found a lifting of hg, ;2 ;
namely, fo11:BO(qs11) — E, .

Therefore, if we restrict to the ¢-skeleton Y* of BO(g.41), we have obtained a
lifting of ¥* — BSO to Y* — BSO, . We now need to determine the integer
¢s+1 - We have that o(g.41) = ¢(q1) + s < r 4+ s, so we need only determine s.
The integer s is the smallest integer such that F.(V,) is i-connected, where
F.(V,) is the space corresponding to F, in (5.4) for an A,-free resolution of
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H*(V.,) through dimension ¢. Proposition (5.4) gives us a value for s, but we will
use the following stronger result.

Prorostimion 7.12. The values of t such that Fs(V,) s (t — 1)-connected modulo
p-torsion (p > 2) are given by the following table

n=0 n=1 n=2 n=3
s=0 n 425 — 1(s > 0) n + 2s n+2s—1s >0 n 4+ 2s
s=1 n+ 28 — 2 n+2s—1 n—+2s—1 n -+ 2s
s =2 n 4+ 2s — 2 n+2s — 2 n+2s—1 n+2s—1
s =3 n+2s —3 n + 2s n+2 —1 n 4+ 2s — 2

where the congruences are taken modulo 4.

Proof. Using Theorem 5 (p. 65) of [1], it is clear that one has to verify the
proposition for £ — s < 8. This involves a lengthy, but not hard computation;
or one can check with the tables of [9] which carry out such a computation.

Set now

r(n, t) = min {p(q) | he1 8: =0 for n < i<,
(7.13) and if ¢(nm, s) if the function given by

table (7.12), set
(7.14) s(n,t) = min {s|¢(n,s) > t. | Finally put
(7.15) p(n, t) = s(n,t) + r(n,t).
Then it is easily seen that

2p(n, t), if p(n,t) = 0mod 4

(7.16) Gsy1 =<2p(n,t) — 1, if p(n,t) =1mod4

2p(n,t) — 2, if p(n,t) =2, 3 mod 4,
and we have the following theorem.

TurorREM 7.17. An upper bound for the integer q(n, t) of (7.3) is the integer
Goiz of (7.16).

Proof of Theorem A. Observe that if 2" < t < 2™, then r(n, {) < m, and also
that p(n, t) < (t — n)/2 + & + m and, hence, ¢s11 < ¢t — n + 3 + 2m. But
m = |logs t| + 1, and thus we obtain the estimate

q5+1_<_2i10g2t[+t—n—l—5.

Theorem A follows if we set ¢ = t — n + 2]|logat| + 5, as can be easily
checked.

Now the following lemma leads to a strengthened version of Theorem B.
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Levma 7.18. Given integers a, b, ¢, d with f < ¢ < 2°7, then the functions r(n, t)
and s(n, t) of (7.13) and (7.14) respectively take the same value for all pairs (n,t),
where

n=2:s4c—0b
t=s2+¢
and where a(z) = a.

Proof. Because of (7.5), hg,”, 6; = 0, provided that (i — 1) + 1 < o(q).
But now it is easy to see that the conditions of (7.18) imply that, for 7 = 1,
b

a2 +ec—b+j—1)=a(s2°+c—b+j—1),

whenever a(s) = a(s') = a, and that this implies clearly the result for the fune-
tion r(n, t).
Now the result for the function s(n, t) follows from (7.12).

TaeoreM 7.19. Given integers a, b, ¢, d, with b < ¢ < 2 an upper bound for
the integer q(n, t) of (7.3) for all pairs (n,t) where

n=2s4c—5b
t———de—l—c

and where a(s) = a is the integer q..1 obtained from (7.13) by taking n = s2° +
c— bt = 502° + ¢ where sy is the smallest integer with a(s) = a.

This result implies clearly Theorem B. But as can be seen, is complicated to
state.

We believe that theorems (7.17) and (7.19) are best possible for some values of
n and t.
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