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CLASSES 
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Given a relation in A2 , the mod 2 Steenrod algebra, there is a rather w!3ll 
understood procedure which defines a secondary cohomology operation based on 
the relation. (For details, see Chapter 3 of [11.) Let a be an element of the stable 
j-stem 1r/. We say that a cohomology operation c:J> (of any order) detects a if 
there is a two-cell complex Sn Ua e"+it-1 on which c:J, is defined and non-zero. 
Adams showed that Sq1, Sq2, Sq4 and Sq8 are the only primary operations "which 
detect homotopy. In [11 Adams constructed a basis of secondary cohomology 
operations, c:J>,,; (i < j but i ~ j - I), raising dimension by 2; + 2; - 1. In 
this note we wish to prove the following. 

THEOREM A. Suppose I < i < j. Then 4'i.i does not detect a homotopy element; 
except for c:J>2,4 and cI>2,s and possibly 4'3,6. The conclusion also holds when i = 0 
provided that j > 3. 

It is known ([21, [31) that c:J>2,4 and cI>2,s detect homotopy. We c~njecture that 
c:J,3,6 does not. The situation with c:J>i.; and with cI>;,; is more difficult, but these two 
cases seem to be related. For connections with Whitehead products see [2]. (The 
cases not covered above, namely i = 0 withj ;;::;; 3, all detect homotopy; the proof 
is easy.) 

The proof is obtained by calculating directly a sufficient portion of the Adams 
spectral sequence. We prefer to work in ExtA•,t (Z2, Z2), whereas cohomology 
operations are elements of Tor./ (Z2, Z2). Since h.h; is dual to 1>i,i, we are done 

. when we have proved the following restatement of Theorem A. 

THEOREM A'. Suppose I < i < j. Then hih; does not detect a homotopy element, 
except for ~h 4 , ~hr,, and possibly h3ha . The conclusion also holds when i = 0 pro
vided j > 3. 

Adams has shmvn that 

(l) 

for all k ~ 4. Thus our task is essentially to show that hohih;_/ is non-zero in E2 of 
the Adams spectral sequence, i.e. in Ext, under appropriate hypotheses on i 
andj. 

PRoPOSI'l'ION (2). The product h0h/hb is non-zero in E 2 provided that a > 2, 
b ~ I, (a, b) ~ (3, O), and I a - b I> 2. 

The product is known to be zero if a = I or 2, if b = I, if (a, b) = (3, O), if 
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/ a - b / 1, or if a - b = 2. The cases a = 0, a = b, and a - b = -2 are not 
required for the theorem. 

Theorem A' follows immediately from Proposition (2) and Equation (1). 
A proof of Proposition (2) could be based on the May spectral sequence, [4], 

which converges to Ext = E2 of the Adams spectral sequence. May has obtained a 
basis theorem for E2 of his spectral sequence whens ~ 4. The products we need are 
present and non-zero in E2 of :May's spectral sequence, and by means of the basis 
theorem we can verify that none of them are coboundaries. However, this basis 
theorem rests on a tedious and specialized calculation, and the details are not suit
able for publication We will give a different proof, using the infinite sequence of 
spectral sequences given by Adams ([11, Chapter 2). We will be able to obtain 
Proposition (2) using only Adams' published work and some arithmetic. 

The remainder of this note is devoted to the proof of Proposition ( 2). 
We must assume that the reader is familiar with Chapter 2 of [1] and we will 

use freely the notation established there. The nth spectral sequence ( where n ~ 2) 
has K,. 0 Qn-1 as its E2 term, and converges to Qn ; here Kn is a polynomial algebra 
over Z2 in generators {hn,i} (i ~ 0), Q1 = K1, and Qn is obtained inductively. In 
Q1 the generator h1,i is denoted hi. 

We will exploit the tri-grading of the elements in each of these spectral 
sequences and will show arithmetically that only certain kinds of elements 
appear in the tri-gradings required in order to hit an element of the form hoha2hb 
with a co boundary. The exceptional cases are easily checked, using Adams' calcu
lations, and in this way we verify that h0ha2hb survives, i.e. projects to a non-zero 
element in Ext. 

We will use without much comment some obvious lemmas about binary arith
metic, of the following sort. If 2w + 2" = 2v + 2z (all exponents will be non
negative integers), then the exponents on the right match those on the left. If 
2v + 2w = 2"' + 211 + 2', then some pair of exponents on the right must match, 
and the other exponent on the right appears also on the left. We will use such 
arguments in these and in more complicated cases, but usually under restrictions 
on the exponents ( derived from the hypotheses of Proposition (2)) which greatly 
reduce the number of cases to consider. 

The t-grading of h" is 2" and that of hn,k is 2"(2n - 1). Whenever k > 0 this 
grading is O mod 2, and for this technical reason it is convenient to run through 
the proof first under the hypothesis b r= 0, in which case the t-grading of hoh/hb , 
namely T = 1 + 2a+i + 2\ is 1 mod 2. The case b = 0 can be treated separately. 
( Of course the cases b r= 0 and b = 0 correspond to the cases i > 1 and i = 0, 
respectively, in the theorem.) 

We begin by looking for elements in the n th spectral sequence which lie "en
tirely in the fibre," i.e. elements of the form hn,ihn,;hn,k, which have t-grading of 
the form 1 + 2a+i + 2b ( with b ~ 2). We can suppose i ~ j ~ k. The t-grading 
of such an element is 

T(i,j, k) = (2n - 1)(2i + 2; + 2") 

and if this is to be 1 mod 2 then i = 0. Now for Proposition (2) we assume a > 2, 
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and if b ~ 2 then 1 + 2a+r + 2b = T = 1 mod 4; but n ~ 2 so that in order that 
T(0, j, k) = 1 mod 4 we must have 2; + 2k = 2 mod 4. Thus either j = k = 0 
or else j = 1 and k > 1. 

In the case i = j = k = 0, we have T(0, 0, 0) = 3(2n - 1) = T. This can be 
written 

2n + 2n+l = 4 + 2a+l + 2b 

which forces us to take b = 2, n = 3, and a = 3, but b - a = -1 is excluded, so 
this case is eliminated. 

Otherwise we must consider T(0, 1, k) = (2n - 1)(3 + 2k) = T with k > 1. 
This can be \\Titten 

2n + 2n+l + 2n+k = 4 + 2a+I + 2b + 2k 

and then either n = 2 or else some exponent on the right is 2. If n = 2 then 

8 + 2k+2 = 2a+I + 2b + 2k 

and there must be some match on the right: either k = b or else k = a+ 1. (The 
case b = a+ 1 is ruled out by hypothesis.) Since a > 2, k = b implies k = b = 2 
and then 2a+r = 2k+2 = 16 so that a = 3, but b - a = -1 is excluded. If on the 
other hand k = a + 1, then necessarily 2a+i + 2" = 8 so that a = 1, which is also 
excluded. This disposes of the case n = 2. Thus either b = 2 or k = 2. If k = 2, 
we violate the hypothesis I a - b I > 2. If b = 2 then 

2n + 2n+l + 2n+k = 8 + 2a+l + 21< 

and b = 2 implies a ~ 5, so that n = 3, k = 4, and a = 6. This produces our first 
exceptional element: h3,oh3,1h3,4 has the same t-grading as ho~hl. However, the 
differential on this element is known, from Adams' calculations in Chapter 2 of 
[1]; it hits a non-zero element, nothing else can hit that element (by the arith
metical argument we have just given), hence we need not be concerned with it. 

This completes the argument for elements lying in the "fibre" Kn , when b ~ 0. 
We next look for elements in the n th spectral sequence having tri-grading ( 1, 2, T), 
i.e. elements of the form hi® hn,;hn,k. (Here we use Lemma 2.5.3 of [1] to assert 
that Qn-l has only the { hi} in dimension 1.) 

The t-grading of such an element is U(i;j, k) = 2; + (2n - 1)(2 1 + 2k). If 
this is to be 1 mod 2, then either i = 0 or j = 0 ( assuming j ~ k). 

In this first case, if i = 0, then 

2n+i + 2n+k = 2atl + 2b + 2i + 2" 

and this is seen to be impossible in the light of the restrictions n ~ 2 and 
I b - a I > 2. 

In the other case j = 0 so that 

2; + 2n + 2n+k = 2 + 2a+l + 2b + 2" 

and therefore either i = 1 or k = 1. Suppose first that k = I; this gives a 4 on 
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the right, and thus we must have i = 2, n = 2, orb = 2. If b = 2 then. 

2' + 2n + 2n+I = 8 + 2a+I 

which is impossible since a ~ b + 3 = 5. If i ,= 2 we have 2n + 2":1-\ = 2a+r + 26 

which is impossible. Thus k = 1 implies n = 2, and we get 

2i + 8 = 2a+I + 2b 

and a > 2 so necessarily b = 3 and i = a + 1. The element ha+I ® h2 ,0h2 ,1 has the 
same t-grading as hohaht 

Supposing finally that J. = 0 and i = 1, then . 

2n + 2n+k = 2a+I + 2b + 2k 

and either k = b or k = 'a + 1. If k ~ b then k = b ~ n - 1 and a + 1 = n + k = 

2n - 1; we have found that h1 0 hn,ohn,n-1 h11,s the same t-grading as hohn-I~n- 22; 

If k = a + 1, then n = a+ 2 and n + a +1 = b, and we find that h1 ® hn,ohn,n-I 

also has the same t-grading as ho~n-1hn-t -· 

If we now consult Adams' calculations, we find that ha+1 ® h2 ,0/1;,;;1, and 
h1 0 hn,ohn,n-1 have distinct non-zero differentials and do Iiot survive to E 3 of the 
appropriate spectral l')equence; therefore they are not involved with hoha2hb in 
any way. 

This completes the discussion of .elements which have dimension 1 from the base 
and 2 from the fibre (still assuming b # 0). We finally must consider elements.of 
tri-grading (2, 1, T), which, according to Adams' basis theorem for H2(Q,,_1) 
([1], Lemma 2.5.1), must be oftheformh;hJ ® h~,k or else of theform(Jn-I,J ® hn,k 

where (Jn-I,i is the co boundary ( transgression) of hn,i in the n th spectral sequence, 
In the latter case, since rJn-I,i has the same t as hn,J, we have • 

(2n - 1)(2 1 + 2k) = 1+ 2a+r+ 2b 

and we can now suppose j = 0. This gives 

2" + 2n+k = 2 + 2a+I -f- 2b + 2k 

v,hich implies k = 1, v,hich in .turn implies b = 2, so that 2~ + 2"+r = 8 + 2a+i 

which contradicts the assumption I b - a I > 2. 
In the former case, namely h;h; ® hn,k, we must have 2• + 2i + 2"(2" - 1) 

= T. Thus either i = 0 (assuming i ~ j) or else k = 0. 
If i = 0 then 

2j + 2n+k = 2a+I + 2b + 2k 

and either k = b = j - 1 and a+ 1 = n + k = n + j - 1, or else k =a+ 1 = 

j - 1 and b = n + k ~ n + j - 1. These cas~s reduce to the observation that 
hohi ® hn,i-I has the same t-grading as both hohJ-1hn+i-z2 and hohn+1-1h;_z2_ Con~ 
sulting Adams' calculations, we find that the differential on hoh; ® hn,f-I does not 
hit either of these elements, except when n = 2, and we are not concerned with 
n = 2 because of our restrictions on I b - a j. 
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If k = 0 it follows that i = 1, and 2 1 + 2" = 2a+1 + 2b which leads us, as in the 
last preceding case; to the observation that h1h1 ® h,.,0:-has the sanie t~grading as 
both hoh;h..-l and hoh,,.h;-12, Again the differential is known and does not hit these 
elements except in the case n = 2 which does not concern us. 

This concludes the argument for the case b ¢ 0. We have found all the elements 
which have the tri-grading required to hit hoha2~, and checked that in fact none of 
.. .. . - . . ... 2 . . 
th,em do hit it. Thus hoha ~ survives.to Ext as claimed. 
' • For'tl:i.e elise b ·;..;• o, a search of'the ·same natu:i-e; in.Ost be carried ·out; to find 
all ~ements in the sequence of spectral sequences which have the same t-grading 
as hlha 2, No new ideas are involved and therefore we omit the <let.ails. The follow
·ing list contains all elements which could possibly hit ho2ha2 for appropriate choice 

• • . 2 • 2 
of a: "'2,1"'2.~2,4; h4 ® h2,1"'2,2; .h2 ® h..,o; "'2· ® h..,1h..,n+1; h1 ® h,.,1; 
h1hr ® h..,1 ; 1t,,,i:,_~i ®" h..,1. . • • ., 
~ the differentials involved here may be checked by Adams' calculations and 

non~ of them•involve hlh,. 2• This completes the proof of Propbsition (2) • and hence 
·of Theorem A' and Theorem A: • • •• • • • 
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