AN EXACT SEQUENCE FOR PRINCIPAL FIBRATIONS

By EmErY THOMAS*®

1. The exact sequence

Let B and C be spaces and w a map B — C. Let p : £ — B denote the principal
fiber space with classifying map w and with fiber the loops on C, QC. (See §3 for
details.) The purpose of this paper is to obtain an exact sequence relating the
cohomology of B, E, and QC X E.

We proceed to define the morphisms in the sequence. Consider the maps

m, ptC X E— K,

where m denotes the action map for the fibration and p the projection. In [3, §2]
we showed that there is a unique morphism '
p: H*(E) — H*(9C X E, E)

such that
(1) ‘*°”=m*'—P*’
where . denotes the inclusion QC X E C (2C X E, E). (We take all spaces with
basepoint * and identify E with * X E in QC X E. Throughout the paper
cohomology will be taken with coefficients in a fixed principal ideal domain.)

By using the mapping cylinder we can regard p as an inclusion; doing this
and applying §III of [4], we obtain a morphism =y from a submodule of
H*(QC X E), written T*(QC X E), to a factor module of H*(B), written
H*(B)/A*. Set

T*(9C X E, E) = J7'T*(QC X E),
r=mol : T"QC X E, E) —> H*(B)/A"

We show in §4 that p*A* = 0, and so we can regard p* as a morphism from
H*(B)/A* to H*(E). Moreover, we will show that

Image p © T*(QC X E, E).
We now can state the main result.

Taeorem 1. (i) In the triangle
E3
o*(B)/A* —2— g*(B)

A
. ¢
T*(2C X E, E),
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and thus 8 is an epimorphism. Therefore there is a class @ € H*(X) such that
8l%a = w.
Let ¢ € H*(Z) be a class such that
ke = i%a,
and set @’ = a — k*j™c. Then
3*a’ = ol*a — ol"k*j*c = ol*a — &5%c = ol"a = w.

But i’ = i*a — A%c = 0, and so there is a class ” € H*(X, A) such that

n 7
Fa” = d'. Therefore

A" = 3% " = 81%d = w,
and so A is an epimorphism. This completes the proof.

3. Principal fibrations

Let Z be a space (with basepoint #); define the path space PZ to be the space
of all maps \: [0, 1] — Z such that N(0) = . The map =r: PZ — Z given by

- \(1),

is then an Hurewicz fibration [2]. Given a space Y and a map f: Y — Z, we let
p: X — Y denote the fibration induced by f from #. Thus X is the subspace of
Y X PZ consisting of all pairs (y, \) such that f(y) = N(1), and p is the projec-
tion (y, \) — y.

Suppose now that B is a subspace of Y;set'A = p7B < X andletp’ = p| A.
Thus we have the following commutative diagram, where ¢ denotes the inclu-
sion:

AcX—— PZ

119' lp lvr
BcY— Z.
g

LemMmA 3. Suppose that the map f o g: B — Z is null-homotopic. Then there is a
fiber homotopy equivalence

k:QZ X B— A,

where QZ X B — B 1s the trivial fibration. Moreover, if we are given a section
g:B— A (ie., p'q = 1) then we can choose k so that the map from B to A, given by

b— k(%,b),
28 homotopic to q.

Proof. Let C be any space and n: C — Z a null-homotopic map. Then 7
corresponds to a map h: C — PZ. Define a map h from C into the space of all
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paths on Z, by

he(t) = he(t — 1), 0<t<1,ceC.
Now take C to be the space B; a cross-section g: B — A is given by |

q(b) = (b, hb), b€ B,
where h: B — PZ is a null-homotopy of fo ¢g. Define

kE:QZ X B— A
by

(w0, 8) — (b, w v kD),

and define

I:4A—-QZ X B
by

(B, N) = (N v kb, D).

(Here v denotes the usual path composition.) We leave it to the reader to
check that % is a fiber homotopy equivalence (with homotopy inverse I) and
that %k has the desired property vis-a-vis q.

4. Proof of Theorem 1

We retain the notation given in §1. Consider the following diagram of spaces
and maps: ‘

J 7
oW XEL.DCir——E
S
| o] Is o lr
E = ECM —B~—C
g s w

In the diagram M is the mapping cylinder of p and r is the canonical deformation
retraction. § is the fibration induced from p by r and ‘7 is the natural Lifting of
r. s is the inclusion, which lifts to an inclusion 5. One has that

ros = 1, soro~],
and one easily shows that 7, § enjoy the same properties:
.Fof =1, §oFoz 1,

Dis 7 (E) and p"is 5 | D. Since rg = p, there is a map (see below) ¢: £ — D
such that

Fojog =1,
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Let % be the choice of homotopy equivalence, given in Lemma 3, eorresponding
to this choice of ¢.

We now apply Lemma 2, using the pairs (C X E, E) and (M, D). The
map h is the following eomposite:

mESbae xEE DL .

By Lemma 3, ko 2 ~ ¢, and so,
Foho~fojog = 1.
But 7 is a homotopy equivalence which means that 2* is an isomorphism in

cohomology. Therefore, by Lemma 2, A is an isomorphism, where A is the
composite

£ 3 £
H*QC X E, E) % H*@QC X B) 5 #*D) & H*(i1, D).

(Here [ is a homotopy inverse to .)
Let pi : (M, D) — (M, E) denote the map of pairs induced by p. Consider the
following diagram:

oo BB 2 G, ) -9 mB) 2 HE) - -
101*
) HYY(IT, D)
A
H(2C X E, E).

Here & is the coboundary operator and d* is the composition

H*(M, E) Z, H*(M) it H*(B),
where t: M < (M, E) is the inclysion. Define
L’ = Kernel p,* in dimension j,

A = d*L’ c HY(B), izo.
Notice that p*A* = pd*L* = 0, by exactness. We will show:
(2) T*(QC X E, E) = A (p"H* (M, E)).
Consequently we obtain an isomorphism
(3) pn oA THQC X E, E) ~ H*(M, E)/L*.
Furthermore, we will show:
(4) —n
(5) T

A—l ° pl* ° 51 ,
d* e pl‘*rl ° A;

]



PRINCIPAL FIBRATIONS 41

which means in particular that Image u € T*(QC X E, E). Assuming (2),
(4), and (5) we have:

Proof of Theorem 1. Now the top row of diagram (1) is simply the exact
cohomology sequence of the map p. Thus part (i) of Theorem 1 follows at once
from Lemma 1, applied to the exact triangle

*
() —L H(E)
N /
d*\ /81
v
H*(M, E),

taking €, = L* € H*(M, E). To obtain the groups and morphisms as given
in part (i), use (3), (4) and (5). (Changing the sign in (4) does not alter exact-
ness. )

For part (ii) of Theorem 1 we appeal to a result of Serre. (See [1] and [2;9.3.4].)
Since C is n-connected the pair (M, E) is n-connected in homology. Therefore,
by Serre, pi* is an epimorphism in dimensions <2n and is a monomorphism in
dimensions <2n 4 1. Therefore by (3),

TY(QC X E, E) ~ H' (M, E),

for 0 < j < 2n, and

AN=0, for 0<j<2n+1
This completes the proof of the Theorem.
_ We are left with proving statements (2), (4), and (5).

Proof of (2) and (5). Consider the fibration p, : (M, D) — (M, E). As on
page 14 of [4], we define

T*(D) = 8 'p,*"H*(M, E),
and set
o =p" ted: THD) > H*(M, E)/L*
We then define (see [4, p. 16]),
| 7= t*org: TX(D) — H*(M)/t'L* .
Using the homotopy equivalence k: @C X E — D, and setting T*(QC X E) =

E*T*(D), we obtain the submodule of H*(QC X E) referred to in §1, Thus, by
the definition given in §1,

AT*(QC X E, E) = p,"H*(M, E),
which proves (2). To prove (5), set

*_ 7%
‘l'1=STll.
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Since d* = s*t* and A = 81*.*, and since by definition, 7 = 1%, we see that
* k-1 )

r=d yul A,
as claimed in (5).
Proof of (4). Consider the following commutative diagram:

*

H*(E)—2— H*(9C X E)

I p'* LI
H*(E)——— H*(D)
la * 18

H*(M,E) —2— g*, D).
In other words: »
(%) 3l*p* = p1*61 .
Now by definition and (1) in §1,
Ap = 3% = al*(m™ — p%).
In a moment we show:
(%) ‘ sl*m* = 0.
Assuming this, we have
Ap = —dl*p* = —p™s,
by ( #). Thus,
—p = AT,

as claimed in (4).
To prove ( * *), consider the diagram given below:

@ XE—"—— E
I ) T
oC X E—- D — 1.
By using the definitions of the spaces and maps, one easily shows that the diagram
commutes, <.e.,

= fojok,

(For this, we take the map & : E — PC to be given simply by (b, A\) — X\, where
b € B,A € PC,wb = \(1).) Thus,

o'm* = oIk = & =0,

since 3% = 0 by exactness. This proves ( ) and so completes the proof of (4).
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: 5. Addendum o

We have used Theorem 1 in two different papers: [3, §2] and [5 §4] In each
case we need some additional information about the exact sequence given in
Theorem 1. In this section we sketch in this additional material.

Going back to the notation of §1, suppose that By is a subspace of B such that
w(By) = #'in C. Set By = p "By in E. Then p, (= p | Ey) maps Ey homeomor-
phically onto B, . Consider the triple (M, E, Ey) (see §4), with exact cohomology
sequence , . o , ,
= H*(E, B) > H(M, B) = H*(M, ) = H(B, Bo) >+
Let-r be the retraction M — B given in §4. Then r gives a map of pairs
ro: (M, Ey) — (B, By), where 70| Eo = po. Thus 7" is an isomorphism:

7'0* . H*(B7 BO) ~ H*(M, EO)'
Let do* denote the composite
ro*—1
H*(M, E) - H*(M, Ey) », H*(B, Bo);

we then have an exact sequence

L H*(E, Bo) 2 11, B) 25 H*(B, B — -

Using this exact sequence for the top row of diagram (1) in §4, we obtain. the
exact sequence given in (2.4) of [3]. The morphisms glven in (2. 4) are the follow-
ing respective composites:

H*(E, E,) — H*(E) £ H*(C X E, E),

i B * A1 . . * e

T*(9C X B, B) B2 H*(it, B)/L* 2 B (B, By)/d"L*
Finally, the commutative diagram given in [3, 2.5] follows at once from the defi-
nitions. We leave the details to the reader. S

We now discuss several refinements of Theorem 1 above that are needed in

[5]. Given spaces X and ¥ (with basepoint) we let X % Y denote the smash
product X X Y/X v Y. Recall that we have an exact sequence ‘

0— H¥X % Y)——»H (XX7Y)

where . is the collapsing map X X ¥ — X % Y. Using the notation of §§1 4 we
_prove: A

Lmmua 4. Let T (szc ¥ E) = L*-IT (szC X E), and let i : 90—» E denoté the
fiber inclusion. We then have an exact sequence

H*(E) N Kernel * b, (QC 7# E) = H (B)/A
Moreover, p* (H*(B)/A*) < Kernel ¢*.
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Proof. Because i*p* = 0, clearly Image p* < H*(E) N Kernel ¢*. Let
J +QC — QC X E denote the inclusion. Then (see [3]), m o j =~ ¢. Therefore given
aclassu € H*(E),
k 7*m*u = *u,

andSOJ m*u = Olff’b u = 0. Thus u(H*(E) ﬂKernelz )y c T*QC % E), and
exactness is preserved.

A second fact needed in [5] is the behavior of u on products. Suppose, as in §1,
that C is n-connected; assume that B is g-connected.

.. Liemma 5. Let u and v be classes in H* (E), each with degree <n + ¢, and suppose
hat i*v = 0. Then,
plw) =iu @ v in H*(QC % E).
Proof. From the hypotheses we see that
m*(w) =1 Q@ w + i*u ® v,
from which the result follows.

Finally, consider the special case (in §1) where C = K(Z., n 4+ 1). Thus
w € H"(B; Z,). Assume that w® > 0.

‘LeMma 6. (a) A’f“ = {w’} tn H™*(B; Zs). (b) The sequence

¥
H"(B) £~ H™(E) N Kernel i* £ 7™ (aC ¥ E),
18 exact

Proof. Followmg the notation i in §4 we replace B by the mappmg cylinder M.
Set wy =7 *w'in H"(M). Since p*wy = 0, there is a class @ in " (M, E) such
that t¥1 = w, . Moreover, since QC = K(Z, ,n), H""" (M, E) =~ Z,. Now %" % 0
since wf # 0. But

‘ p*@") = p*(@ <« w) = p*B < Frw = 0.

2n+2 - {w2} as

Thus %* generates the kernel of p,* in dimension 2n 4 2, and so A
claimed in (a).
To prove (b), let z be a class in H*"(E) N Kernel +* such that u(z) =
“Using (4) in §4, this implies that p,*8(z) = 0, which means by (a) above that
a(z) = M0%, N € Z, . By exactness, d*8; = 0; but d** = w® £ 0 andso A = 0.
Thus, by exactness of diagram (1) in §4, z € Image p* as claimed.

Now Lemmas 4 and 6, prove 6.5 in [5], while Lemma 5 proves 6.6. Finally,
6.7 in [5] follows from Properties 1 and 2 in [4].

UniveRsITY OF CALIFORNIA, BERKELEY
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