THE GEOMETRIC DIMENSION OF REAL STABLE VECTOR BUNDLES

Addendum

BY S. GITLER AND M. MAHOWALD*

In the paper referred to in the title, we established some results on totally transgressive fibrations, [1; section 2]. It is the object of this note to provide a much shorter and more conceptual proof of these results. We use Z_2 -coefficients throughout.

We recall that a fibration $F \to T \stackrel{p}{\to} B$ is called *q-totally transgressive* if (a) $H^*(F)$ forms a simple system of coefficients over B and for $k \leq q$ (b) $p^*: H^k(B) \to H^k(T)$ is onto and

(c) the elements of $H^{k-1}(F)$ are all transgressive.

Given a fibre pair $(F, F) \stackrel{*}{\rightarrow} (T, T) \rightarrow B$, we will say it is *q-non-homologous to zero* if $i^*: H^k(\overline{T}, T) \to H^k(\overline{F}, F)$ is onto for $k \leq q$.

Given a fibration $F \to T \xrightarrow{p} B$, we denote by \overline{B} the mapping cylinder of p. Then up to homotopy we have a fibre pair $(\bar{B}, T) \to B$ with fibre (\bar{F}, F) where \bar{F} is contractible and $\bar{B} \to B$ is a homotopy equivalence.

PROPOSITION. *If condition* (a) *is satisfied, then condition* (c) *is equivalent with* $(F, F) \rightarrow (\bar{B}, T) \rightarrow B$ being a q-non-homologous to zero fibration.

This proposition is an easy consequence of [2; Lemma 5.1].

Given a graded Z_2 -vector space G, we denote by s^kG the graded Z_2 -vector space which is obtained from *G* by increasing its degrees by *k.* We denote by $K(G)$ the generalized Eilenberg-MacLane space associated with G. We let $K(s^{-1}G) \to E(G) \to K(G)$ be the path space fibration over $K(G)$.

Consider now a q-totally transgressive fibration $F \to T \xrightarrow{p} B$, where F is $(n - 1)$ -connected, *B* is simply connected and $q \leq 2n - 2$. Let $s^{-1}G$ be a Z_2 -graded vector space with a basis over the Steenrod algebra A_2 of $H^*(F)$ in dimensions $\leq q - 1$. Then we have a mapping $g: F \to K(s^{-1}G)$ which induces an epimorphism in cohomology in dimensions $\leq q-1$. For every element in the A_2 -basis of $H^*(F)$, choose a representative in $H^*(B)$ of the transgression of this element. Define $f: B \to K(G)$ to be a representation of the image under transgression of the A_2 -basis of $H^*(F)$. Let $K(s^{-1}G) \to E \to B$ be the fibration induced by ω . Then we can lift the map p to a map $p_1 : T \to E$ such that p_1 is a fibration, with fibre F_1 say. Then we obtain $F_1 \to (T, F) \to (E, K(s^{-1}G))$.

THEOREM 1. The fibration $F_1 \to T \xrightarrow{p_1} E$ is q-totally transgressive.

^{*} M. Mahowald is an A. P. Sloan Fellow and was partially supported by the U.S. Army Research Office (Durham).

Proof. Because of the commutative triangle

it follows that p_1^* is onto in the same range as p^* is, so condition (b) holds. To prove condition (c), by the above proposition, we need to prove that the fibration $(\bar{F}_1, F_1) \rightarrow (\bar{E}, T) \rightarrow E$ is q-non-homologous to zero.

Let $K(s^{-1}G) \to W \to T$ be the fibre space induced from $K(s^{-1}G) \to E \to B$ by the mapping $p: T \to B$. Then we have a fibre space equivalence $T \times K(s^{-1}G) \stackrel{h}{\rightarrow} W$. Let $\alpha: T \rightarrow T \times K(s^{-1}G)$ be defined by $x \rightarrow (x, y_0)$, where *y*₀ is a fixed point of $K(s^{-1}G)$, then $t = h\alpha$ is a cross section of $W \to T$ and is such that tF_1 is the inclusion of F_1 in F , in the fibration $F_1 \to F \to K(s^{-1}G)$. Then if we make $(T, F_1) \rightarrow (W, F)$ into a fibre space, the resulting fibre is $K(s^{-2}G)$. We therefore obtain a commutative diagram

where the horizontal rows are fibrations. The map $h : W \to E$ induces a map of fibre pairs,

(A)

where h_0 is the extension of the inclusion i of $K(s^{-2}G)$ in F_1 in the fibration $K(s^{-2}G) \stackrel{\ast}{\rightarrow} F_1 \rightarrow F$. Now *F* is $(n-1)$ -connected and $K(s^{-2}G)$ is $(n-2)$ connected, so that the Serre exact sequence in this fibration is valid up to dimension $2n - 2$. By construction $i^* : H^k(F_1) \to H^k(K(s^{-2}G))$ is a monomorphism for $k \leq q-1$, so that h_0^* is a monomorphism in dimensions $\leq q$. In the fibration $K(s^{-2}G) \to E(s^{-1}G) \to K(s^{-1}G)$ the elements of $H^k(K(s^{-2}G))$ are all transgressive for $k \leq 2n - 3$, hence also in any induced fibration, such as $K(s^{-2}G) \to T \to W$.

By the proposition, the fibration $(\bar{K}(s^{-2}G), K(s^{-2}G)) \rightarrow (\bar{W}, T) \rightarrow W$ is $(2n - 2)$ -non homologous to zero.

Let us look at the spectral sequences of the fibrations in the diagram (A) . Let $_1E_r$ be the spectral sequence for $(\bar{W}, T) \to W$ and $_2E_r$ the spectral sequence for $(E, T) \rightarrow E$. The map *g* induces maps $g_r : {}_2E_r \rightarrow {}_1E_r$. At the E_2 level we have

$$
{}_{2}E_{2} = H^{*}(E) \otimes H^{*}(\bar{F}_{1}, F_{1})
$$

$$
{}_{1}E_{2} = H^{*}(W) \otimes H^{*}(K(s^{-2}G), K(s^{-2}G))
$$

Now $W \cong T \times K(s^{-1}G)$, so that $g_1^*: H^k(E) \to H^k(W)$ is an isomorphism for $k \leq n - 1$ and a monomorphism for $k = n$. Therefore $g_2: {}_2E_2^{a,b} \to {}_1E_2^{a,b}$ is a monomorphism for $0 \le a \le n$, $0 < b \le q$. Since $(\bar{K}(s^{-2}G), \bar{K}(s^{-2}G))$. $(\bar{W}, T) \rightarrow W$ is $(2n - 2)$ -non-homologous to zero, we have ${}_1E_2{}^{a,b} = {}_1E_{\infty}{}^{a,b}$ for $a + b \leq 2n - 2$. This is enough to prove that the elements of $_2E_2^{0,q}$ are permanent cycles if $q \leq 2n - 2$. But this implies that $H^k(\bar{E}, T) \to H^k(\bar{F}_1, F_1)$ is onto for $k \leq q$ and by the proposition, that $H^k(F_1)$ is all transgressive for $k \leq q - 1$, in the fibration $F_1 \to T \to E$ and the proof is complete.

We observe that if $H^{n}(F) = Z_{2}$, then $H^{n-1}(K(s^{-2}G)) = Z_{2}$ and in $K(s^{-2}G)$ $\rightarrow E(s^{-1}G) \rightarrow K(s^{-1}G)$, all elements of $H^k(K(s^{-2}G))$ are transgressive for $k \leq 2n - 2$. The same argument as above now gives

THEOREM 2. Let $F \to T \to B$ be a q-totally transgressive fibration where F is $(n - 1)$ -connected, B is simply connected, $H^n(F) = Z_2$ and $q \leq 2n - 1$, then $F_1 \rightarrow T \rightarrow E$ is q-totally transgressive.

The arguments above did not use in an essential way the fact that F was $(n - 1)$ -connected but only that $H^k(F) = 0$ for $k < n$.

COROLLARY 3. Let $F \to T \to B$ be a q-totally transgressive fibration, where B *is simply connected,* $H^k(F) = 0$ *for* $k < n$. If $q \leq 2n - 2$, *then there exists a sequence of principal fibrations*

$$
\longrightarrow E_k \xrightarrow{} E_{k-1} \longrightarrow \cdots \longrightarrow E_1 \xrightarrow{} E_0 = B
$$

and fibre maps $q_k : T \to E_k$ which are q-totally transgressive. If G_k denotes an A_2 -basis for Ker (q_k^*) *in dimensions* $\leq q$ *, then the fibre of* p_k *is* $K(s^{-1}G_{k-1})$ *.*

If $H^n(F) = Z_2$, then $H^n(F_1) = Z_2$ or 0 hence we can apply necessarily either Theorem **1** or Theorem 2 to obtain:

COROLLARY 4. *If in addition to the hypothesis of Corollary* 3, *we assume* $H^{n}(F) = Z_{2}$ *then for* $q \leq 2n - 1$ *, the same conclusion holds.*

CENTRO DE INVESTIGACIÓN DEL IPN NORTHWESTERN UNIVERSITY

REFERENCES

- [1] S. GITLER and M. MAHOWALD, *The geometric dimension of real stable vector bundles.* Bol. Soc. Mat. Mex. **11** (1966), 85-107.
- [2] W. MASSEY and F. PETERSON, *The cohomology structure of certain fibre spaces I*, Topology, **4** (1965), 47-65.