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1. Studying the problem of (topological)· embeddings of complexes in euclidean 
space. A, Shapiro has built an obstruction theory (mainly unpublished, see [3] for 
the first obstruction and [4]); on the other hand W. T. Wu started the study of 
isotopy, and Yo [5] has applied it to obtain some non-embedding theorems. 

Any embedding! of a space Yin Rm gives rise to a continuous mapJof the space 
Y X Y - d ( where d is the diagonal of Y X Y) into the unit sphere sm-l C Rm: 
for two distinct points Y1, Y2 of Y, J(y1, Y2) is the unit vector f(y2) - f(y1)/ 
I f(y2) - f(y1) [. It is clear that J is equivariant with respect to the symmetry 
which interchanges the factors in Y X Y - d and the antipodal map of sm-i_ If 
f1 andf2 are two homotopic embeddings thenfi andf 2 are equivariantly homotopic. 

Using the Shapiro-Wu theory valid in the combinatorial case and the following 
approximation theorem [2], 

THEOREM (Haefliger) 
a) Any topological embedding of a differentiable n-rnanif old Nn in Rm can be 

approximated by a differentiable embedding if m ;:::: 3 ( n + 1) /2. 
b) Any homotopy between differentiable embeddings in the category of topological 

embeddings can be approximated by a differentiable isotopy if m > 3 ( n + 1) /2. 

one obtains the following 

THEOREM. The differentiable isotopy classes of differentiable embeddings of a 
compact manifold Mn in Rm are in 1-1 correspondence with equivariant homotopy 
classes of equivariant maps from M X M - d into sm- 1 provided that 
m > 3(n + 1)/2 andn > 2. 

The equivariant homotopy classes of equivariant maps from M X NI - d into 
sm-i are also in one to one correspondence with homotopy classes of maps 
J:M X M - d/Z 2 --+ P"'- 1 for which f*(x) = u where xis the generator of 
H*(pm-i, Z2 ) and u the class of the double covering. These in turn are in one-to­
one correspondence with homotopy classes of non-zero sections of the bundle 
mt-+ M X M - d/Z2 where r is the line bundle associated to the double cover­
ing. 

In order to apply this theorem we study the reduced symmetric product of real 
projective spaces. We find that R*Pk = pk X pk - d/Z 2 has a manifold as a de­
formation retract and compute the cohomology of that manifold. 

2. We consider the reduced symmetric product of the real projective space 
R*Pk = pk X pk - d/Z2 where the Z 2 acts on pk X pk - d by interchanging 
the two coordinates. R *pk can then be viewed as the set of unordered pairs of 
distinct points if P\ or the set of unordered pairs of distinct points of P\ or the 
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set of unordered pairs of distinct lines through the origin in RH 1. We thus have a 
fibration 

R*P 1 -R*Pk 
l 

Gk+I,2 

where Gk+1,2 is the grassmanian of unoriented 2-planes in RH 1. The fiber R*P 1 is 
an open Mobius band. 

We can deform R*P" onto a subspace X1c by deforming each fiber onto the 
generator of the Mobius band. We get in this way the bundle ri: 

S1 
- X1c 

l (1) 
Gk+l,2 

It is easily seen that the deformation can be interpreted as follows: each pair of 
distinct lines in RH 1 defines a plane in RH 1, we move the two lines within this 
plane until they become mutually orthogonal. This gives an interpretation of the 
bundle (1) in terms of the canonical 2-plane bundle v over Gk+i,2 : we take the 
associated circle bundle of v and identify points which lie on pairs of orthogonal 
lines. 

If tis a vector-space bundle over a space B let <J>(O denote its projectification, 
i.e., the space whose points are the I-dimensional subspaces of the fibers tb, b E B. 

Thus <P(O ~ Bis a fibering over B, the fibers being (n - 1)-dimensional 
projective spaces, n = dim tb. Over <J>{f) we have the canonical line bundle S, 
whose fiber over lb E <:P(O consists of the-points of the line lb c h. 

We recall that line bundles over a space Y are classified by their first Stiefel­
Whitney classes which are containedinH 1(Y, Z2). 

Recall also that if t is a vector space bundle over a point ( i.e. a real vector 
space) then x = w1(S1J generates H 1(<:P(O, Z2) and hence the powers 
1,x,x2, •·· ,xn- 1,n = dimtgiveafreeadditivebasisforH*(<:P(t),Z2).Finally 
xn = 0. More generally we have: 

PROPOSITION. Let t be a vector bundle over B. Then as an H*(B; Z2)-rnodule 
H*(<J>(O, Z2) is freely generated by 1, xt, • • • , xt- 1 , n = dim t where 
x~ E H1(<:P(O;Z2) isequaltow1(St). 

Proof. Since the restrictions of x/:, i = 0, • • • , (n - 1) to a given fiber <J>b(t) of 
<:P(O over B form a basis for H*(iPb(O, Z2), the fiber is totally nonhomologous to 
zero and the Leray spectral sequence yields the proposition. 

CoROLLARY. There are unique classes wi(t) E H\B, Z2)i = 0, • • • , dim t = n, 
w0(0 = 1, such that the equation 

Lf-oxt-"wk(O = 0 

holds in H*( <:P(t), Z2), This is the defining relation of <:P(t) and wk(t) are the Stiefel­
Whitney classes of the bundle t• 
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For our bundle ( r) it is easily seen that 7/ = <P ( t/; 2 v) where ,t,2 is the Adams oper­
ation which in this case yields a bona fide bundle. The mod 2 co homology of X k can 
now be easily computed from the fib ration ( 1) and the knowledge of the mod 2 
co homology of Gk+1 ,2 • 

We find the classes w1 = Wi ( ,t;2 v) and w2 = w2( it,,2 v). Then the cohomology of 
Xk is a module over H*( Gk+1,2 ; Z2) with two generators 1, u and the relation 

U 2 = W2 + W1U 

determines the ring structure. Since w2(i/?v) = 0 and w1(1'iv) = w1(v) we have 
u2 = w1(v )u. This gives a full description of H*(Xk;Z2) in terms of H*( Gk+1,2 ; Z2). 

We now turn to the determination of H*(Gk+1,2; Z2 ). By Borel [1] 

H*(Gk+1,2; Z2) = 8(x1, • • • , Xk-1) 0 S(xk, Xk+1)/S+(x1, • • • , Xk+i) 

where 8 ( x 1 , • • • , Xn) is the symmetric algebra over x 1 , • • • , Xn ( all generators 
are of dimension 1) andS+(x 1 , • • • , Xn) is the ideal of elements of positive degree. 

Let a1 = :I:J-1 Xj, a2 = L~J X;Xj, • • • , ak-1 = X1X2 • • • Xk-1 and x = Xk + Xk+1, 
y = XkXk+i be the generators of S(x 1 , • • • , Xk-1) and S(xk, Xk+1) respectively. 
Then the ideal s+(x 1 , • • • , Xk+i) is generated by the elements 

a1 + X 

Considering the sequence of equalities 

r 2: 1 

(set a0 = 1 and ak = 0 if k < 0) we solve for ar to get: 

_ '°' (r - i) 0 r-2i i ar-~ .. r y 
i-0 'l, 

Proof. For r = l, 2 we get a1 = x, a2 = x2 + y. We proceed by induction: as­
sume that the formula is true for r ::=; l - l. We have 

L (l - 1 - i) l-2i i L (l - 2 - j) l-2-2i ;+1 
az = xaz-1 + yaz-2 = . x y + . x y 

i • J 

'°' (z - 1 ..,.. i) z-2, • + '°' (z - 1 - i) z-2i i 
~ i X y ~ i-l X y 
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and since 

the assertion.follows. 

We can now give the description of H*(Gk-1,2; Z2) as the algebra over Z2 with 
generators 1, x, y( dim x = I, dim y = 2) with the relations 

ak = 0 and ak+1 = 0. 

To determine the Steenrod squares it suffices to find Sq1 y: 
Sq1 (XkXH1) = x/xk+1 + XkXk+l = XkX1c+1(xk + xk+1) = xy i.e. Sq1 y = xy. 

This determines H*(Gk+1,2) as a module over the Steenrod algebra. The gener­
ators x and y are the Stiefel-Whitney classes of the canonical bundle v. 

Adding the I-dimensional generator u and the relation 

u2 = ux 

we obtain the cohomology of Xk . 

3. We can apply the results of the previous section to obtain the classification 
of embeddings of pk in R2k when k is even and greater than 2. 

Such embeddings are classified by the homotopy classes of non~zero cross­
sections of the following bundle 

2kt 
t 
Xk 

where tis the line bundle associated to the double covering of Xk induced by the 
map P X pk - A - pk X pk - A/ Z2 . 

Since fork even G2k+i,2 is non-orientable and the first Stiefel-Whitney class of its 
tangent bundle is the same as Wi('IJ) = x, the manifoldXkis a (2k - 1) orientable 
manifold. Moreover 2kt is an orientable bundle, thus we have: 

H2k-1<xk ; 'lT2k-1(s2k-1)) = H2k-1(Xk ; Z) = z 

and since each element of H 2k-1(Xk ; Z) can be realized as an obstruction to make 
two different cross-sections of 2k~ homotopic we have: 

THEOREM. The isotopy classes of embeddings pk c R2k fork even (k > 2) are in 
one-to-one correspondence with the integers. 

One would hope to obtain other results about embeddings by computing the 
height of the generator u E H 1(Xk; Z2). Here we use the fact that equivariant 
maps of pk X pk - A into S"'-1 are in one-to-one correspondence with maps 

f:R*Pk - pm-1 

for whichf*(z) = u, where z is the generator of H*(pm- 1; Z2). 
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For k = 2r - 1 we have 

a,.= I: e ~ i)x"- 2'V = x" 

Since this is the first relation we conclude that the height of xis (k - I) in this 
case and the height of u is, therefore, k. 

One can prove by induction, that the height of u does not change for 
2r-l ~ k ~ 2r - 1 and is equal to 2r - 1. 

Using this information one obtains non-embedding results which are identical 
with those gotten from Stiefel-Whitney classes and vanishing of the Euler class of 
the normal bundle of an embedding. 

Some further results obtained using secondary cohomology operations will 
appear in a sequel to this paper. 

It was communicated to me that some of these results were independently ob­
tained by David Handel, using a different method. 
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