A DIAGONAL MAP FOR THE COBAR CONSTRUCTION

By BYRON DRACHMAN

Introduction

Dold and Lashof ([3]) have extended the Milnor construction of the principal
universal classifying bundle to the case of an (associative) H-space X. We write
this bundle as X — E(X) — B,(X). If Y is another (associative) H-space, and
f is a multiplicative map from X to Y, we have a map of “bundles” .

f

l l

Bo(x) —ZU), gy

J |
Bu(x) 2=, g (v)

If fis not multiplicative, one can not define F(f) and B (f) in general. Sugawara
[6] has therefore defined a condition on f so that E.(f) and B,(f) can be formed.
It is stronger than homotopy multiplicative and weaker than multiplicative.
Sugawara calls such maps strongly homotopy multiplicative. They are also called
A -maps (Stasheff [5]).

Clark [2] has given the algebraic analogue of this condition, so that a linear map
between associative DGA algebras induce a morphism on the bar constructions.

In this paper we shall give a corresponding definition for DGA-coalgebras, and
study some of their algebraic properties. In particular, we will give a homotopy
condition on a map between two DGA coalgebras so that there will be an induced
morphism on the cobar constructions. Using this, we will find a diagonal map for
the cobar construction, so that it becomes a Hopf algebra. In a future paper we
shall relate the algebraic structure to the loop space.

I wish to thank Professor Samuel Gitler for making many valuable suggestions.

1.1 The cobar construction (Adams [1])

Recall that if C is a simply connected DGA coalgebra over K, a fixed commuta-
tive ring with unit, <.e., C' is connected and C; = 0, then the cobar F(C) is the
direct product of the D" for all n > 0, where D" is the n-fold tensor product.of the
desuspension of ¢ = Ker (¢), and where ¢: C — K is the augmentation. (Normally
one takes the direct sum, but the free product will be more convenient). We will
use infinite sum notation instead of the product notation. A typical element is
therefore an infinite linear combination of elements of the form z = [¢1 | «- - | ¢a,
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where z has bidegree (—n, m), and m = > _p. i= degree (c;). The differential in
F(C) is defined on elements of bidegree (—1, *) by

d[C] — _dC]+ Zi(v_l)degc, [Ci’IC-,:”]
where
‘A(c)—c®1+1®c+Zc., ®c1, AC—>C®C

bemg the diagonal mapping of C. The differential is- extended to all of F (C' ) by
the requirement that F(C) be a DGA-algebra.

The acyclic cobar construction is F(C) = C ® F(C) Wlth the contracting
homotopy s:F(C) — F(C) defined by

s(c® fa] - |eal) = e(e)oer ® [ex] -+ | el
and differential d:F(C) — F (C ) defined so that
ds(z) + sd(z) = 2 — e(x) @ [ ],

where [ ]is the unit element of F(0O), and e:F(C) — K is the augmentation
induced by the augmentatlons of C and F(C).
F(C) is a differential C-comodule with coaction”

Arey:F(C) — C ® F(C)
giveﬂ by ’ . .
o Aro(c®2) = Ae) ® 2 °
and is a differential 7(C)-module with action
"F(C) @ F(C) — F(C)
glven by ,
(€@ lal i+ [eal)- (Bl -+ 1ba]) = ¢ @ far |-+ ea b -+ B
L 2 Some notatlon and formulas |
We supp’ose that C is a DGA coalgebra over K. Let
(2) CF=CQ® - (k) - - ®C,

be the tensor product of C vnth itself k times.
Then for 1 < ¢ < k, definie P o’u C* by

;(3) P ® - ®a) = ( 1)7 -t deg”l( e ® )
and also: define - .
k—:Ck — Ck
by

di (e ® -+ @ cx)

(4) .
=2k (—DPiy(c1® - Qe ®dei @i ® -+ ® )
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In‘particular, di (¢1) = —dcrand -
B (6 ® ¢) = —do ® 6 + (—1)3 @ dey
Also, define A#:C* — C*™ by | o
5) Afa® - Qca)=a® - ®ci1®AC:) ® cipt ® -+ ® ci
Define
aiCf = F(C) by ala ® - @a) =l - |al

Since F(C) is defined on C, if any c; has degree 0 then 5(c1 ® -+ ® ¢) =
The following formula may be verified by induction:

(6) din = ndn” F anZ m L (=1)PA
In particular, diy = s dy~ + 4PiAand
iy = dydi A 4(Pr(A ® d) — Py(id'® A))

where id:C — C stands for the identity mapping, as usual. The case n'=" 18

Just equation (1). .
‘Given a DGA module M & (M ) will stand for the submodule of 1/ cons1st-

ing of those elements.of degree less than.» + 1. .,
L.3 Definition of SHCM mappings-

Suppose C and D are DGA coalgebras over K and h;:C — D is a homo-
morphism of DGA-modules (but not necessarily a homomorphism of coalgebras).
Then to say Ay is the initial mapping of the strongly homotopy comultiplicative
(SHCM) mapping {ky , ks, <+ , hn, - -~} will mean that for each integer n > 2,h,
is a K-module homomorphism of degree n — 1

bn:C— (D) .
such that '

() do b + had = 7"‘1 (he ® hn_L)PIA + | St (— 1) P s
In particular,rfor n = 2 we have o . _
dy by + had = (I ® h)PiA — PiAly

which says, except- that the signs are different, that the following diagram is
homqtopy commutatlve .

c—2, C®<-C

lhl ”jm@hl

p—2.peD
The motivation for the above definition is the following: -

1.4. TaroreM. If C and D are simply connected coalgebras over K and
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h = {h,--+y ba, -} is a SHCM mapping from C to D, then h induces a
morphism of DGA algebras

F(h):F(C) — F(D)

Proof. First define F(h) for elements having one bar by

(8) F(h)le] = ahi(c) + doha(c) + « -+ + dnha(c) + -
and then extend F(h) to all of F(C) by the requirement that F(h) be multi-
plicative.

To show F(h) is a chain map, we write down dF(h)[c] and F(k) dc).
F(h)dle] = F(h)(idi (c) + 2PiA(c))

= 2 ntabn(di(c)) + F(h)(&P1A(c))

= 2ninha(d(6)) + Lnze 20 dn(hi @ has) P1A(0)
whereas
dF(W)[e] = d 2ninhn(c) = 2onz (G da ha(e) + dms 2t (—1) P A a(c))
To say the terms having n-bars of the two expressions are equal is to say that
hndi™ () + 2235 (hi @ ha1) PAA(€) = du ha(e) + 215 (= 1) ™ P s ()

which is equation (7). ) _
It will be convenient to extend F = F(h) to a chain map

F = F(h):F(C) — F(D)

by acyclicity as follows.
Define F:Co ® F(C) — F(D) by

F(1®:z) =1Q F(z).

Suppose we have defined F: § ((C) ® F(C’)) — F(D) so that.dF (¢ ® 2) =
Fd(c ® z) wheneverc ® z € §((C) ® F(C)).
Nowletc ® z € §((C) ® F(C)). We define

F(c®2z) = s(1 @ F([cle) — F(sd(1 ® [c]z)).

Since (¢ ® 2) € F((C) @ F(C)), sd(1 ® [c)e) € §((C) ® F(C)) and
hence the right hand side is defined. Then

dF(c ® z) = ds{(F(1 ® [cle) — F(sd(1 ® [c]z))}
= ds{F(d(c ® 2)} = F(d(c ® 2)) — sd(F(d(c ® 2))).
But
d(F(d(c ® 2))) = F(d(d(c ® 2))) =0
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since
dc®2) € F(C®FC))

hence sdF (d(c ® 2)) = O. )
Hence F is defined inductively on all of C ® F(C).

1.6 Homotopies of SHCM maps

We will define homotopies of SHCM mappings so that if two SHCM maps are
homotopie in this special sense, then the induced mappings on the cobar con-
structions are homotopic in the usual sense. :

DeriniTioN. Let C and D be DGA coalgebras over K and let f =
{fi,fo, " fa,---}and k = {ki, ks, -+, kn,---} be two SHCM maps from
C to D. Then f and k are (SHCM ) homotopic if for each positive integer n there
is a K-module homorphism of degree n

gn:C — D"
such that
(9) gnd + di g + 205 (~1)FPASgu = fu — ki
In (ichis case we will refer to ¢ = {g1,**, gn, - - -} as the homotopy between f
and k.

As we mentioned, the reason for this definition is the following.

TuroreM. Let C and D be two simply connected DGA coalgebras over K. Let f
and k be two SHCM maps from C to D and let g be a homotopy between f and k. Then
the induced morphisms

F(f):F(C) — F(D)
and

F(k):F(C) — F(D)
are homotopic.

Proof. We will first define a homotopy for elements having one bar and then
will extend to all of F(C) using the acyclicity of F(D) = D ® F(D).

First define
H:F'(F(C)) — F(D)
by
oA D =101

and

H:§(F(C)) - F(D)



86 BYRON DRACHMAN

by
(10) H([C]) = Zn z.ngn<c)

when [c] € FF(C), se. dege = 2-(F(F(C)) = F(F(C)). We show that in
this case :

(11) dH([e]) + Hdle] = F(f([c] — F(k)Ic].

dﬁ([cl) = dzn tngn(C) = Zn {tn dn gn(c) + tuna Z?=l PiAi"ga(c)} by (6) and
H(dlc]) = H([—dc]) = D ninga(di (c)) since degc = 2 (forcing ¢ to be primi-
tive).

Then to say dH([c]) + H(d[c]) = F(f([c] — F(k)[c] is to say

Znin dngn(c) + Z.n+1 Z;;IP@'Aingn(c) + ingn(dl_(c)) = Zn ln(fﬂ(c) - kn(c))

which follows from (and is the motivation for) the definition (9). Then define
H:F(F(C)) > F(D)byH(c®2) =c® H(z)if (¢ ® z) € F(F(C)). (Hence
¢ has degree 0.) Then

dH(c®z) + Hd(c ® 2) = F(f)(¢c ® 2) — F(k)(c ® 2).
Now suppose that we have extended to
H:§(F(C)) — F(D)
such that
dH(c®2) + Hd(c®z2) = F(f)(c®2) — F(g)(c ® 2)

whenever
(c®2) € FFC))
extend H to
H:F*(F(C)) - F(D)
by

(12) Hc®z) =s{F(f)(c®z) — F(k)(c ® 2) — Hd(c ® 2)}
Then
dH(c ® 2) = ds(F(f)(c ® 2) — F(k)(c ® 2) — Hd(c ® 2))
=F(f)(c®2) — F(k)(c ® 2) — Hd(c ® 2)
—sd(F(f)(c ® 2) — F(k)(c ® z) — Hd(c ® 2)).
We show the last three terms give 0. By inductive hypothesis
dH(d(c®2)) + Hd(d(c®2)) = F(f)d(c®2) — F(k) d(c ® 2),
hence
d(F(f)(c ® 2) — dF(k)(c ® 2) — dHd(c ® 2)
=F(f)(d(c®2)) — F(k)d(c®2z) —dHd(c®z) =0
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and so we have
dH(c ® 2) + Hd(c ® 2) = F(f)(c ® 2) — F(k)(c @ 2).

Note that this requirement forced (12), hence H is an extension. This defines
H and H inductively for all r.

1.6 The map F(C) — A for a principal construction 4 —» M — C

Let F be an associative H space and X a countable CW-complex.

Let F — E — X be a principal quasifibering (Dold and Lashof [3]). Then there
is a strongly homotopy multiplicative map from QX to F which may be used to
classify the bundle (Drachman {4]). The algebraic analogue of a prineipal fiber-
ing (or quasi-fibering) will be a principal construction A — M — C. (One thinks
of C as the chains of X, M = C ® A with some twisted differential, and A as the
chains of F.) F(C), the cobar construction of C, is a model for the chains of
QX. We will show that there is a DGA-morphism from F(C) to A for a given
prinecipal construction A — M — C. This theorem has other applications but in
particular we may use it to define an Eilenberg-Zilber equivalence from F(C ® (')
to F(C) ® F(C).

1.6.1. Definition. A — M - C is a principal construction if 4 is a DGA-algebra
over K (a fixed ring with unit £ 0), C is a connected DGA coalgebra over K,

= C ®x A, M is a differential A module, and a differential C-comodule.
(Hence M will have a twisted differential.) For example, #(C) — F(C) — C
is a principal construction when C is a simply connected DGA coalgebra.

1.6.2. Definition. A — M — C is a special prinecipal construction if A — M — C
is a principal construction and if in addition 4 is connected, C is simply connected,
and there is a contracting homotopy s: M — M such that

(1) s raises total degree by +1, 8(1) = 0, s({c ® z):a) = (s(c ® z))-a
fc®x € M,a€ A,and deg (z) > 0

(2) sdz+ dsx =z — e(z) ® 14 »

(8) IfzcA,deg (2) 2 0,and s(1 ® 2) = c @ z € M, thendegec = 0
(hence degxz = degz + 1 — deg ¢ < degz since (1) holds and C; = 0).

In the above, deg z is the degree of 2, e:M — K is the augmentation on M
induced by the augmentations of C and A4, and 1, is the unit of A.
These are the essential properties of the cobar construction. F(C) — F(C) — C’

1.6.3. Theorem. Let A — M —> C be a principal construction and let A" — M — C
be a spectal principal construction. Then there is a unique morphism of C-comodules
and A-modules

fiM' — M inducing F:A'— A such that
(1) f s a chain map
(i) fle ® 14) = ¢ ® 1laif ¢ € C (and hence)
(iii) fc®2) =c® f(z) ifc € Candz € A'.

Proof. Let F"(A") be the submodule of A’ consisting of all elements of degree
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less that m + 1. Let §*(M') = C @ F"(A’). We shall construct, by induction
on m, f:F"(M') — M. If m = 0 then f is defined uniquely by f(¢ ® 14) =
C ® 1,1 .

Now let > 0 and suppose inductively that f is extended to f:§(M') — M
so that f is a morphism of C-comodules inducing f: F(4") — 4, (f(c ® z) =
¢ ® f(2) whenever ¢ ® z € §F(A")) such that df(y) = fd(y) whenever
y € F (M) and also dy € F(M').

Now let z € F(A”). Suppose deg z > 0. By condition (3) of 1.6.2, s(1 ® 2)
and sd(1 ® 2z) arein F (M’). We define then

F1 ®2) = f(sd(1 ® 2)) + df(s(1 ® 2))

since the terms on the right hand side are already defined. Note that the require-
ment that f be a chain map and the equation sd(1 ® z) +ds(1 ® z) = 1 ® 2
forces this definition. In other words, the proof yields uniqueness as well as
existence.

We want now to show

(13) A1 ®2) = (1c @ fAw (1l @ 2).
where Ay , Ay are the comodule actions. But

Auf(1 ® 2) = Aufsd(l ® 2) + Ay dfs(l ® 2)
and by inductive hypothesis,

Aufsd(1 ® 2) = (1c @ f)Awsd(l @ 2).
Hence one must show
(1¢ @ fH)Aw(ds(1 ® 2)) = Audf(s(1 ® 2)).
We leave this to the reader. Once this is done, we will have induced
Figi4) >4
and we extend to all of § ™ (M’) by defining
fle®2) =¢c® f(z)

whenever ¢ @ z € §F (M.
~ (iii) forces this definition, and we have the commutative diagram

FH(M) ) M
| |
C®FH(M) ey oM

and thus an inductive definition of the C-comodule morphism f. After that, it
will remain to show that f is multiplicative.
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We use induction on m. If m = O then of course f:F'(4’) — A preserves
products.
Now suppose we have proved that

f(z1-22) = f(21)-f(2:) whenever z-2, € F"(4").

Suppose that z;-2F™(A"). If 2 or 2 has degree 0, then clearly f(z;-2.) =
F(z1) -f(22), so we may assume both have degree greater than 0.

flzirze) = f(1 ® z12) = f(sd(1 ® z122)) + df(s(1 ® 2z122))
whereas
f(z) F(ze) = f(1 @ 21)-F(ze) = f(sd(1 @ 21))-F(22) + df(s(1 ® #z1))-f(z2)
= f((sd(1 ® 21))-2) + d(f(s(1 ® =1))-f(22))
— (—1)ed 04 (5(1 @ @) - df (a)
= f((sd(1 ® z1))22) + df(s(1 ® 21)-2) + (—1)%"f(s(1 ® 21))
df(z) = f(s)((d(1 @ &1))-2) + (—1)%s(1 ® 2)-d(2)
+ df(z(1 ® 21) 22
= f(sd(1 ® 2122)) + df(s(1 @ z22)).
Hence we have f multiplicative by induction.
1.7 The equivalence of F(C ® ') and F(C) ® F(C")

We shall show how to apply the previous theorem to get an equivalence between
F(C ® C') and F(C) ® F(C'). We suppose C and C’ are simply connected
DGA coalgebras over K with coproducts A:C — C ® C, A:C' — ¢’ ® C".
Then ¢ ® €’ is a simply connected DGA coalgebra with coproduct

A= (10 T® 1)(AQ®A)
(T is the standard twisting map), and differential dz
Bz®y) =dt® y+ (=12 ® dy.

The augmentation :C ® C' — K is given by ex(z @ y) = (z)-€ (y). Hence
A — M — C ® C'is a special principal construction where M = F(C ® C')
=(CQ®C)®F(C®C)and A = F(C ® C'). This special construction has
the contracting homotopy s given by

s(c®c®a®c| e ®e])
=) a®a)R@a®c| [t ® ca]

Nowlet A" = F(C) ® F(C'). Then A’ is a DGA algebra with products (z ® y)-
(®w) = (=1)*%(2.2) @ (y-w).Let M = (C® C') ® A'. We give M’
a structure so that A’ — M’ — C ® C' is a principal construction. In other
words, M' = ¢ ® ¢’ ® A’ is identified with C ® F(C) ® ¢' ® F(C") =
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F(C) ® F(C") by means of the isomorphism 7:F(C) ® F(C') — M’ where
(a®m) @ (® ) = (—1)™@ ® &) ® (11 ® z2)

where ‘
h = deg 21, k = deg

F(C) @ F(C') is a F(C) ® F(C')-module and C ® (’-comodule in the ob-
vious way. Now let M’ have the differentiation, module, and comodule actions
obtained by identifying M’ with F(C) ® F(C'). We note that F(C) ® F(C")
hasby s, = s ® 1 + ¢ ® s where s and s are the contracting homotopies for
F(C) and F(C").

Thus we see that F(C) ® F(C") forms a special principal construction, and by
identifying M’ with F(C) ® F(C'), wehave A’ — M’ — C ® C’ a special prin -
cipal construection.

Thus by Theorem 1.6.3 we have a unique map

h:M — M' inducing h:d — A’
and
g:M — M inducing §:4'— 4
satisfying (i), (ii), (iii).
hg and gh satisfy (i), (ii), (iil) also, and so by the uniqueness, hg = id and
gh = 4d, hg = 7d and gh = id. ‘
Hence F(C) ® F(C') and F(C ® C') are equivalent.
1.8 The diagonal map for the cobar construction

Suppose €' and D are DGA comodules. The usual way to define a morphism
between F(C) — F(D) is to have a comultiplicative map A:C — D inducing

h«:F(C) — F(D)
given by ‘
lea] -+ lea]l = [Bler)| - -+ |B(en)]:
To say h:C — D is comultiplicative means the following diagram is com-

mutative.
h

C———— D

Jo b

coc_l®"  pep

However, in the case that C is the chain complex of a space X, and D = D ® C,
the diagonal map A:C — C ® C is not comultiplicative, hence A4:F(C) —
F(C ® C)~ F(C) ® F(C) is not defined this way. One can, however, form a
SHCM map h = {h, - ,hn, -} from Cto C ® C where by = A:C—CQ C



COBAR CONSTRUCTION 91

and in this case we have

a:fe) L) pio e o) 2, F(C) ® F(O),

a morphism of DGA-algebras. The maps {h.} are chosen by acyclic-carriers
techniques, the only modification necessary is that the signs are more complicated.
This construction will be carried out in detail in a future paper.
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