
THE GEOMETRIC DIMENSION OF REAL STABLE VECTOR 
BUNDLES 

BY s. GITLER AND M. MAHOWALD* 

Introduction 

Let X be a finite t-dimensional CW-complex, and let~ be an m-plane bundle 
over X, with m > t. We know from the classification theorem for plane bundles: 
(see [12), 19.3), that a lower bound for the number of sections that ~ admits is: 
m - t. We will say that codim a) z k, if there exists a bundler, of dimension 
t - k with~ = r, EB (m + t - k). Therefore the codimension is a nonnegative, 
function, for bundles of dimension m > t. 

Suppose ~ is trivial over the q-skeleton of X, then it seems reasona~le that i; 
should have positive codimension. The main object of this paper is to prove the, 
following results. 

THEOREM A. Let I log2 t I denote the integral part of log2 t. If ~ is trivial over the 
(q - l)-skeleton of X, then 

codim a) z min (q - 2 I log2 t I - 5, I t/2 I - 1). 

A sharper but more complicated result is actually proved and is stated as 
Theorem 7.17. 

Consider now the following problem. Given a fixed integer k and a complex 
X of dimension t, find the least q such that any bundle ~ over X trivial over the 
q-skeleton of X has codim W z k. 

If we apply TheoremA directly, we see that q increases as t increases. 
The next theorem, then, should be viewed as a stability result. Let a(m) = 

the number of ones in the dyadic expansion of m. 

THEOREM B. Given integers a, k and n with k :::; n, there exists an integer q = 
q(a, k, n) such that if dimension Xis t = s2' + n, where a(s) = a, and n :::; 2'- 1, 

any stable bundle ~ trivial over the q-skeleton of X has codim ( ~) z k. 

Again a much sharper result than Theorem B is obtained and is stated as 
Theorem 7.19. 

If we let X = St, in Theorem A we obtain the following result of Barrat and 
Mahowald [4], 

COROLLARY C. If ~ is a (t + l)-plane bundle over St, then codim (0 ~ 
i t/2 I - 1, if t > rn. 

The results of (7.17) are actually needed for t = 20. Corollary C implies 
strong results about the metastable homotopy of O(n) and these implications 
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. are given in [4]. Another consequence of Theorem A is the following result in 
differential topology. 

COROLLARY D. If Mt is a differentiable ~anifold such that the stable tangent 
bundle is trivial over the ( q - 1 )-skeleton, then M 1 immerses in R2t+ 5-<q- 2110g 2tll. 

This result should be compared with the beautiful result of M. Hirsch [7 l 
which says that if Mt is a 'll'-manifold, then Mt immerses in t + 1. For such 
manifolds our result gives only Mt immerses in R3121+1. 

The method used in proving Theorems A and B is a sharper version of the. 
modified Postnikov tower introduced in [8]. That presentation lacked sufficient 
generality for our purposes, and since a part of [8] has to be slightly modified to 
get this generality, we give a short development of it here. The main new result 
in this direction is Theorem (2.11), and this result is the key to our applications. 
While we have all the machinery set up for obstruction theory we will prove 
the following theorem. 

THEOREM E. Real projective space RPn for n = 0 mod 4 and n ,= 2' immerses 
in R2n-5. 

This result uses only the method of this paper and in no way involves Theorem 
AorB. 

1. The transgression in a fibre space 

Let F ~ T -LB be a fibre space, and set b = p(F). Denote by p: (T, F) -
(B, b) the relative projection, and consider the map of the cohomology sequences 
induced by p, 

... - Hk-l(T) ~ ~- 1(F) ~ Hk(T, F) -4 Hk(T) - .•• 

r p* r p* r p* 

••• - ~- 1(B) ~ Hk-l(b) ~ Hk(B, b) ~ Hk(B) - •••. 

Define, fork > 0, 

(1.1) 

and 

(1.2) 

The elements of Tk-1(F) c Hk- 1(F) are called transgressive, those of i::/(B) c 
H\B) are called suspension elements. 

The map j/p*- 18 induces the transgression 

(1.3) 

and the mapping l,- 1p*j/- 1 induces the suspension 

(1.4) u:T,\B) - Tk-1(F)/i*Hk-1(T). 
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u and r together yield an isomorphism, 

(1.5) 

From the diagram it is easy to identify ·1/(B)d as Ker p*; thus 

(1.6) Tk-I(F)/i*HH(E) :::: (Ker p* /j/ (Ker p*) l. 
2. Totally transgressive fibrations 

By a q-totally transgressive fibration we will understand a fibre space F ~ 
T ..E, B such that, with Z2-coefficients, 
(2.1) H*(F) forms a simple system of coefficients over Band fork ::; q; 
(2.2) p*:H\B) - Hk(T) is onto; and 
(2.3) Tk-1(F) = Hk-l(F). 

The following are examples of q-totally transgressive fibrations. Let C = 
K(Z 2 , q); then fJC - PC - C is 2q-totally transgressjve. More generally, if 
X is ( q - l )-connected, then fJX = PX - X is 2q-totally transgressive. 

More important for our purposes is the fibration 

(2.4) 

where BSOm is the classifying space for orientable m-plane bundles and Vn,k 

is the Stiefel mamfold of k frames inn-space. This fibration is 2(n - k)-totally 
transgressive according to Borel (see [5], (18.3)). 

First we show what the kernel of p* :H*(B) - H*(T) is, in a q-totally trans-
gressive fibration. • 

We recall the notion of an S-sequence considered by Massey and Peterson 
(in [10], p. 56). Let S be a graded algebra over Z2. If s1 , • • • , Bn, • • • , are 
elements of S, ( s1 , • • • , Bn) will denote the ideal generated by 81 , • • • , Bn . The 
sequence 81, • • • , Bn, • • • is called an (S, q)-sequence if Bi+l is not a zero divisor 
inS/(s 1, ···, si) in dimensions ::;q,fori = 0, 1, •·· ,n, ···; that is, if there 
is no x E S such that XBi+1 E ( 81 , • • • , Bi), where deg x + deg Bi+1 ::; q. The 
ideal (s1, • • • , Bn, • • ·) associated with an (S, q)-sequence will be called a 
q-Borel ideal. 

PROPOSITION 2.5. Suppose F ~ T ..E, B is a q-totally transgressive fibration, 
where Fis (n - 1)-connected and q ::; 2n - l. Let X = xn+l + • • • + Xq be 
a subspace of H*(B) representing r( "E,f::,~H\F) ). Then (X) is a q-Borel ideal 
and Ker p* = (X) in dimensions ::::;q. 

Proof. Consider the spectral sequence of the fibration. We have E/•• = 
H'(B) ® H 8 (F). Let us restrict to the triangle r + s::::; q. Then since F is 
(n _:_ 1)-connected and Hk- 1(F) is transgressive for k ::; q, we obtain En+i"·• 
= Et•• if r > 0 and En+i°'q c Ez°'q. 

Therefore in dimensions ::;q we have 

En+l = H*(B) ® (H 0(F) + Ll=~ H\F) + En+1°'q). 
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Now we have En+i°'q = Eq+1°'q. Therefore the differential dn+l is determined by 
its value dn+i(Hn(F)) = xn+l. Let X E xn+l and y E Hp(B), with n + I + 
p ::;; q. Then xy ~ 0. For, if xy = 0, we have dn+1(x) = x; so dn+1(yx) = 0 
and yx E En+? ,n is a cocycle under dn+1 and, therefore, a dm cocycle for m ~ 
n + I. Moreover, yx survives to E,,;,"·8; but, by (2.2), E 00r,• = 0 ifs > 0 and 
r + s ::;; q. 

It follows that 

En+2 = H*(B)/(Xn+l) ® (H 0(F) + IJ::::~+1 H\F) + En+20,q). 

We apply the same arguments successively, as above, until we reach 

Eq+l = H*(B)/(Xn+l + · · · + Xq) ® (H 0(F) + Eq+lO,q). 

Now Eq+i°'q is totally transgressive, since i*:Hq(T) - Hq(F) is trivial. There­
fore, 

Eq+2 = H*{B)/(Xn+l + • • • + Xq) = Eoo, 

with (Xn+i + • • • + Xq) a q-Borel ideal, and (2.5) follows. 
We have also the following proposition. 

PROPOSITION 2.6. Let F be (n - !)-connected and B simply connected and 
F - T - B a fibre space such that 

(a) Tk(F) = Hk(F) fork ::;; q - 2, where q ::;; 2n - 2. 
(b) Let X = xn+i + · • • + xq-i, where XH 1 is a subspace of HH1(B) 

representing r(Hk(F) ), and suppose that (X) is a (q + I)-Borel ideal. Then 

Tq-1(F) = Hq-1(F). 

Proof. Consider the spectral sequence of the fibre space. We have Hq-1(F) = 
Etq-l::) • · • ::J Eq-n+i°•q-i = E/·q-l = Tq-1(F). Therefore we need to show that 

dk:EkO,q-l - E/·q-k 

is trivial for 2 ::; k ::;; q - n. 
Consider k = q - n. Then E/-n,o = • · • = En+/-n,o and, by (a), E/•n = 

= En+1°'n; so we have a commutative diagram 

Moreover, En+lq+l,O = Hq+1(B). Therefore, by (b), dn+1(En+1q-n,n) = 
xn+lnq-n(B), and µ IB an isomorphism. Since q - n < n, dq___,,.:Eq-nO,q-l -
Eq-nq-n,n must be trivial, and En+2q+l,O = Hq+l(B)/Xn+lnq-n(B). 

Now make the following induction hypothesis: for 3 ::; k ::;; q - n, 

I) E O,q-1 _ E O q-1 _ _ E O,q-1 _ Tq-l(F) 
k - k+l ' - • • • - q ,.... , 
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and, for 3 ::; k ::; q - n, 

2) Eq--k+2q+I,O = Hq+I(B)/(Xn+Inq-n(B) + ... + xq-k+IH"(B)) 

Consider then 

dk-1:Ek-i°'q-I - Ek_/-l,q~k+I. 

W h E k-1,0 _ E k-1,0 _ _ E k-1,0 d E O,q-k+I _ E O,q-k+I __ e ave 2 - a - • • • - q-k+2 an 2 - a 
= Eq-k+tq-k+I by (a). Therefore we have a commutative diagram, 

E k-1,0 i0, E. O,q-k+I µ E k-1,q-k+I 
q-k+2 ,c,, q-k+2 - q-k+2 

11 ® d,rk-t-2 1 drw 

E k-1,0 i0, E q-k+2,0 IJ-0 E q+I,0 q-k+2 ,c,, ~k+2 '---'? q-k+2 • 

Moreover,µ is an epimorphism and, by (b) and (2), µ0(1 ® dq--1,,+2) is a mono­
morphism; and therefore µ is an isomorphism. 

Now 3 ::; k ::; q - n, so k ::; n; but q - k 2:: n, hence dk-I is trivial and, by 
(b), Eq-k+aq+i,o = Hq+1(B)/(X)q+i, and the induction is complete. 

Given a cohomology class x E Hn ( Y), a representation of this class is a mapping 
f: Y -K(Z 2, n) such thatf*'Y = x, where'}' E Hn(K(Z 2, n)) is the fundamental 
class. More generally, it is a representation of a set of classes x1, • • • , Xk, where 
x, E Hn;(Y) is a mapping f:X - C, where C = ID==1 K(Z2, n;) such that 
J*'Yi = x;, for i = 1, 2, • • • , k, and where 'Yi is the image in H*(C) of the funda­
mental class of K(Z2, n;). 

Let now F ~ T -LB be a q-totally transgressive fibration, where Fis (n - !)­
connected and Bis simply connected. We assume that q ::; 2n. Let y,, i = I, 
• • • , m be a set of generators over the Steenrod algebra A 2 , of H*(F) in dimen­
sions ::;q - I. Let x .. be a representative of TY, in H*(B) and letf:B - C be a 
representation of the set { x .. }. Then f induces a principal fibre space nc ~ E l!4 B 
and we have the following diagram: 

(2.7) 

.,,nc 
//// 1i1 

/ 
V/ E 

/</ }//~ lP1 

F., ~ T / ~ B ~ C 

Since fp is null-homotopic, we can lift p to a mapping h: T - E such that 
v = h/F:F - nC is a representation of the set {y .. }. We now make (T, F) -
(E, nc) into a fibre pair with fibre F1 . 

PROPOSITION 2.8. In dimensions ::;q, we have that 

Ker p* = Ker p/ 
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and 

Ker p* = Ker p/. 

Proof. From (2.7), it is clear that Ker p/ c Ker p*. Now since Fi+ TL B 
is q-totally transgressive, we may apply (2.5). With the notation of (2.5), we 
have that Ker p* = (X) is a q-Borel ideal. Moreover, Ker p* is an algebra over 
A2(B), in the sense of §1 of [6], and it has, as a system of generators over A2(B), 
the elements X1, • • • , Xm. But Xi = J*"'I;, and thus p/x; = p/J*"'I; = 0 implies 
Ker p* c Ker p/. Now the second part follows since Ker p* is a q-Borel ideal. 

Consider now, from (2.7), 

p* E ~ E 

1/ 1P1 
T P B , 

where p*E is the induced principal fibre space over T. Because of the existence of 
h, p*E is homeomorphic to no X T, and we can thus form a commutative dia­
gram, 

no X T ~ E 

lq/lP1 

T P B 
(2.9) 

And we can change this diagram up to homotopy, so that both P and pare inclu­
sions and (E, no X T) - (B, T) is a relative fibre space with fibre no. 

PROPOSITION 2.10. In dimensions -5,q, we have that p* is a monomorphism. 

Proof. We have that (B, T) and no are both (n - 1)-connected, so that we 
have the Serre-exact sequence, 

• • • - Hm(B, T) -4 Hm(E) - Hm(nC X R) - • • • 

in dimensions -5, 2n - 1. 
Now suppose x E (Ker p* n Ker h*)m, where m -5, q. Then, there exists 

y E Hm(B, T) with j*y = x. But j* is the composition Hm(B, T) ~ Hm(B) E4 
Hm(E), so that p/(k*y) = x. Now h*x = h*p/(k*y) = p*(k*y) = 0. But, by 
(2.8), we have p/(k*y) = x = 0. 

We may now state the main theorem of this section. 

THEOREM 2.11. Suppose that F i+ T L B is a q-totally transgressive fibration, 
where B is simply connected, F is ( n - 1 )-connected and q -5, 2n - 1. Then the 

associated fibre space F1 - T 3:+ Eis also q-totally transgressive. 

Proof. First note that in (2.7) we have that F1 - F ~ no is (q - 1)-totally 
transgressive, since v* is an epimorphism in dimensions -5,q - 1, by construction, 
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and both F and QC are (n - 1)-connected. Therefore we have exact sequences 

o - Hk-1(F1) - H\nc) ~ Hk(F) - o, 
for k ~ q - 1, and 

0 - Hq-\Fi) - Hq(nC) - Hq(F) - • • • . 

Using the cohomology sequence of the pair (QC, F), we obtain 

(2.12) T:Hk-\F1) "'Hk(nC, F), for k ~ q. 

Again referring to diagram (2.7), we next show that i1 :nc- E induces a homo­
morphism 

(2.13) 

fork ~ q, where j 2 :E - (E, *), is the inclusion. From i1v = hi, it follows that 
v*ii*(Ker h*) = 0; so i/(Ker h*) c H*(nC, F). Moreover, in the diagram 

Hk(E, *) ~ Hk( T, F1) 

1 I 
i1 l i* 

Hk(nc, *) ~ Hk(F, F1), 

we have that ii* is an isomorphism fork < 2n. Therefore, h*(x) = 0 implies 
ii*x = 0, and, therefore, i/(J/ Ker h*) = 0. Now (2.12) and (2.13) give a com­
mutative diagram, 

(2.14) 1'* i1 

fork ~ q, where a is the inclusion. 
We first prove that F1 - T - E satisfies, fork ~ q, 

(c) h*:H\E) - H\T) is onto, and 
(d) Hk-1(F1) "'Tk-1(F1), 

The assertion ( c) follows clearly from the hypothesis and the fact that 
p = p1h. 

To prove ( d) it suffices to show that ii* in (2.14) is an epimorphism, for 

k ~ q. The fibrations QC - E ~Band F - T - B give a commutative diagram, 

Hk- 1(nC) 2-+ (Ker p//Ji*(Ker ih*))k 

(2.15) 

Hk-l(F) T (K *1· *(K -*)) ~ er p J1 er p , 
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where the vertical isomorphism follows from (2.8) and the horizontal one, from 
the hypothesis and c1.5). Now take x E Hk- 1(nC, F); then its image, 
y E Hk- 1(Q.C), isnon-zeroif xis non-zero. Now v*y = 0, so r'(y) = 0, by (2.15). 
But by (1.5) we have 

.,., 
Hk- 1(nC)/i/Hk- 1(E) '.:::'. (Ker p/jji*(Ker p/))\ 

and therefore y = ii*z, where z E Hk- 1(E). If h*z = 0, we are finished, for then 
i/[z] = x. However, if h*z ~ 0, choose w E Hk- 1(B), with p*w = h*z; so 
h*(z - p/w) = 0 and i/(z - p/w) = i/z = y, and thus i/[z - p/w] = x. 
Therefore ( d) is satisfied. 

In order to prove (2.11) it suffices to show that 

(2.16) Tq-l(F1) = Hq-l(F1). 

Notice that condition (d) is condition (a) of (2.6). Let X = xn+i + --- + 
xq-I be as in (2.6) for the fibre space F1 - T - E. Then we need to verify that 
(X) is a (q - 1)-BorelidealinH*(E). 

Now notice that H*(nC X T) is an A2(B)-algebra. Take a basis W1, • • • , w, 
of X with dim Wi :::;; dim w,+1. Then in (2.9) we have, since dim W; :::;; q - 1 :::; 
2n - 1, 

(2.17) 

where a;; EA X 1 is non-zero for at least onej, flii E A ® H+(B), and H+(B) 
denotes the positive elements of H*(B). Moreover, the elements v*wi and 
L a;/Yi = ii*wi are linearly independent in H*(nC X T) and H*(nC) respec­
tively because of (2.10) and (2.12). Therefore the elements i/w; satisfy no rela­
tion 

t, E H*(T) 

in E*(nC) ® H*(T), which is a free A2(B)-module in dimensions :::;;q + 1 on 
generators 'Yi X 1, i = 1, • • • , m. 

Now we cannot have a relation 

(2.18) in dimensions :::;;q + 1, 

where thew; all have the same dimension p, because, if we apply (2.17), we ob­
tain 

v*( I:t.ai. a;w;) = L~=l a;( L1=1 (a;; + {'J;;)'Y;) = O; 

and, since {'J;; E A ® H+(B), this implies 

Also, we cannot have a relation 

(2.19) 

where dim w; = p and dim wk < p for all k = 1, 2, • • • , t, because, again upon 
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application of (2.17), we would obtain 

I:;~ i=l a,(a; 3 + {3;3)'Y3 = Lk'.!1 i=l bk(aki + /3kihi 

or 

Ll=1 ai(aii + /3,ihi = Lk=1 bk(CY.kf + /3kihi, 

for j = 1, • • • , m. Now dim <Xki < dim a; 3 for each k and each i, and 

{3jk E A ® H+(B); 
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so we cannot have a relation among the ai{Y i and the f1k{Y i . Therefore we would 
obtain 

dim wi = p, 

which contradicts the previous statement (2.18) unless the a; = 0. 
Now clearly a1w1 = 0 implies a1 = 0, and (2.18) and (2.19) carry the induc­

tion to show (X) is a (q + 1)-Borel ideal. Thus (2.16) holds and the proof of 
(2.11) is complete. 

COROLLARY 2.20. Let F ~ T -L B be a q-totally transgressive fibration, where F is 
( n - l )-connected, B is simply connected and q :'.S: 2n - I. Then there exists a 
sequence of principal fibrations 

--+ Ek A Ek-1 --+ • • • --+ E1 A Eo = B 

with QC\, the fibre of Pk, a product of K(Zz , m), m :'.S: q - l, and fibre maps 
hk: T--+ Ek with fibres Fk, where Fo = F, ho = p which are q-totally transgressive. 
Moreover pkhk = hk-1 and Fk--+ A-1--+ nck are (q - l)-totally transgressivefibra­
tions. 

3. Modified Postnikov towers 

Let F ~ T -L B be a fibre space. Then a modified Postnikov tower through 
dimension t of this fibre space, in short a t-M.P.T. (see [8], §2), is a sequence of 
fibre spaces, 

and maps p;: T--+ E; such that 
(3.1) q,p; = Pi-1; 
(3.2) the fibre of q;, C; is a product of Eilenberg-Maclane spaces K(II, k), 

where II = Z or ZP, where pis a prime and k < t; and 
(3.3) the fibre of p,;,, F,;, is t(i)-connected, where t(n) 2::: t - l, and if 

i:F;+ 1 c F,, then i*:H\Fi) --+ Hk(F;+1) is trivial fork :'.S: t. 
Let [X, Y] denote the set of homotopy classes of maps X--+ Y. It follows from 

(3.1), (3.2) and (3.3) that if Xis any CW-complex of dimensions :'.S:t - 1, then 
[X, T] "' [X, En]; and if dimension of X is t, then [X, T] p.*) [X, En] is onto. 

Since the fibre space Cm--+ Em ..!l!!!:.,, Em-1 is a principal fibre space, it is classified 
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by a map fm:Em-I -t Dm, where Cm = flDm. If Dm = IIK(Ilj, j), let "/jm E 
Hi(Dm, Ili) be the image of the fundamental class of K(IIi ,j). The k-invariants 
of the fibration Cm -t Em -t Em-I is the set of cohomology classes {kim}, where 
kim = fm*'Yim· A mapping g:X -t Em-I can be lifted to Em if and only if g*kim = 0, 
for allj. 

Now we show that under special circumstances a t-M.P.T. can be constructed 
in a manner slightly different from that given in [8]. 

Let us take Z2 as coefficients and assume that in the fibre space F ~ T ~ B 
the fibreF is (n - 1 )-connected and that H*(F) is free over the algebra generated 
by Sq0 and SqI in dimensions :S: t - l :S: 2n - 2. 

THEOREM 3.4. Suppose F ~ T ~ B is t-totally transgressive, then it has a t­
rnodified P ostnikov tower. 

Proof .. Consider the sequence of fibre spaces 

(3.5) 

constructed in Theorem (2.20). Then we have that Ck - Ek~ Ek-I is a principal 
fibre space, with Ck a product of Eilenberg-Maclane spaces K(Z 2 , m), with 

m :S: t - l. Moreover, we have fibre spaces Fk -t T ~ Ek and 

which are respectively t-totally transgressive and (t - 1)-totally transgressive. 
In particular we have exact sequences 

0 - Hq-I(Fk) ~ Hq(Ck-1) Vk* Hq(Fk-I) - 0, 

through dimension t - l. 
:Moreover, vk was chosen so that 

0 -t IIn1/F1c+I) -t IInk(A) ~ IInk(Ck+I) -t 0, 

where nk is the least integer n :S: nk :S: t - l, with IInk(Fk) ;;6 0. Therefore, 
starting with F0 = F and no = n, we have a sequence of proper inclusions 

and since IIn(F) is finite by hypothesis, this sequence must terminate in zero; 
i.e., there exists kI with nk 1 ~ n + l. If we continue this process, we obtain 
an integer m, so that (3.5) is at-modified Postnikov tower of F ~ T ~ B. 

4. Determination of the k-invariants 

In this section we recall the connection between successive k-invariants in a 
modified Postnikov tower. We assume that all the cohomology groups are taken 
with Zrcoeflicients. 

Let w:B -t C be a map and p:E -t B, the principal fibre space induced by w 
with fibre QC. A mapping f: X -t B can be lifted to a mapping g: X -t E if and 
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only if wf is null-homotopic. Now such a g is not unique, in fact, given any map 
h:X-+ QC, we obtain another lifting, g' :X-+ E, as the composite 

( 4.1) X ~ X X X hXg QC X E ..!::,, E, 

where dis the diagonal mapping andµ is the multiplication given by the principal 
structure. Moreover, up to homotopy, all linings X-+ E can be obtained from g 
as we vary h in the homotopy classes of maps X-+ QC, (see [11], (2.9) ). 

Now let w1 , • • • , Wm be classes in H*(B), with dim Wk = qk + l, and let 
w:B-+ C be a representation of this set of classes. Form the associated principal 
fibre space p:E-+ B. Then a mappingf:X-+ B lifts to E if and only if fwk = 0, 
fork = l, • • • , m. Let y E Hq(E), where q < 2 min (qk), Then, as we vary the 
liftings g: X -+ E off: X -+ B, we obtain a set of classes g * y in Hq ( X). We denote 
this set byif>(y,f). Thusif>(y,f) C Hq(X). We begin by determining the structure 
of this set. 

Let A2(B) be the split extension algebra of A2 and H*(B) as considered in 
§1 of [6]. Since we have, QC X E ~EL B, H*(E) and H*(QC XE) are A 2-(B)­
modules. Consider the mapping µ*:H*(E) -+ H*(QC XE); then we can write 

(4.2) µ*(y) = 1 © y + i*y © 1 + '1:y/ © y;" 

where i: QC-+ Eis the inclusion and they/ X y/' are positive dimensional classes 
of H*(flC) and H*(E), respectively. Let 'Yk, fork = l 2, • • • , m, be the funda­
mental classes of flC, and let E*(flC) be the subspace of positive dimensional 
classes of H*(flC). Then it is easy to see that in dimensions <2 min (qk) = 
2 min (dim 'Yk), 1l*(QC) © H*(E) is a free A2(B)-module on generators 'Yi, 

• • • , 'Ym. Therefore ( 4.2) can be rewritten as 

(4.3) µ*y = I © Y + LZ'=1 (ak + (3k)'Yk, 

where the ak are elements of A2 © 1 c A 2(B) and the (3k are elements of A 2 

© 1l*(B). X 

The mappingf:X-+ B inducesf:A2(B)-+ A2(X). Let g:X-+ Ebe a lifting 
of f:X-+ Band g' = µ(h X g)d, another such Jjfting; then it follows that 

(4.4) g*(y) - g'*(y) = LZ'=1 u*ak + f(3k)h*"lk; 

butf*ak = ak. 
Therefore if we let 

( 4.5) 

be the subgroup generated by all the elements of the form akx + f*(3kx, for all 
x E Hpk(X) and k = I, • • • , m, we have obtained the following proposition. 

PROPOSITION 4.6. The set if>(y, f) is actually a coset, namely the coset of g*(y) 
in Hq(X) modulo Q(y, f), where g is any lifting X-+ E of f:X-+ B. 

Because of (4.6), Q(y, f) is called the indeterminacy of y induced by f. 

Now let us consider at-totally transgressive fibration F-+ T ..!4 B, where Fis 
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(n - 1)-connected and t:::; 2n - 1. Form, as in (2.20), the principal fibre space 

QC - E ..E, B, and let h: T - Ebe a lifting of q, with fibre Fi . Then F 1 - T ~ E 
is again t-totally transgressive. Let µ:QC XE - Ebe the multiplication in the 
principal structure. We have then the following theorem. 

THEOREM 4.7. Let x E Hq-\F1), where q < t - I; then T(x) ~ 0 and, for any 
classy E Hq(E) representing T(x), we hav 

(4.8) µ*(y) = 1 0 y + L%'=1 (ak + (3k)'Yk, 

where ak E A2 0 1, (3k E A2 0 E*(B), and the ak only depend on the coset T(x). 
Moreover 

( 4.9) 

is a relation in H* ( B), where the Wk induce the principal structure E - B. Con­
versely, given the relation (4.9), there is a unique classy E Hq(E) with h*(y) = 0 
and µ * ( y) satisfying ( 4.8). Furthermore, if we vary the elements (3k but leave the ak 

fixed in (4.9), the corresponding element y' E Hq(E) differs from y by an element 
of ker h*. 

Theorem 4.7 is the precise relation between the successive k-invariants in a 
t-modified Postnikov tower. 

Proof. Since F1 - T ~Eis t-totally transgressive, T(x) ~ 0. Now, we are in 
the situation of ( 4.3); therefore, for y E T( x), µ * ( y) has the form ( 4.8). Since F1 
is the fibre of the relative fibre space ( T, F) - (E, QC), it follows that if 
y,y' E T(x), i/y = i/y' and theak in (4.8) only depend on the coset T(x). 

To see that ( 4.9) follows, we note that we have the following commutative 
diagram 

where 7f' is the projection onto the second factor. We can make the above diagram 
into a fibre pair (E, QC XE) - (B, E) with fibre QC (all up to homotopy type). 
But both QC and (B, E) are (n - 1)-connected andµ* is a monomorphism, so 
that we obtain short exact sequences, 

0 - Hq(E) ~ Hq(QC XE)~ Hq+1(B, E) - 0. 

Let j:B - (B, E) be the inclusion. Then j*T0
1µ*(y) = 0; but this is relation 

(4.9), as can be easily checked. Now we prove the converse. Recall from (2.9), 
that we have a fibre pair (E, QC X T) - (B, T) with fibre QC. Consider the ele­
ment 
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We have the exact sequence 

----+Hq(E) ~ Hq(flC X T) ~ Hq+1(B, T) ----+ Hq+i(E)----+, 

and we now show that Tocr = 0. Let j 0:B----+ (B, T) be the inclusion; then Jo* is 
a monomorphism in dimensions S:,.t, and j/Tocr = ~(ak + f3k) •Wk = 0. There­
fore there exists y E Hq(E), with v *y = er. Thus in particular h*y = 0, and, 
hence, by (2.10), y is unique. Now v* = (1 X h)*µ*, and (1 X h)* is an iso­
morphism .B.*(QC) 0 H*(E) ----+ E*(QC) 0 H(T) in dimensions S:,.t - 1. 

' * Therefore µ y satisfies ( 4.8). 
Finally, suppose that 

LZ'=1 ( ak + (3/)wk = 0 

is another relation in H*(B). Let y' be the unique element in Hq(E) associated 
with this relation. It is clear that i/(y - y') = 0. Now, in the fibration 
F1 ----+ T----+ E, if we let x, x' be the unique classes in Hq- 1(F1), with T(x) = [y] 
and T(x') = [y'], we have i/T(x - x) = TF1(x - x') = 0, where TF1 is the 
transgression in the fibration F 1 ----+ F----+ QC; but TF1 is a monomorphism, so that 
x = x' and y - y' E Ker h*. Therefore the proof of ( 4.7) is complete. 

We finally mention how one determines the relations (4.9). Suppose that we 
have two steps 

where h; has fibre F; and p; has fibre rlC; , fort" = 1, 2. Assume that we know 
the k1-invariants, i.e., that we know µ/(k/) and, therefore, v/(k/). Take now an 
element x E Hq(F 2); then in the fibre space F2 ----+ F1 ----+ flC2, TF1 (x) = ~ak1'k . 
Therefore it follows from ( 4.9) that the element 

L;'=l ark/ E Hq+l(E1) 

can be completed to a relation of the form 

( 4.10) 

where the f3r E A 0 E*(B). Since the elements in the A2(B)-module generated 
by the k/, r = 1, • • • , m are in the Kernel of hi*, it follows from (2.10) that it 
suffices to complete L;'=1 arvi*(k/) to a relation in H*(riC1 X T). This we ac­
complish if we assume that we know the structure of H*(T) as an A2-module. 
The relation must be of the form 

( 4.11) 

where the f3r E A 0 E*(B); therefore (2.10) implies that (4.10) follows from 
( 4.11). 
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This process will be clarified when we actually apply it to the determination 
of the k-invariants for the fibration BSOsk-I -, BSO in §6. 

5. Resolutions over the Steenrod algebra 

Let F be an (n - !)-connected space, and let t be an integer such that t < 2n. 
Let 

( 5.1) 

be an Arfree resolution of H*(F) in dimensions ~t. We assume all maps in the 
resolution to be of degree zero. 

With ( 5.1) there is associated a sequence of spaces and maps 

(5.2) 

such that 

is a fibre space 

through 2n - 1 dimensions as A2-modules, with a shift in dimension of - k, and 

q/:H*(Kk) -, H*(Fk) 

is an epimorphism in dimensions ~ t. In addition, the short exact sequences 

(5.3) 

are the short exact sequences that correspond to (5.1) under Ck,..._, H*(Kk)­
Indeed, Kk is a product of Eilenberg-Maclane spaces of type K(Z 2 , m) one 

for each Argenerator of Ck and in the dimension of that generator minus k. 
It is now clear that e:Co-, H*(F) determines a mapping go:F-, Ko and Fr is 

the fibre of qo . Since qo * = e is onto, we have the short exact sequence of the fibre 
space F 1 l!2:,, F ~ Ko in dimensions ~t. Therefore, from the following diagram, 

0-, H*(F1) .:4 H*(Ko) ~ H*(F) _, 0 

hr ~or~ r = 

it follows that we can define V11:C1 -, H*(F1) of degree -1, making the left 
square commutative. In turn, V11 determines a mapping q1:F1 -, K1. Note that 
Vlr is an epimorphism, so that we can continue the process described. 

Under reasonable circumstances, in the sequence (5.2) the 2-torsion in the 
homotopy groups in dimensions ~ t is being killed. 

For instance we have the following result, essentially due to Adams (see (I], 
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Th. 3, p. 62). Let 8 be the exterior algebra generated by Sq1; then 8 c A2, and 
we have the following proposition. 

PROPOSITION 5.4. Let F be an (n - 1)-connected space such, that in dimensions 
less than or equal tot, where t < 2n, we have H*(F; Zp) = 0, for pan odd prime, 
andH*(F) is B1ree. Then F, is min(t, n - 1 + q(r))-connected, where q(r) is 
given by 

{
2r if r=O mod4 

q(r) = 2r - 1, if r = 1 mod4 

2r - 2, if r = 2, 3 mod 4. 

For our main application, we will work with V n+k,k . There is a sharper form of 
(5.4) for these, which depends on k and is given as Proposition (7.12). 

We now use the resolutions in the situation envisaged in Theorem (3.4) as fol­
lows, Given an Arfree resolution of H*(F) as in (5.1), the fibres of pk: T - Ek 

can then be chosen to be the Fk constructed from the resolution as above. This 
gives us two things. First, it tells us how rapidly they will converge to E; second, 
it gives us the information required to obtain the relations among the k;-invari­
ants which produce the km-invariants as in ( 4.7). 

Namely, assume that we know v/(k;); then look at d;+1:C,-+1 - C;. Let c be 
an A2-generator of C ;+1 , so that d;+1c = a/ ck', where a/ E A2 and the c/ are 
the A2-generators of C,. Then take v/(a/k/) and add to it in order to make a 
relation in Im(v/). This gives a relation among the k\ as in (4.7), which pro­
duces the kH1. 

6. Applications to vector bundles over real projective spaces 

To illustrate the techniques developed earlier in this paper, we will outline 
how one determines the k-invariants of V Bk+s - BSOBk-ts - BSO and give an 
application to RPn, the real projective n-space. 

First note that the homotopy of Vsk+s is finite and has only two torsion in di-­
mensions less than 16k + 6. Moreover, H*(Vsk+s) = H*(RP<XJ/RP8H 2) in the 
same range. We start by constructing a resolution of H*(RP<XJ/RP8k+2 ) in dimen­
sions ~8k + 8, 

o- H*(RP<XJ/RP8k+2) ~ Co /4--C1 #1. C2 #1. Cs. 

Using the action of A2 in H*(RP<XJ), it is not hard to show that we can take Co 
to have generators a1, of dimension 8k + 3 and ll2, of dimension 8k + 7. Now, 
C1 has three generators: b1 , of dimension 8k + 6; b2 , of dimension 8k + 7; and 
bs , of dimension 8k + 8. Moreover, d1b1 = Sq2Sq1a1 , d1b1 = Sq4a1, d1b3 = Sq1a2 + 
Sq4Sq1a1. Similarly, C2 has two generators: e1, of dimension 8k + 8, and e2 , of 
dimension 8k + 9. The differential operator is given by d2e1 = Sq2b1, d2~ = 
Sq1bs + Sq1Sq~b1 . Now, Cs has one generator f, of dimension 8k + 10, and 
dsf = Sq1~ + Sq2e1 • 
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Therefore we must have two k' -invariants, three k2-invariants, two k3-invari­
ants, and one k4-invariant. 

It is clear that the k1-invariants are 

(6.1) k/ = Wsk-i-4 and k/ = W 8k+s . 

• Now, to determine the k2-invariants, we use d1 and the Wu formulae to obtain 
the following relations: 

Sq2Sq1Wsk+4 = W2Wsk+s = (W2Sq1)Wsk+4; 

Sq4Wsk+4 = W4Ws1c+4 ; and 

Sq1Wsk+s + Sq4Sq1Wsk+4 = (W4 + W/)Wsk+s + (WaSq2 + W2Sq3)Ws1c+4. 

Therefore the relations that produce the k2-invariants are the following: 

(6.2) 
k/: (Sq2 + W2)Sq1k/ = 0; k/: (Sq4 + W4)k/ = 0; and 

k/:Sq 1k/ + [(Sq4 + w4 + w/)Sq 1 + Sq1(W2Sq2)Jk/ = o. 
Now, to determine the k3-invariants, we consider 

v/(k/) = Sq2Sq1-y1 0 1 + Sq1-y1 0 W2, 
v/(k}) = Sq4-y1 0 1 + 'Yl 0 w4' and 
v/(k}) = Sq\2 0 1 + Sq4Sq1')'1 0 1 + Sq\1 

0 (W4 + W/) + Sq1(Sq2-y, 0 lV,) 

And we use d2:C2 - Ci in order to know that 

v/(Sq 2k/) = Sq2Sq1')'1 0 W2 + Sq11'1 0 W} 

satisfies a relation in Im(v/), namely, 

v/(W2k12) = Sq2Sq\1 0 W2 + Sq1-y1 0 W2, 

so that v/( (Sq2 + W2)k/) = 0 and, hence, 

(6.3) k/: (Sq 2 + W2)k/ = 0. 

Similarly, 

v/(Sq 1k} + Sq2Sq1k/) = Sq2Sq1-y1 0 w3 + Sq1-y1 0 W2W•1 

satisfies a relation in Im(v/); namely, we have 

v/(Wak/) = Sq2Sq\1 0 Wa + Sq\1 0 W2W:1, 

so that v/[Sq 1k} + (Sq2Sq1 + W3)k/] = 0 and, hence, 

(6.4) 

In the same way, one easily shows that 

(6.5) k/:Sq 1k/ + (Sq2 + W 2)k/ = 0. 

We can thus write a table for the k-invariants. 
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TABLE OF k-INVARIANTS FOR BS0 8k+3 - BSO (IN DIMENSIONS ~ 8k + 8) 

k/ = Wsk+4, "'21 = Wsk+s 

k/: (Sq2 + W2)Sq1k/ = 0, k/: (Sq 4 + W4)k/ = 0 

k/:Sq 1"'21 + [(Sq4 + w4 + W22)Sq 1 + Sq\W2Sq 2)Jk/ = o 
k/: (Sq2 + W2)k/ = O; k23 :Sq 1k/ + (Sq2Sq1 + Ws)k/ 0 

k/:Sq 1k/ + (Sq2 + W2)k/ = 0 

In a similar way, one obtains the following table. 

TABLE OF k-INVARIANTS FOR BSOsk+7 - BSO (IN DIMENSIONS ~ 8k + 12) 

k/ = Wsk+s 

k/:(Sq~ + W2)Sq1k/ = O; "'22:[(Sq 4 + W2Sq2 + W4)Sq1 + Sq1(W2Sq2)]k/ = 0 

k/: (Sq2 + W2)k/ = O; k/:Sq 1k/ + (Sq2 + W2)Sq1k12 = 0 

k/:Sq 1k/ + (Sq2 + W2)k/ = 0 

We now prove the following theorem. 

THEOREM 6.6. If n = 0 mod 4 and n is not a power of two, then RPn immerses 
in R2n-5. 

Proof. We give only the proof for the case n = 0 mod 8, the other case being 
entirely analogous. 

By (1.1) of [2], it suffices to show that (2n - 4)~ has (n + 1)-sections. 
Therefore we have the problem of whether f:RPn - BS0(2n - 4) lifts to 
BSO(n - 5), wheref is the classifying map for 71 = (2 n- 4n. We have then 

RPn 

"' "'"' "' "'f 

"'"' BSOn-5 - Es - E2 - Eo - BS02n-4 , 

and we need to lift f three stages. The k-invariants for this problem are those of 
table 1. The Stiefel-Whitney classes of 71 are such that W1(71) = W2(71) = 
Wn-4( rJ) = Wn( 71) = 0 and W4( 71) ;a"' 0. Therefore the k1-invariants of 71 are zero, 
and we can lift f to fo:RPn - E 0 • The k2-invariants are k/(71) E Hn- 2(RPn), 
k/( 71) E Hn- 1(RPn), and k/( 71) E Hn(RPn), and they are defined modulo the 
indeterminacy which is { (0, xn-i, 0), (0, 0, xn)}. Therefore k/( 71) has zero in­
determinacy and is in fact zero, since Sq2k/( 71) = 0 (because of the defining rela­
tion for k/), but Sq2xn- 2 ;a"' 0. Therefore, we may choose appropriately Jo, such 
that Jo lifts to f1: RPn - E1 . 
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Now k/(TJ) E Hn-1(RPn) and k/(TJ) E Hn(RPn) modulo the indeterminacy 
(0, xn). Thus k/(TJ) has zero indeterminacy. Now 7/ is induced from the bundle 
(2n - 4H over RPn+i_ If g is the classifying map for this bundle, it is clear that 
g lifts to g1 :RPn+i---* E 1 . However, in RPn+i, k/( (2n - 4)l) satisfies the defin­
ing relation for k/; and thus Sq2k/( (2n - 4)0 = 0 in Hn+1(RPn+ 1), but 
Sq2xn-i ,,;, 0, Hence k/( (2n - 4)0 = 0 and, by naturality, k/( TJ) = 0. There­
fore a proper choice of j 1 lifts to j 2 : RPn ---* E 2 • Here we meet a single obstruction 
k/( TJ) E Hn(RPn) modulo Sq1xn-l = xn, and thus a proper choice of f2 lifts to 
fs:RPn---* E3 • But this implies then that f lifts to J:RPn---* BSOn-s, and so the 
proof is complete. 

Remark. It is clear from the preceding proof that, if 7/ is an 1n-plane bundle over 
RPn+i, with m > n + 1 and n = 0 mod 4, such that W;(TJ) = 0 for i = 1, 2, 
n - 4, n, and W4 ( TJ) ,,;, 0, then, over RPn, 'f/1 (the induce( bundle) has m - n + 5 
sections. 

7. Geometric dimension of virtual bundles 

Let X be a finite CW-complex. We now recall briefly the construction of the 
r-.J 

Groethendieck-Atiyah-Hirzebruch group KO(X). 
Let 8(X) denote the set of equivalence classes of real vector bundles over X, 

two bundles being equivalent in the sense of fibre bundle equivalence. The 
Whitney sum gives 8(X) the structure of an abelian monoid. Let F(X) be the 
free abelian group with generators the elements in 8(X). Let R(X) be the sub­
group of F(X) generated by the elements r = {l 0 TJ} - W - {TJ}, where 0 is 
the Whitney sum. Then KO(X) = F(X)/R(X), and we have a natural mapping 
O:8(X) ---* KO(X). The mapping from 8(X) to the natural numbers which as-

r-.1 

signs to a bundle its dimension induces d:KO(X) ---*Zand we define KO(X) = 
r-.J r-.J 

Ker d. The elements of KO(X) are called virtual bundles. The group KO(X) has 
a natural filtration by skeletons. Let Xq be the q-skeleton of X. Then the inclusion 

r-.J r-.J r-.J 

Xq c X induces KO(X) ---* KO(Xq), and we denote by KOq+1(X) the kernel of 
this map; its elements are said to have filtration q + 1. 

r-.J 

Following Atiyah [2], given x E KO(X), we define the geometric dimension of 
x, gd(x), to be the least integer n such that x + n is in the image of 0, and the 
codimension of x, codim (x) by codim (x) = dim X - gd(x). 

In this section we study the relation between filtration and geometric dimension 
r-.J 

in KO(X). 
r-.J 

Recall that to every x E KO(X) there corresponds a unique, up to homotopy, 
map 'Px:X---* BO. If x E KOq(X), then the composition Xq-i ---* X---* BO is 
null-homotopic. 

Let BO ( q) be the space obtained from BO by killing its first q - 1 homotopy 
groups. We have a sequence of fibrations 

(7.1) BO(q - 1) ---* BO(q) ---* • • • ---* BO(2) ---* BO(l) = BO, 

and we denote by hq,.q:BO(q') ---* BO(q) the composition of the above maps. 
Note that BO(2) = BSO. 
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It is clear that x E KOq(X) if and only if 'Px:X - BO can be lifted to 
'Px: X - BO( q). Therefore we may consider the diagram 

BSOn 

(7.2) 1 
BSO(q) ~ BSO, 

and since our methods are limited to determining a modified Postnikov tower for 
BSOn - BSO in dimensions :::;2n - 2, we may raise the following problem. 

PROBLEM 7.3. Given integers n and t, with n :::; t :::; 2n - 2, find the least in­
teger q = q(n, t) such that hq,2:BO(q) - BSO restricted to the t-skeleton of BO(q) 
admits a lifting to BSOn 

It is clear that if dim X:::; t and x E KOq(X) with q?: q(n, t), then gd(x) :::; n. 
We will now determine an upper bound for q(n, t). 
R. Stong has determined the cohomology over Z2 of BO(q) in [13]. Since his 

results are basic for what follows, we will recall here his results. 
Let q = 0, I, 2, 4 mod 8, and let Dq be the algebra 

(7.4) 

where 

{
Sq2 if q = 0, I mod 8 

Qq = Sq3 if q = 2 mod 8 

Sq5 if q = 4 mod 8 

and I(Qq"/q) denotes the ideal generated by Qq"fq. 
Let 'P( q) denote the number of integers s such that 1 :::; s :::; q and s = 0, I, 

2, 4 mod 8, and let a(n) be the number of ones in the dyadic expansion of n. 
Then we set 

(7.5) 

the polynomial algebra on generators hq/0i, where the 0; E H\BO) are certain 
classes such that 0i = Wi modulo decomposable elements and are defined in [13], 
page 528. 

STONG's THEOREM 7.6. If q = 0, I, 2, 4 mod 8, then as an algebra, 

H*(BO(q)) "'Dq ® Eq. 

Stong also studied the action of A2 in H*(BO(q)) and he obtained (see [13], 
p. 543) the following. 

(7.7) 

In the subalgebra that corresponds to D q 
under the isomorphism (7 .6), every element 
is obtained from the image of 'Y q by the action 
of A2, cup products and sums. 
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From (7.7) it follows easily that, if q' > q, and if we identify H*(BO(q)) 
with Dq ® Eq and let (Dq) denote the ideal generated by Dq, then 

(7.8) (Dq) liesinthekernelof hq,,q*• 

We now suppose that his odd and let 2'- 1 :::;; t < 2". Then we consider 

(7.9) 

to be a modified Postnikov tower for BSOn - BSO in dimensions <t < 2n - 1. 
From (3.4) we knows :=;; t - n - l. Let Ki+i denote the set of f+i_invariants 
of (7.9). Thus Ki+l c H*(E;), and 

(7.10) 

(7.11) 

x E Ki+i implies dim x :=;; t, 
for i = 0, 1, • • • , s - 1. 

Let q1 be the least integer such that 
inH*(BO(q1)), hn*0i = 0, for 
n + 1 :::;; i :::;; t. Notice that 
r = cp(q1). 

Now consider the "diagram 

E1 

1P1 

BO(q1) A BSO, 

where Ji = hq1 ,2 . Then K1 c (Dq1 ). Let q2 be the integer following q1 , with 
q2 = 0, 1, 2, 4 mod 8. Then, by (7 .8), hqu, * ( K1) = 0 and, hence, in the diagram 

BO(q2) E1 

1h2,1 lp, 

BO(q1) A BSO 

we can findf2:BO(q2) - E1, making the diagram commutative. 
We now apply the same argument to h2 , and in this way we obtain a sequence 

of successive integers, congruent to 0, 1, 2, 4 modulo 8, q1, q2, • • • , q,+1, and 
mapsf;+i. BO(q;+1) -E; such that Pkfk+1 = fkhqk+r,qk. Since 

gq,+1,2 :BO(q,+1) - BSO 

is the composition hq,+1 ,q,0 • • • 0 hq2 ,q1°hq1 ,2, we have found a lifting of hq,+1 ,2 ; 
namely, f,+1:BO(q,+1) - E.. 

Therefore, if werestrict to the t-skeleton yt of BO(q,+1), we have obtained a 
lifting of yt - BSO to yt - BSOn. We now need to determine the integer 
q,+1 . We have that cp( q,+1) = cp( q1) + s :=;; r + s, so we need only determine s. 
The integer s is the smallest integer such that F,(Vn) is t-connected, where 
F,(Vn) is the space corresponding to F, in (5.4) for an Adree resolution of 
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H*(Vn) through dimension t. Proposition (5.4) gives us a value for s, but we will 
use the following stronger result. 

PROPOSITION 7.12. The values oft such that Fs(Vn) is (t - 1)-connected modulo 
p-torsion (p > 2) are given by the following table 

nee 0 nee! n = 2 n ""3 

8 = 0 n + 2s - l(s > 0) n + 2s n + 2s - l(s > 0) n + 2s 
8 "" 1 n+2s-2 n+2s-1 n+2s-1 n +2s 
8=2 n+2s-2 n + 2s - 2 n + 2s - I n+2s-1 
8 ""3 n+2s-3 n + 2s n + 2s - I n+2s-2 

where the congruences are taken modulo 4. 

Proof. Using Theorem 5 (p. 65) of [1], it is clear that one has to verify the 
proposition fort - s s 8. This involves a lengthy, but not hard computation; 
or one can check with the tables of [9] which carry out such a computation. 

Set now 

(7.13) 

(7.14) 

(7.15) 

r(n, t) = min {l"(q) I hq/0i = 0 for n < i S t}, 
and if ,f; ( n, s) if the function given by 
table (7.12), set 

s(n,t) =min{sj,f;(n,s) 2::t}. Finallyput 

p(n, t) = s(n, t) + r(n, t). 

Then it is easily seen that 

(7.16) {

2p(n, t), if p(n, t) = 0 mod 4 

qs+I = 2p(n, t) - 1, if p(n, t) = 1 mod 4 

2p(n, t) - 2, if p(n, t) = 2, 3 mod 4, 

and we have the following theorem. 

THEOREM 7.17. An upper bound for the integer q(n, t) of (7.3) is the integer 
qs+l of (7.16). 

Proof of Theorem A. Observe that if 2m-l S t < 2m, then r(n, t) s m, and also 
that p(n, t) S (t - n)/2 + ½ + m and, hence, qs+l S t - n + 3 + 2m. But 
m = j log2 t I + 1, and thus we obtain the estimate 

q,+1 S 2 I log2 t I + t - n + 5. 

Theorem A follows if we set q = t - n + 2 J log2 t I + 5, as can be easily 
checked. 

Now the following lemma leads to a strengthened version of Theorem B. 
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LEMMA 7.18. Given integers a, b, c, d withf:::; c:::; 2a-i, then the functions r(n, t) 
and s(n, t) of (7.13) and (7.14) respectively take the same value for all pairs (n, t), 
where 

and where a(x) = a. 

n=s2d+c-b 

t = s2d + C 

Proof. Because of (7.5), hq/, 0; = 0, provided that a(i - 1) + 1 :::; <p(q). 
But now it is easy to see that the conditions of (7 .18) imply that, for j = 1, 
... 'b 

a ( s2a + c - b + j - 1) = a ( s' 2d + c - b + j - 1), 

whenever a(s) = a(s') = a, and that this implies clearly the result for the func­
tion r(n, t). 

Now the result for the function s(n, t) follows from (7.12). 

THEOREM 7 .19. Given integers a, b, c, d, with b :::; c :::; 2d-i, an upper bound for 
the integer q(n, t) of (7.3) for all pairs (n, t) where 

n s2a + c - b 

s2d + C 

and where a(s) = a is the integer qs+1 obtained from (7.13) by taking n = s02d + 
c - b, t = so2d + c where so is the smallest integer with a( so) = a. 

This result implies clearly Theorem B. But as can be seen, is complicated to 
state. 

We believe that theorems (7.17) and (7.19) are best possible for some values of 
n and t. 

CENTRO DE lNVESTIGACI6N DEL l.P.N., MEXICO, D.F. AND OXFORD UNIVERSITY 
NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 

REFERENCES 

[1] J. F. ADAMS, Stable homotopy theory (Lecture Notes in Mathematics, No. 3), Springer 
Verlag, 1964. 

[2] J. A.DEM and S. GITLER, Non-immersion theorems for real projective spaces, Bol. Soc. 
Mat. Mex., 9 (1964), 37-50. 

[3] M. ATIYAH, Immersions and embeddings of manifolds, Topology, 1 (1962), 125-32. 
[4] M. BARRATTandM. MAHOWALD, The metastable homotopyof0(n), Bull. Arn. Math. Soc., 

70 (1964) 758-60. 
[5] A. BOREL, Sur la cohomologie des espaces fibres principaux et des espaces homogenes des 

groupes de lie compacts, Ann. of Math., 57 (1953) 115-207). 
[6] S. GrTLER and J. STASHEFF, The first exotic class of BF, Topology, 4 (1965) 257-66. 
[7] M. HIRSCH, Immersion of manifolds, Trans. Arner. Math. Soc., 93 (1959), 242-76. 
[8] M. MAHOWALD, On obstruction theory in orientable fibre bundles, Trans. Arner. Math. 

Soc., 110 (1964) 315-49. 



REAL STABLE VECTOR BUNDLES 107 

[9] --, The metastable homotopy of Sn, to appear. 
[10] W. MASSEY and F. PETERSON, The cohomology structure of certain fibre spaces I, Topol­

ogy, 4 (1965), 47-65. 
[11] E. H. SPANIER, Secondary operations on mappings and cohomology, Ann. of Math., 75 

(1962) 260-82. 
[12] N. E. STEENROD, Topology of fibre bundles, Princeton University Press, 1949. 
[13] R. STONG, Determination of H*(BO(k, • • • , 00 ), Z2) and H*(BU(k, • • • , 00 ), Z2), Trans. 

Amer. Math. Soc., 107 (1963) 526-44. 




