THE REDUCED SYMMETRIC PRODUCT OF A PROJECTIVE . **SPACE AND THE EMBEDDING PROBLEM**

BY SAMUEL FEDER

1. Studying the problem of (topological) embeddings of complexes in euclidean space. A, Shapiro has built an obstruction theory (mainly unpublished, see [3] for the first obstruction and [4]); on the other hand W. T. Wu started the study of isotopy, and Yo [5] has applied it to obtain some non-embedding theorems.

Any embedding f of a space Y in R^m gives rise to a continuous map \bar{f} of the space $Y \times Y - \Delta$ (where Δ is the diagonal of $Y \times Y$) into the unit sphere $S^{m-1} \subset R^m$: for two distinct points y_1 , y_2 of *Y*, $\bar{f}(y_1, y_2)$ is the unit vector $f(y_2) - f(y_1)$ $|f(y_2) - f(y_1)|$. It is clear that *J* is equivariant with respect to the symmetry which interchanges the factors in $Y \times Y - \Delta$ and the antipodal map of S^{m-1} . If f_1 and f_2 are two homotopic embeddings then f_1 and f_2 are equivariantly homotopic.

Using the Shapiro-Wu theory valid in the combinatorial case and the following approximation theorem [2],

THEOREM (Haefliger)

a) Any topological embedding of a differentiable n-manifold N^n in R^m can be *approximated by a differentiable embedding if* $m \geq 3(n + 1)/2$.

b) Any homotopy between differentiable embeddings in the category of topological embeddings can be approximated by a differentiable isotopy if $m > 3(n + 1)/2$ *.*

one obtains the following

THEOREM. *The differentiable isotopy classes of differentiable embeddings of a compact manifold* M^n *in* R^m *are in* 1-1 *correspondence with equivariant homotopy classes of equivariant maps from* $M \times M - \Delta$ *into* S^{m-1} *provided that* $m > 3(n + 1)/2$ *and* $n > 2$.

The equivariant homotopy classes of equivariant maps from $M \times M - \Delta$ into S^{m-1} are also in one to one correspondence with homotopy classes of maps $f:M \times M - \Delta/Z_2 \rightarrow P^{m-1}$ for which $f^*(x) = u$ where x is the generator of $H^*(P^{m-1}, Z_2)$ and *u* the class of the double covering. These in turn are in one-toone correspondence with homotopy classes of non-zero sections of the bundle $m\zeta \rightarrow M \times M - \Delta/Z_2$ where ζ is the line bundle associated to the double covering.

In order to apply this theorem we study the reduced symmetric product of real projective spaces. We find that $R_*P^k = P^k \times P^k - \Delta/Z_2$ has a manifold as a deformation retract and compute the cohomology of that manifold.

2. We consider the reduced symmetric product of the real projective space $R_*P^k = P^k \times P^k - \Delta/Z_2$ where the Z_2 acts on $P^k \times P^k - \Delta$ by interchanging the two coordinates. R_*P^k can then be viewed as the set of unordered pairs of distinct points if P^k , or the set of unordered pairs of distinct points of P^k , or the set of unordered pairs of distinct lines through the origin in R^{k+1} . We thus have a fibration

$$
R_* P^1 \to R_* P^k
$$

\n
$$
\downarrow
$$

\n
$$
G_{k+1,2}
$$

where $G_{k+1,2}$ is the grassmanian of unoriented 2-planes in R^{k+1} . The fiber R_*P^1 is an open Mobius band.

We can deform R_*P^k onto a subspace X_k by deforming each fiber onto the generator of the Möbius band. We get in this way the bundle η :

$$
S^1 \to X_k
$$

\n
$$
\downarrow
$$

\n
$$
G_{k+1,2}
$$
\n(1)

It is easily seen that the deformation can be interpreted as follows: each pair of distinct lines in R^{k+1} defines a plane in R^{k+1} , we move the two lines within this plane until they become mutually orthogonal. This gives an interpretation of the bundle (1) in terms of the canonical 2-plane bundle ν over $G_{k+1,2}$: we take the associated circle bundle of *v* and identify points which lie on pairs of orthogonal lines.

If ξ is a vector-space bundle over a space *B* let $\mathcal{O}(\xi)$ denote its projectification, *i.e.,* the space whose points are the 1-dimensional subspaces of the fibers ξ_b , $b \in B$.

Thus $\mathcal{P}(\xi) \xrightarrow{\pi} B$ is a fibering over B, the fibers being $(n - 1)$ -dimensional projective spaces, $n = \dim \xi_b$. Over $\mathcal{P}(\xi)$ we have the canonical line bundle S_{ξ} whose fiber over $l_b \in \mathcal{P}(\xi)$ consists of the points of the line $l_b \subset \xi_b$.

We recall that line bundles over a space Y are classified by their first Stiefel-Whitney classes which are contained in $H¹(Y, Z₂)$.

Recall also that if ξ is a vector space bundle over a point *(i.e.* a real vector space) then $x = w_1(S_\xi)$ generates $H^1(\mathcal{O}(\xi), Z_2)$ and hence the powers $1, x, x^2, \cdots, x^{n-1}, n = \dim \xi$ give a free additive basis for $H^*(\mathcal{O}(\xi), Z_2)$. Finally $x^n = 0$. More generally we have:

PROPOSITION. Let ξ be a vector bundle over B. Then as an $H^*(B; Z_2)$ -module $H^*(\mathfrak{O}(\xi), Z_2)$ *is freely generated by* 1, $x_{\xi}, \cdots, x_{\xi}^{n-1}, n = \dim \xi$ where $x_{\xi} \in H^1(\mathcal{P}(\xi); Z_2)$ *is equal to w₁*(S_{ξ}).

Proof. Since the restrictions of x_i^i , $i = 0, \dots, (n-1)$ to a given fiber $\mathcal{O}_b(\xi)$ of $\mathcal{P}(\xi)$ over *B* form a basis for $H^*(\mathcal{P}_b(\xi), Z_2)$, the fiber is totally nonhomologous to zero and the Leray spectral sequence yields the proposition.

COROLLARY. *There are unique classes* $w_i(\xi) \in H^i(B, Z_2)$ $i = 0, \dots, \dim \xi = n$, $w_0(\xi) = 1$, *such that the equation*

$$
\sum_{k=0}^n x_k^{n-k} w_k(\xi) = 0
$$

holds in $H^*(\mathcal{P}(\xi), Z_2)$. This is the defining relation of $\mathcal{P}(\xi)$ and $w_k(\xi)$ are the Stiefel-*Whitney classes of the bundle* ξ .

For our bundle (1) it is easily seen that $\eta = \mathcal{P}(\psi^2 \nu)$ where ψ^2 is the Adams operation which in this case yields a *bona fide* bundle. The mod 2 cohomology of X_k can now be easily computed from the fibration (1) and the knowledge of the mod 2 cohomology of $G_{k+1,2}$.

We find the classes $w_1 = w_1(\psi^2 \nu)$ and $w_2 = w_2(\psi^2 \nu)$. Then the cohomology of X_k is a module over $H^*(G_{k+1,2}; Z_2)$ with two generators 1, u and the relation

$$
u^2 = w_2 + w_1 u
$$

determines the ring structure. Since $w_2(\psi^2 \nu) = 0$ and $w_1(\psi^2 \nu) = w_1(\nu)$ we have $u^2 = w_1(\nu)u$. This gives a full description of $H^*(X_{k_i}Z_2)$ in terms of $H^*(G_{k+1,2}; Z_2)$. We now turn to the determination of $H^*(G_{k+1,2}; Z_2)$. By Borel [1]

$$
H^*(G_{k+1,2} ; Z_2) = S(x_1, \cdots, x_{k-1}) \otimes S(x_k, x_{k+1})/S^+(x_1, \cdots, x_{k+1})
$$

where $S(x_1, \dots, x_n)$ is the symmetric algebra over x_1, \dots, x_n (all generators are of dimension 1) and $S^+(x_1, \dots, x_n)$ is the ideal of elements of positive degree. Let $a_1 = \sum_{j=1}^{k-1} x_j, a_2 = \sum_{i and $x = x_k + x_{k+1}$,$ $y = x_k x_{k+1}$ be the generators of $S(x_1, \dots, x_{k-1})$ and $S(x_k, x_{k+1})$ respectively.

Then the ideal $S^+(x_1, \cdots, x_{k+1})$ is generated by the elements

$$
a_1 + x
$$

\n
$$
a_2 + a_1x + y
$$

\n
$$
a_3 + a_2x + a_1y
$$

\n...
\n...
\n
$$
a_{k-1}x + a_{k-2}y
$$

$$
a_{k-1}y
$$

Considering the sequence of equalities

 $a_r + a_{r-1}x + a_{r-2}y = 0$ $r \geq 1$

(set $a_0 = 1$ and $a_k = 0$ if $k < 0$) we solve for a_r to get:

$$
a_r = \sum_{i=0}^r \binom{r-i}{i} x^{r-2i} y^i
$$

Proof. For $r = 1$, 2 we get $a_1 = x$, $a_2 = x^2 + y$. We proceed by induction: assume that the formula is true for $r \leq l - 1$. We have

$$
a_{l} = xa_{l-1} + ya_{l-2} = \sum \binom{l-1-i}{i} x^{l-2i} y^{i} + \sum \binom{l-2-j}{j} x^{l-2-2j} y^{j+1}
$$

$$
= \sum \binom{l-1-i}{i} x^{l-2i} y^{i} + \sum \binom{l-1-i}{i-1} x^{l-2i} y^{i}
$$

and since

$$
\binom{l-1-i}{i}+\binom{l-1-i}{i-1}=\binom{l-i}{i}
$$

the assertion.follows.

We can now give the description of $H^*(G_{k-1,2}; Z_2)$ as the algebra over Z_2 with generators 1, x, $y(\dim x = 1, \dim y = 2)$ with the relations

$$
a_k = 0 \quad \text{and} \quad a_{k+1} = 0.
$$

To determine the Steenrod squares it suffices to find $Sq^1 y$:

 $Sq^{1}(x_{k}x_{k+1}) = x_{k}^{2}x_{k+1} + x_{k}x_{k+1}^{2} = x_{k}x_{k+1}(x_{k} + x_{k+1}) = xy$ *i.e.* $Sq^{1}y = xy$. This determines $H^*(G_{k+1,2})$ as a module over the Steenrod algebra. The generators *x* and *y* are the Stiefel-Whitney classes of the canonical bundle *v.*

Adding the I-dimensional generator *u* and the relation

$$
u^2 = ux
$$

we obtain the cohomology of X_k .

3. We can apply the results of the previous section to obtain the classification of embeddings of P^k in R^{2k} when k is even and greater than 2.

Such embeddings are classified by the homotopy classes of non~zero crosssections of the following bundle

$$
\begin{array}{c}2k\zeta\\ \downarrow\\ X_k\end{array}
$$

where ζ is the line bundle associated to the double covering of X_k induced by the $\text{map } P^k \times P^k - \Delta \to P^k \times P^k - \Delta/Z_2$.

Since for k even $G_{2k+1,2}$ is non-orientable and the first Stiefel-Whitney class of its tangent bundle is the same as $w_1(\eta) = x$, the manifold X_k is a $(2k - 1)$ orientable manifold. Moreover $2k\zeta$ is an orientable bundle, thus we have:

$$
H^{2k-1}(X_k; \pi_{2k-1}(S^{2k-1})) = H^{2k-1}(X_k; Z) = Z
$$

and since each element of $H^{2k-1}(X_k; Z)$ can be realized as an obstruction to make two different cross-sections of $2k\xi$ homotopic we have:

THEOREM. The isotopy classes of embeddings $P^k \subset R^{2k}$ for k even $(k > 2)$ are in *one-to-one correspondence with the integers.*

One would hope to obtain other results about embeddings by computing the height of the generator $u \in H^1(X_k; Z_2)$. Here we use the fact that equivariant maps of $P^k \times P^k - \Delta$ into S^{m-1} are in one-to-one correspondence with maps

$$
f: R_*P^k \to P^{m-1}
$$

for which $f^*(z) = u$, where *z* is the generator of $H^*(P^{m-1}; Z_2)$.

For $k = 2^r - 1$ we have

$$
a_k = \sum \binom{k-i}{i} x^{k-2i} y^i = x^k
$$

Since this is the first relation we conclude that the height of x is $(k - 1)$ in this case and the height of *u* is, therefore, *k.*

One can prove by induction, that the height of *u* does not change for $2^{r-1} \leq k \leq 2^r - 1$ and is equal to $2^r - 1$.

Using this information one obtains non-embedding results which are identical with those gotten from Stiefel-Whitney classes and vanishing of the Euler class of the normal bundle of an embedding.

Some further results obtained using secondary cohomology operations will appear in a sequel to this paper.

It was communicated to me that some of these results were independently obtained by David Handel, using a different method.

CENTRO DE lNVESTIGACI6N DEL I P N

REFERENCES

- 1] A. BOREL, *La cohomologie mod 2 de certains spaces homogenes,* Comm. Math. Helv., **27** (1953), 165-96.
- [2] A. HAEFLIGER, *Differentiable embeddings,* Bull. Amer. Math. Soc., **67** (1961), 109-12.
- [3) A. SHAPIRO, *Obstructions to the embedding of a complex in an euclidean space. I. The first obstruction,* Ann. of Math., **66** (1957), 256-69.
- [4) W. T. Wu, *On the isotopy of ajinite complex in an euclidean space], II,* Science Record **N.** s., **3** (1959) 342-51.
- [5] G. T. Yo, *Secondary embedding classes of manifolds,* Scientia Sinica, **14** (1965), 167-73.