THE GEOMETRIC DIMENSION OF REAL STABLE VECTOR BUNDLES

Addendum

By S. GITLER AND M. MAHOWALD*

In the paper referred to in the title, we established some results on totally transgressive fibrations, [1; section 2]. It is the object of this note to provide a much shorter and more conceptual proof of these results. We use Z_2 -coefficients throughout.

We recall that a fibration $F \to T \xrightarrow{p} B$ is called *q*-totally transgressive if (a) $H^*(F)$ forms a simple system of coefficients over B and for $k \leq q$ (b) $p^*: H^k(B) \to H^k(T)$ is onto and

(c) the elements of $H^{k-1}(F)$ are all transgressive. Given a fibre pair $(\bar{F}, F) \xrightarrow{i} (\bar{T}, T) \to B$, we will say it is *q*-non-homologous to zero if $i^*: H^k(\bar{T}, T) \to H^k(\bar{F}, F)$ is onto for $k \leq q$.

Given a fibration $F \to T \xrightarrow{p} B$, we denote by \overline{B} the mapping cylinder of p. Then up to homotopy we have a fibre pair $(\vec{B}, T) \rightarrow B$ with fibre (\vec{F}, F) where \overline{F} is contractible and $\overline{B} \to B$ is a homotopy equivalence.

PROPOSITION. If condition (a) is satisfied, then condition (c) is equivalent with $(\bar{F}, F) \rightarrow (\bar{B}, T) \rightarrow B$ being a q-non-homologous to zero fibration.

This proposition is an easy consequence of [2; Lemma 5.1].

Given a graded Z_2 -vector space G, we denote by s^kG the graded Z_2 -vector space which is obtained from G by increasing its degrees by k. We denote by K(G) the generalized Eilenberg-MacLane space associated with G. We let $K(s^{-1}G) \to E(G) \to K(G)$ be the path space fibration over K(G).

Consider now a q-totally transgressive fibration $F \to T \xrightarrow{p} B$, where F is (n-1)-connected, B is simply connected and $q \leq 2n - 2$. Let $s^{-1}G$ be a Z_2 -graded vector space with a basis over the Steenrod algebra A_2 of $H^*(F)$ in dimensions $\leq q - 1$. Then we have a mapping $g: F \to K(s^{-1}G)$ which induces an epimorphism in cohomology in dimensions $\leq q - 1$. For every element in the A_2 -basis of $H^*(F)$, choose a representative in $H^*(B)$ of the transgression of this element. Define $f: B \to K(G)$ to be a representation of the image under transgression of the A_2 -basis of $H^*(F)$. Let $K(s^{-1}G) \to E \to B$ be the fibration induced by ω . Then we can lift the map p to a map $p_1: T \to E$ such that p_1 is a fibration, with fibre F_1 say. Then we obtain $F_1 \to (\hat{T}, F) \to (E, K(s^{-1}G))$.

THEOREM 1. The fibration $F_1 \to T \xrightarrow{p_1} E$ is q-totally transgressive.

^{*} M. Mahowald is an A. P. Sloan Fellow and was partially supported by the U.S. Army Research Office (Durham).

Proof. Because of the commutative triangle

it follows that p_1^* is onto in the same range as p^* is, so condition (b) holds. To prove condition (c), by the above proposition, we need to prove that the fibration $(\overline{F}_1, F_1) \to (\overline{E}, T) \to E$ is q-non-homologous to zero.

Let $K(s^{-1}G) \to W \to T$ be the fibre space induced from $K(s^{-1}G) \to E \to B$ by the mapping $p: T \to B$. Then we have a fibre space equivalence $T \times K(s^{-1}G) \xrightarrow{h} W$. Let $\alpha: T \to T \times K(s^{-1}G)$ be defined by $x \to (x, y_0)$, where y_0 is a fixed point of $K(s^{-1}G)$, then $t = h\alpha$ is a cross section of $W \to T$ and is such that tF_1 is the inclusion of F_1 in F, in the fibration $F_1 \to F \to K(s^{-1}G)$. Then if we make $(T, F_1) \to (W, F)$ into a fibre space, the resulting fibre is $K(s^{-2}G)$. We therefore obtain a commutative diagram

where the horizontal rows are fibrations. The map $h: W \to E$ induces a map of fibre pairs,

(A)

where h_0 is the extension of the inclusion i of $K(s^{-2}G)$ in F_1 in the fibration $K(s^{-2}G) \xrightarrow{i} F_1 \to F$. Now F is (n-1)-connected and $K(s^{-2}G)$ is (n-2)-connected, so that the Serre exact sequence in this fibration is valid up to dimension 2n - 2. By construction $i^* : H^k(F_1) \to H^k(K(s^{-2}G))$ is a monomorphism for $k \leq q-1$, so that h_0^* is a monomorphism in dimensions $\leq q$. In the fibration $K(s^{-2}G) \to E(s^{-1}G) \to K(s^{-1}G)$ the elements of $H^k(K(s^{-2}G))$ are all transgressive for $k \leq 2n - 3$, hence also in any induced fibration, such as $K(s^{-2}G) \to T \to W$.

By the proposition, the fibration $(\bar{K}(s^{-2}G), K(s^{-2}G)) \to (\bar{W}, T) \to W$ is (2n - 2)-non homologous to zero.

Let us look at the spectral sequences of the fibrations in the diagram (A). Let ${}_1E_r$ be the spectral sequence for $(\bar{W}, T) \to W$ and ${}_2E_r$ the spectral sequence for $(\bar{E}, T) \to E$. The map g induces maps $g_r : {}_2E_r \to {}_1E_r$. At the E_2 level we have

$${}_{2}E_{2} = H^{*}(E) \otimes H^{*}(F_{1}, F_{1})$$

$${}_{1}E_{2} = H^{*}(W) \otimes H^{*}(K(s^{-2}G), K(s^{-2}G))$$

Now $W \cong T \times K(s^{-1}G)$, so that $g_1^*: H^k(E) \to H^k(W)$ is an isomorphism for $k \leq n-1$ and a monomorphism for k = n. Therefore $g_2: {}_2E_2^{a,b} \to {}_1E_2^{a,b}$ is a monomorphism for $0 \leq a \leq n, 0 < b \leq q$. Since $(\bar{K}(s^{-2}G), K(s^{-2}G)) \to (\bar{W}, T) \to W$ is (2n-2)-non-homologous to zero, we have ${}_1E_2^{a,b} = {}_1E_{\infty}^{a,b}$ for $a+b \leq 2n-2$. This is enough to prove that the elements of ${}_2E_2^{0,q}$ are permanent cycles if $q \leq 2n-2$. But this implies that $H^k(\bar{E}, T) \to H^k(\bar{F}_1, F_1)$ is onto for $k \leq q$ and by the proposition, that $H^k(F_1)$ is all transgressive for $k \leq q-1$, in the fibration $F_1 \to T \to E$ and the proof is complete.

We observe that if $H^n(F) = Z_2$, then $H^{n-1}(K(s^{-2}G)) = Z_2$ and in $K(s^{-2}G) \to E(s^{-1}G) \to K(s^{-1}G)$, all elements of $H^k(K(s^{-2}G))$ are transgressive for $k \leq 2n - 2$. The same argument as above now gives

THEOREM 2. Let $F \to T \to B$ be a q-totally transgressive fibration where F is (n-1)-connected, B is simply connected, $H^n(F) = Z_2$ and $q \leq 2n - 1$, then $F_1 \to T \to E$ is q-totally transgressive.

The arguments above did not use in an essential way the fact that F was (n-1)-connected but only that $H^k(F) = 0$ for k < n.

COROLLARY 3. Let $F \to T \to B$ be a q-totally transgressive fibration, where B is simply connected, $H^k(F) = 0$ for k < n. If $q \leq 2n - 2$, then there exists a sequence of principal fibrations

$$\rightarrow E_k \xrightarrow{p_k} E_{k-1} \rightarrow \cdots \rightarrow E_1 \xrightarrow{p_1} E_0 = B$$

and fibre maps $q_k: T \to E_k$ which are q-totally transgressive. If G_k denotes an A_2 -basis for Ker (q_k^*) in dimensions $\leq q$, then the fibre of p_k is $K(s^{-1}G_{k-1})$.

If $H^n(F) = Z_2$, then $H^n(F_1) = Z_2$ or 0 hence we can apply necessarily either Theorem 1 or Theorem 2 to obtain:

COROLLARY 4. If in addition to the hypothesis of Corollary 3, we assume $H^n(F) = \mathbb{Z}_2$ then for $q \leq 2n - 1$, the same conclusion holds.

CENTRO DE INVESTIGACIÓN DEL IPN

NORTHWESTERN UNIVERSITY

References

- S. GITLER and M. MAHOWALD, The geometric dimension of real stable vector bundles. Bol. Soc. Mat. Mex. 11 (1966), 85-107.
- [2] W. MASSEY and F. PETERSON, The cohomology structure of certain fibre spaces I, Topology, 4 (1965), 47-65.

 $\mathbf{34}$