ON THE COMMUTATIVITY OF RINGS

PoR RoLANDO E. PEINADO

•Aring is said to be a P-ancestral ring if all proper non-zero subrings of *R* have property *P.* In a previous paper [3] we study the structure of several P-ancestral rings. For Ran arbitrary ring and *n* a fixed element of *Z,* (now and throughout this note *Z* will denote the ring of rational integers) the subring $nR = \{ nr : r \in R\}$ is called an integral multiple of the ring *R. nR* is called S-maximal if *n* is the smallest positive integer for which $nR \subseteq S$, S a subring of R.

F. Szász in [4] considered P' -ancestral rings, where if S is a proper non-zero subring of $R, P' : S = nR$ for some *n* in Z.

His main result is: R is a P' -ancestral ring if and only if the additive group of R *is a cyclic group.*

In this note we consider the condition *P,* where if *Sis* a proper non-zero subring of *R*, $P: 0 \neq nR \subseteq S$ for *nR S*-maximal.

Clearly every *P'* -ancestral ring is a P-ancestral ring. Our main result is: *If R is a P-ancestral ring, then R is a commutative ring.* The converse of this result is obviously not true, since for any *n* in *Z, nR* is an ideal of *R.* It is sufficient to consider an arbitrary field, of characteristic zero, to observe that there exist commutative rings that are not P-ancestral rings.

It is easy to show that if R is a P -ancestral ring then:

(i) *Any proper non-zero subring of Risa P-ancestral ring.*

(ii) *Every non-zero homomorphic image of R is a P-ancestral ring.*

By considering the usual adjunction of a unit to a ring without unit, it can be observed that in considering P-ancestral rings it is enough to consider rings with unit. Henceforth all rings will be assumed to have a unit element that we write 1.

LEMMA 1. *Let R be a P-ancestral ring such that its additive group is a torsion-free group. Then R is a commutative ring:*

Proof: The center *C* of *R* is a subring of *R.* $C \neq 0$ since $1 \in C$. Since *R* is a P-ancestral ring, then there exists $n \in \mathbb{Z}$ such that $nR \subseteq \mathbb{C}$. Thus for all a, b in R *na, nb* belongs to *C* and we have

$$
n^2ab = na \cdot nb = nb \cdot na = n^2ba
$$

Therefore

$$
n^2(ab-ba) = 0
$$

But *R* is torsion-free. Hence $ab = ba$ for all *a*, *b* in *R*, and *R* is a commutative ring.

Now consider a ring whose additive structure is a torsion group. The q-compoents of *R,* say *Rq,* are not only subgroups of *R* but also ideals of *R, (R* as a ring). Consequently R is ring-direct sum of q -rings, where a q -ring is a ring whose additive group is a q -group. Thus in considering P -ancestral rings whose additive structure is a torsion group, it is enough to examine P-ancestral rings that are q -rings.

LEMMA 2. *LetR be a P-ancestral ring, which is a q-ring, then R is a commutative ring.*

Proof: Let R_q be a P-ancestral ring. Then every proper subgroups of R_q contains a multiple *nR* of *Rq* and *n* is the smallest positive integer for which $nR \subseteq S$. This fact together with exercise 19 of [2, page 19], enables us to show that R_q is bounded, otherwise there exists a homomorphism of R_q onto $Z(p^{\infty})$, then by (i) and (ii) above, every subgroup of $Z(p^{\infty})$ would contain a non-zerointegral multiple of $Z(p^{\infty})$. But the subgroup of $Z(p^{\infty})$ generated by $1/p$, p a prime number in *Z*, does not contain a multiple of $Z(p^{\infty})$.

Now let us say that $q^k R_q = 0$ and $q^{k-1} R_q \neq 0$. Then $q^R q$, $q^2 R_q$, \cdots $q^{k-1} R_q$ are proper subrings of R_q which are also ideals of R_q . Consider the quotient rings $R_q^{i} = (q^{i}R_q/q^{i+1}R_q) i = 1 \cdots r - 1$. By (ii) R_q^{i} is also a *P*-ancestral ring. Let *S* be a proper non-zero subring of R_q^i which is also an ideal of R_q^i then there exists *n* in *Z* such that *nS* is *S*-maximal in R_q ². Since R_q ² is a bounded group $n = q^3$ for $\text{some } j$ in *Z*, which is a contradiction $(R_q^i = q^i R_q / q^{i+1} R_q)$. Hence R_q^i has no proper left ideals and thus *Rq i* is a field of prime characteristics or a zero ring with a prime number of elements. In any case R_q^i is a group of order q^k and $q^{k-1}R_q \neq 0$. Therefore R_q has an element or order q^k and thus R_q is a cyclic group which implies *Rq* is a commutative ring.

COROLLARY: *If Risa P-ancestral ring whose additive group is a torsion group, then Risa commutative ring.*

Proof: R is a ring-direct sum of *Rq* rings.

LEMMA 3. Let R be a P-ancestral ring, then R is a ring-direct sum $F \oplus T = R$, *where the additive group of F is a torsion-free group and the additive group of T is a torsion group.*

Proof: By similar arguments as in the proof of lemma 2, the maximal torsion subgroup *T* of *R* is bounded. Hence by [2, page 183] *R* is a direct sum of *T* and a torsion-free group *F,* but ovbiously *T* and *F* are ideals in *R* and the sum is a ring direct sum.

Now we are ready to prove the main result as a consequence of the above results.

THEOREM. *Any P-ancestral ring is a commutative ring.*

Proof: By lemma 3, $R = F \oplus T$ a ring direct sum. Since F is a torsion-free group and by (i) and (ii) a P-ancestral ring, lemma 1 implies F is a commutative ring. Similarly by the corollary to lemma 2 *T* being a P-ancestral ring whose

additive structure is a torsion group, is also a commutative ring. Thus *R* is a commutative ring.

UNIVERSITY OF PUERTO Rrco MAYAGUEZ, PUERTO RICO

 \bar{z}

REFERENCES

- [1] L. Fuchs, Abelian groups, Pergamon Press, New York, 1960.
- [2] I. KAPLAN **SKY,** Infinite abelian groups, University of Michigan Press, Ann Arbor, 1960.
- [3] R. E. PEINADO, *Ancestral Rings,* Proceedings Edinburgh Math. Soc., **16** (1967) 107- 110.
- [4] F. Szász, *On rings every subring of which is a multiple of the ring*, Publ. Math. Debrecen, **4** (1956) 237-238. $\mathcal{L}^{\mathcal{L}}$

 \boldsymbol{z}

 $\overline{}$

 $\sim 10^{-11}$

 $\varphi\in\mathcal{F}_{\mathcal{A}}$

 $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$

 $\ddot{}$

 \mathcal{A}^{out} \mathcal{A}

 ~ 10

 \mathcal{A}