THE GEOMETRIC DIMENSION OF REAL STABLE
VECTOR BUNDLES

Addendum

By 8. Giter Anp M. MamOWALD*

In the paper referred to in the title, we established some results on totally
transgressive fibrations, [1; section 2], It is the object of this note to provide a
much shorter and more conceptual proof of these results. We use Z,-coefficients
throughout.

We recall that a fibration F — T -5 B is called g-totally transgressive if
(a) H =|=(F ) forms a s1mple system of coefficients over B and for E<gq
(b) p*: H*(B) — H*(T) is onto and
(e) the elements of H*~ I(F)' are all transgressive.

Given a fibre pair (F, F) < (T, T) — B, we will say it is g-non-homologous to
zeroif 7% 1 H*(T, T) — H*(F, F) is onto for k < ¢.

Given a fibration # — T 2 B, we denote by B the mapping cylinder of p.
Then up to homotopy we have a fibre pair (B, T') — B with fibre (F, F') where
F is contractible and B — B is a homotopy equivalence.

ProrositioN. If condition (a) s satisfied, then condition (c) is equivalent with
(F,F) — (B, T) — B being a g-non-homologous to zero fibration.

This proposition is an easy consequence of [2; Lemma 5.1].

Given a graded Z,-vector space G, we denote by s°G the graded Z;-vector
space which is obtained from G by increasing its degrees by k. We denote by
K(G@) the generalized Eilenberg-MacLane space associated with G. We let
K(s7'G) — E(G) — K (@) be the path space fibration over K(G).

Consider now a g-totally transgressive fibration F — T % B, where F is
(n — 1)-connected, B is simply connected and ¢ < 2n — 2. Let s 'G be a
Zy-graded vector space with a basis over the Steenrod algebra A4, of H*(F)
in dimensions <¢ — 1. Then we have a mapping g : F — K(s™'G) which in-
duces an eplmorphlsm in cohomology in dimensions <q — 1. For every element
in the A,-basis of H*(F), choose a representative in H*(B) of the transgression of
this element. Define f : B — K(G) to be a representation of the image under
transgression of the A,-basis of H*(F). Let K(s7'G) — E — B be the fibration
induced by w. Then we can lift the map p to a map p; : T — E such that p, is
a fibration, with fibre F; say. Then we obtain F1 — (T, F) — (E, K (s7'@)).

TuarorEM 1. The fibration F1 — T % E s q-totally transgressive.
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Proof. Because of the commutative triangle

T—P g

\//

™,
B

it follows that p,* is onto in the same range as p™ is, so condition (b) holds.
To prove condition (c¢), by the above proposition, we need to prove that the
fibration (¥, F1) — (E, T) — E is g-non-homologous to zero.

Let K(s7G) - W — T bevthe fibre space induced from K(s7'G) — E — B
by “the mapping p:T — B. Then we have a fibre space equivalence
TXK(GST'G) L W.Leta: T— T X K(s@) be defined by  — (2, y), where
7o is a fixed point of K(s™'G), then ¢ = ha is a cross section of W — T and is
such that tFy is the inclusion of F; in F, in the fibration F; — F — K(s7'G).
Then if we make (7T, F;) — (W, F) into a fibre space, the resulting fibre is
K(s7’@). We therefore obtain a commutative diagram

K@) > T -t W

-

n— T2 E

-

F—sT7-25p

where the horizontal rows are fibrations. The map » : W — E induces a map of
fibre pairs, .

(R(s°6), K(57°@)) —10 (Fy, Fy)

L

W————Fk

where ho is the extension of the inclusion 7 of K(s @) in Fy in the fibration
K(s?G) < F, —» F. Now F is (n — 1)-connected and K(s°@) is (n — 2)-
connected, so that the Serre exact sequence in this fibration is valid up to dimen-
sion 2n — 2. By construction ¢* : H*(F;) — H*(K(s@)) is a monomorphism
fork < g — 1, so that k" is a monomorphism in dimensions <g. In the fibration
K (s_zG) —FE (s_lG) — K (s7'@) the elements of H* (K (s°@)) are all transgressive
for k < 2n — 3, hence also in any induced fibration, such as K(s Q) — T — W.
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By the proposition, the fibration (K(s7°@), K(s7°@)) — (W, T) — W is
(2n — 2)-non homologous to zero.

Let us look at the spectral sequences of the fibrations in the diagram (A). Let
1, be the spectral sequence for (W, T') — W and ,E, the spectral sequence for
(B , T') — E. The map g induces maps ¢» : 2E, — 1E,. At the E; level we have

By = H(E) @ H*(#,, Fy)
Be = HY(W) @ H¥(K(s7'@), K(s°G))

Now W = T X K(s'G), so that ¢.* : H*(E) — H*(W) is an isomorphism
for ¥ < n — 1 and a monomorphism for ¥ = n. Therefore ¢, : WB7t — Bt
is a monomorphism for 0 < a < 7,0 < b < ¢. Since (K(s°G), K(s°G)) —
(W, T) — Wis (2n — 2)-non-homologous to zero, we have 15,*° = Eo"" for
a -+ b < 2n — 2. Thisis enough to prove that the elements of B are permanent
eycles if ¢ < 2n — 2. But this implies that H*(E, T) — H*(F,, F;) is onto for
k < ¢ and by the proposition, that H*(F,) is all transgressive for k¥ < ¢ — 1,
in the fibration /1 — 7 — E and the proof is complete.

We observe that if H*(F) = Z,, then H" (K(s ’G)) = Z, and in K(s °G)
— E(s7'@) — K(s'@), all elements of H*(K(s7G)) are transgressive for
k < 2n — 2. The same argument as above now gives

TrEOREM 2. Let F' — T — B be a g-totally transgressive fibraiion where F s
(n — 1)-connected, B is simply connected, H*(F) = Zs and ¢ < 2n — 1, then
F1 — T — E is g-totally transgressive.

The arguments above did not use in an essential way the fact that F was
(n — 1)-connected but only that H*(F) = 0 for k < n.

CoroLLARY 3. Let F — T — B be a g-totally transgressive fibraiton, where B
is simply connected, H*(F) = 0 for k < n. If ¢ < 2n — 2, then there exists a
sequence of principal fibrations

—)Ek“pi‘)EkAl"—) —>E1_p1_’E0 = B

and fibve mops qv : T — Ep which are g-totally transgressive. If Gy denotes an
Ajs-basis for Ker (¢.™) in dimensions <q, then the fibre of py, is K (s 'Gi—y).

If H*(F) = Z,, then H"(I1) = Z, or 0 hence we can apply necessarily either
Theorem 1 or Theorem 2 to obtain:

CoroLLARY 4. If in addition to the hypothesis of Corollary 3, we assume
H"(F) = Z, then for ¢ < 2n — 1, the same conclusion holds.
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